Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'intern/cycles/device/opencl')
-rw-r--r--intern/cycles/device/opencl/opencl.h83
-rw-r--r--intern/cycles/device/opencl/opencl_base.cpp516
-rw-r--r--intern/cycles/device/opencl/opencl_mega.cpp54
-rw-r--r--intern/cycles/device/opencl/opencl_split.cpp123
-rw-r--r--intern/cycles/device/opencl/opencl_util.cpp81
5 files changed, 765 insertions, 92 deletions
diff --git a/intern/cycles/device/opencl/opencl.h b/intern/cycles/device/opencl/opencl.h
index 764216d0dfa..78ca377d933 100644
--- a/intern/cycles/device/opencl/opencl.h
+++ b/intern/cycles/device/opencl/opencl.h
@@ -17,6 +17,7 @@
#ifdef WITH_OPENCL
#include "device/device.h"
+#include "device/device_denoising.h"
#include "util/util_map.h"
#include "util/util_param.h"
@@ -26,24 +27,24 @@
CCL_NAMESPACE_BEGIN
+/* Disable workarounds, seems to be working fine on latest drivers. */
+#define CYCLES_DISABLE_DRIVER_WORKAROUNDS
+
/* Define CYCLES_DISABLE_DRIVER_WORKAROUNDS to disable workaounds for testing */
#ifndef CYCLES_DISABLE_DRIVER_WORKAROUNDS
/* Work around AMD driver hangs by ensuring each command is finished before doing anything else. */
# undef clEnqueueNDRangeKernel
# define clEnqueueNDRangeKernel(a, b, c, d, e, f, g, h, i) \
- clFinish(a); \
CLEW_GET_FUN(__clewEnqueueNDRangeKernel)(a, b, c, d, e, f, g, h, i); \
clFinish(a);
# undef clEnqueueWriteBuffer
# define clEnqueueWriteBuffer(a, b, c, d, e, f, g, h, i) \
- clFinish(a); \
CLEW_GET_FUN(__clewEnqueueWriteBuffer)(a, b, c, d, e, f, g, h, i); \
clFinish(a);
# undef clEnqueueReadBuffer
# define clEnqueueReadBuffer(a, b, c, d, e, f, g, h, i) \
- clFinish(a); \
CLEW_GET_FUN(__clewEnqueueReadBuffer)(a, b, c, d, e, f, g, h, i); \
clFinish(a);
#endif /* CYCLES_DISABLE_DRIVER_WORKAROUNDS */
@@ -86,7 +87,7 @@ public:
string *error = NULL);
static bool device_version_check(cl_device_id device,
string *error = NULL);
- static string get_hardware_id(string platform_name,
+ static string get_hardware_id(const string& platform_name,
cl_device_id device_id);
static void get_usable_devices(vector<OpenCLPlatformDevice> *usable_devices,
bool force_all = false);
@@ -132,6 +133,13 @@ public:
cl_int* error = NULL);
static cl_device_type get_device_type(cl_device_id device_id);
+ static bool get_driver_version(cl_device_id device_id,
+ int *major,
+ int *minor,
+ cl_int* error = NULL);
+
+ static int mem_address_alignment(cl_device_id device_id);
+
/* Get somewhat more readable device name.
* Main difference is AMD OpenCL here which only gives code name
* for the regular device name. This will give more sane device
@@ -221,7 +229,7 @@ public:
cl_int err = stmt; \
\
if(err != CL_SUCCESS) { \
- string message = string_printf("OpenCL error: %s in %s", clewErrorString(err), #stmt); \
+ string message = string_printf("OpenCL error: %s in %s (%s:%d)", clewErrorString(err), #stmt, __FILE__, __LINE__); \
if(error_msg == "") \
error_msg = message; \
fprintf(stderr, "%s\n", message.c_str()); \
@@ -242,17 +250,17 @@ public:
public:
OpenCLProgram() : loaded(false), device(NULL) {}
OpenCLProgram(OpenCLDeviceBase *device,
- string program_name,
- string kernel_name,
- string kernel_build_options,
+ const string& program_name,
+ const string& kernel_name,
+ const string& kernel_build_options,
bool use_stdout = true);
~OpenCLProgram();
void add_kernel(ustring name);
void load();
- bool is_loaded() { return loaded; }
- string get_log() { return log; }
+ bool is_loaded() const { return loaded; }
+ const string& get_log() const { return log; }
void report_error();
cl_kernel operator()();
@@ -266,8 +274,8 @@ public:
bool load_binary(const string& clbin, const string *debug_src = NULL);
bool save_binary(const string& clbin);
- void add_log(string msg, bool is_debug);
- void add_error(string msg);
+ void add_log(const string& msg, bool is_debug);
+ void add_error(const string& msg);
bool loaded;
cl_program program;
@@ -285,7 +293,7 @@ public:
map<ustring, cl_kernel> kernels;
};
- OpenCLProgram base_program;
+ OpenCLProgram base_program, denoising_program;
typedef map<string, device_vector<uchar>*> ConstMemMap;
typedef map<string, device_ptr> MemMap;
@@ -323,6 +331,9 @@ public:
void mem_copy_from(device_memory& mem, int y, int w, int h, int elem);
void mem_zero(device_memory& mem);
void mem_free(device_memory& mem);
+
+ int mem_address_alignment();
+
void const_copy_to(const char *name, void *host, size_t size);
void tex_alloc(const char *name,
device_memory& mem,
@@ -331,12 +342,14 @@ public:
void tex_free(device_memory& mem);
size_t global_size_round_up(int group_size, int global_size);
- void enqueue_kernel(cl_kernel kernel, size_t w, size_t h);
+ void enqueue_kernel(cl_kernel kernel, size_t w, size_t h, size_t max_workgroup_size = -1);
void set_kernel_arg_mem(cl_kernel kernel, cl_uint *narg, const char *name);
void film_convert(DeviceTask& task, device_ptr buffer, device_ptr rgba_byte, device_ptr rgba_half);
void shader(DeviceTask& task);
+ void denoise(RenderTile& tile, const DeviceTask& task);
+
class OpenCLDeviceTask : public DeviceTask {
public:
OpenCLDeviceTask(OpenCLDeviceBase *device, DeviceTask& task)
@@ -370,9 +383,51 @@ public:
virtual void thread_run(DeviceTask * /*task*/) = 0;
+ virtual bool is_split_kernel() = 0;
+
protected:
string kernel_build_options(const string *debug_src = NULL);
+ void mem_zero_kernel(device_ptr ptr, size_t size);
+
+ bool denoising_non_local_means(device_ptr image_ptr,
+ device_ptr guide_ptr,
+ device_ptr variance_ptr,
+ device_ptr out_ptr,
+ DenoisingTask *task);
+ bool denoising_construct_transform(DenoisingTask *task);
+ bool denoising_reconstruct(device_ptr color_ptr,
+ device_ptr color_variance_ptr,
+ device_ptr output_ptr,
+ DenoisingTask *task);
+ bool denoising_combine_halves(device_ptr a_ptr,
+ device_ptr b_ptr,
+ device_ptr mean_ptr,
+ device_ptr variance_ptr,
+ int r, int4 rect,
+ DenoisingTask *task);
+ bool denoising_divide_shadow(device_ptr a_ptr,
+ device_ptr b_ptr,
+ device_ptr sample_variance_ptr,
+ device_ptr sv_variance_ptr,
+ device_ptr buffer_variance_ptr,
+ DenoisingTask *task);
+ bool denoising_get_feature(int mean_offset,
+ int variance_offset,
+ device_ptr mean_ptr,
+ device_ptr variance_ptr,
+ DenoisingTask *task);
+ bool denoising_detect_outliers(device_ptr image_ptr,
+ device_ptr variance_ptr,
+ device_ptr depth_ptr,
+ device_ptr output_ptr,
+ DenoisingTask *task);
+ bool denoising_set_tiles(device_ptr *buffers,
+ DenoisingTask *task);
+
+ device_ptr mem_alloc_sub_ptr(device_memory& mem, int offset, int size, MemoryType type);
+ void mem_free_sub_ptr(device_ptr ptr);
+
class ArgumentWrapper {
public:
ArgumentWrapper() : size(0), pointer(NULL)
diff --git a/intern/cycles/device/opencl/opencl_base.cpp b/intern/cycles/device/opencl/opencl_base.cpp
index 52d0662a8e3..509da7a0a84 100644
--- a/intern/cycles/device/opencl/opencl_base.cpp
+++ b/intern/cycles/device/opencl/opencl_base.cpp
@@ -20,6 +20,7 @@
#include "kernel/kernel_types.h"
+#include "util/util_algorithm.h"
#include "util/util_foreach.h"
#include "util/util_logging.h"
#include "util/util_md5.h"
@@ -213,8 +214,24 @@ bool OpenCLDeviceBase::load_kernels(const DeviceRequestedFeatures& requested_fea
base_program.add_kernel(ustring("bake"));
base_program.add_kernel(ustring("zero_buffer"));
+ denoising_program = OpenCLProgram(this, "denoising", "filter.cl", "");
+ denoising_program.add_kernel(ustring("filter_divide_shadow"));
+ denoising_program.add_kernel(ustring("filter_get_feature"));
+ denoising_program.add_kernel(ustring("filter_detect_outliers"));
+ denoising_program.add_kernel(ustring("filter_combine_halves"));
+ denoising_program.add_kernel(ustring("filter_construct_transform"));
+ denoising_program.add_kernel(ustring("filter_nlm_calc_difference"));
+ denoising_program.add_kernel(ustring("filter_nlm_blur"));
+ denoising_program.add_kernel(ustring("filter_nlm_calc_weight"));
+ denoising_program.add_kernel(ustring("filter_nlm_update_output"));
+ denoising_program.add_kernel(ustring("filter_nlm_normalize"));
+ denoising_program.add_kernel(ustring("filter_nlm_construct_gramian"));
+ denoising_program.add_kernel(ustring("filter_finalize"));
+ denoising_program.add_kernel(ustring("filter_set_tiles"));
+
vector<OpenCLProgram*> programs;
programs.push_back(&base_program);
+ programs.push_back(&denoising_program);
/* Call actual class to fill the vector with its programs. */
if(!load_kernels(requested_features, programs)) {
return false;
@@ -260,6 +277,25 @@ void OpenCLDeviceBase::mem_alloc(const char *name, device_memory& mem, MemoryTyp
size_t size = mem.memory_size();
+ /* check there is enough memory available for the allocation */
+ cl_ulong max_alloc_size = 0;
+ clGetDeviceInfo(cdDevice, CL_DEVICE_MAX_MEM_ALLOC_SIZE, sizeof(cl_ulong), &max_alloc_size, NULL);
+
+ if(DebugFlags().opencl.mem_limit) {
+ max_alloc_size = min(max_alloc_size,
+ cl_ulong(DebugFlags().opencl.mem_limit - stats.mem_used));
+ }
+
+ if(size > max_alloc_size) {
+ string error = "Scene too complex to fit in available memory.";
+ if(name != NULL) {
+ error += string_printf(" (allocating buffer %s failed.)", name);
+ }
+ set_error(error);
+
+ return;
+ }
+
cl_mem_flags mem_flag;
void *mem_ptr = NULL;
@@ -322,37 +358,42 @@ void OpenCLDeviceBase::mem_copy_from(device_memory& mem, int y, int w, int h, in
NULL, NULL));
}
-void OpenCLDeviceBase::mem_zero(device_memory& mem)
+void OpenCLDeviceBase::mem_zero_kernel(device_ptr mem, size_t size)
{
- if(mem.device_pointer) {
- if(base_program.is_loaded()) {
- cl_kernel ckZeroBuffer = base_program(ustring("zero_buffer"));
+ cl_kernel ckZeroBuffer = base_program(ustring("zero_buffer"));
- size_t global_size[] = {1024, 1024};
- size_t num_threads = global_size[0] * global_size[1];
+ size_t global_size[] = {1024, 1024};
+ size_t num_threads = global_size[0] * global_size[1];
- cl_mem d_buffer = CL_MEM_PTR(mem.device_pointer);
- cl_ulong d_offset = 0;
- cl_ulong d_size = 0;
+ cl_mem d_buffer = CL_MEM_PTR(mem);
+ cl_ulong d_offset = 0;
+ cl_ulong d_size = 0;
- while(d_offset < mem.memory_size()) {
- d_size = std::min<cl_ulong>(num_threads*sizeof(float4), mem.memory_size() - d_offset);
+ while(d_offset < size) {
+ d_size = std::min<cl_ulong>(num_threads*sizeof(float4), size - d_offset);
- kernel_set_args(ckZeroBuffer, 0, d_buffer, d_size, d_offset);
+ kernel_set_args(ckZeroBuffer, 0, d_buffer, d_size, d_offset);
- ciErr = clEnqueueNDRangeKernel(cqCommandQueue,
- ckZeroBuffer,
- 2,
- NULL,
- global_size,
- NULL,
- 0,
- NULL,
- NULL);
- opencl_assert_err(ciErr, "clEnqueueNDRangeKernel");
+ ciErr = clEnqueueNDRangeKernel(cqCommandQueue,
+ ckZeroBuffer,
+ 2,
+ NULL,
+ global_size,
+ NULL,
+ 0,
+ NULL,
+ NULL);
+ opencl_assert_err(ciErr, "clEnqueueNDRangeKernel");
- d_offset += d_size;
- }
+ d_offset += d_size;
+ }
+}
+
+void OpenCLDeviceBase::mem_zero(device_memory& mem)
+{
+ if(mem.device_pointer) {
+ if(base_program.is_loaded()) {
+ mem_zero_kernel(mem.device_pointer, mem.memory_size());
}
if(mem.data_pointer) {
@@ -396,6 +437,41 @@ void OpenCLDeviceBase::mem_free(device_memory& mem)
}
}
+int OpenCLDeviceBase::mem_address_alignment()
+{
+ return OpenCLInfo::mem_address_alignment(cdDevice);
+}
+
+device_ptr OpenCLDeviceBase::mem_alloc_sub_ptr(device_memory& mem, int offset, int size, MemoryType type)
+{
+ cl_mem_flags mem_flag;
+ if(type == MEM_READ_ONLY)
+ mem_flag = CL_MEM_READ_ONLY;
+ else if(type == MEM_WRITE_ONLY)
+ mem_flag = CL_MEM_WRITE_ONLY;
+ else
+ mem_flag = CL_MEM_READ_WRITE;
+
+ cl_buffer_region info;
+ info.origin = mem.memory_elements_size(offset);
+ info.size = mem.memory_elements_size(size);
+
+ device_ptr sub_buf = (device_ptr) clCreateSubBuffer(CL_MEM_PTR(mem.device_pointer),
+ mem_flag,
+ CL_BUFFER_CREATE_TYPE_REGION,
+ &info,
+ &ciErr);
+ opencl_assert_err(ciErr, "clCreateSubBuffer");
+ return sub_buf;
+}
+
+void OpenCLDeviceBase::mem_free_sub_ptr(device_ptr device_pointer)
+{
+ if(device_pointer && device_pointer != null_mem) {
+ opencl_assert(clReleaseMemObject(CL_MEM_PTR(device_pointer)));
+ }
+}
+
void OpenCLDeviceBase::const_copy_to(const char *name, void *host, size_t size)
{
ConstMemMap::iterator i = const_mem_map.find(name);
@@ -449,7 +525,7 @@ size_t OpenCLDeviceBase::global_size_round_up(int group_size, int global_size)
return global_size + ((r == 0)? 0: group_size - r);
}
-void OpenCLDeviceBase::enqueue_kernel(cl_kernel kernel, size_t w, size_t h)
+void OpenCLDeviceBase::enqueue_kernel(cl_kernel kernel, size_t w, size_t h, size_t max_workgroup_size)
{
size_t workgroup_size, max_work_items[3];
@@ -458,6 +534,10 @@ void OpenCLDeviceBase::enqueue_kernel(cl_kernel kernel, size_t w, size_t h)
clGetDeviceInfo(cdDevice,
CL_DEVICE_MAX_WORK_ITEM_SIZES, sizeof(size_t)*3, max_work_items, NULL);
+ if(max_workgroup_size > 0 && workgroup_size > max_workgroup_size) {
+ workgroup_size = max_workgroup_size;
+ }
+
/* Try to divide evenly over 2 dimensions. */
size_t sqrt_workgroup_size = max((size_t)sqrt((double)workgroup_size), 1);
size_t local_size[2] = {sqrt_workgroup_size, sqrt_workgroup_size};
@@ -543,6 +623,380 @@ set_kernel_arg_mem(ckFilmConvertKernel, &start_arg_index, #name);
enqueue_kernel(ckFilmConvertKernel, d_w, d_h);
}
+bool OpenCLDeviceBase::denoising_non_local_means(device_ptr image_ptr,
+ device_ptr guide_ptr,
+ device_ptr variance_ptr,
+ device_ptr out_ptr,
+ DenoisingTask *task)
+{
+ int4 rect = task->rect;
+ int w = rect.z-rect.x;
+ int h = rect.w-rect.y;
+ int r = task->nlm_state.r;
+ int f = task->nlm_state.f;
+ float a = task->nlm_state.a;
+ float k_2 = task->nlm_state.k_2;
+
+ cl_mem difference = CL_MEM_PTR(task->nlm_state.temporary_1_ptr);
+ cl_mem blurDifference = CL_MEM_PTR(task->nlm_state.temporary_2_ptr);
+ cl_mem weightAccum = CL_MEM_PTR(task->nlm_state.temporary_3_ptr);
+
+ cl_mem image_mem = CL_MEM_PTR(image_ptr);
+ cl_mem guide_mem = CL_MEM_PTR(guide_ptr);
+ cl_mem variance_mem = CL_MEM_PTR(variance_ptr);
+ cl_mem out_mem = CL_MEM_PTR(out_ptr);
+
+ mem_zero_kernel(task->nlm_state.temporary_3_ptr, sizeof(float)*w*h);
+ mem_zero_kernel(out_ptr, sizeof(float)*w*h);
+
+ cl_kernel ckNLMCalcDifference = denoising_program(ustring("filter_nlm_calc_difference"));
+ cl_kernel ckNLMBlur = denoising_program(ustring("filter_nlm_blur"));
+ cl_kernel ckNLMCalcWeight = denoising_program(ustring("filter_nlm_calc_weight"));
+ cl_kernel ckNLMUpdateOutput = denoising_program(ustring("filter_nlm_update_output"));
+ cl_kernel ckNLMNormalize = denoising_program(ustring("filter_nlm_normalize"));
+
+ for(int i = 0; i < (2*r+1)*(2*r+1); i++) {
+ int dy = i / (2*r+1) - r;
+ int dx = i % (2*r+1) - r;
+ int4 local_rect = make_int4(max(0, -dx), max(0, -dy), rect.z-rect.x - max(0, dx), rect.w-rect.y - max(0, dy));
+ kernel_set_args(ckNLMCalcDifference, 0,
+ dx, dy, guide_mem, variance_mem,
+ difference, local_rect, w, 0, a, k_2);
+ kernel_set_args(ckNLMBlur, 0,
+ difference, blurDifference, local_rect, w, f);
+ kernel_set_args(ckNLMCalcWeight, 0,
+ blurDifference, difference, local_rect, w, f);
+ kernel_set_args(ckNLMUpdateOutput, 0,
+ dx, dy, blurDifference, image_mem,
+ out_mem, weightAccum, local_rect, w, f);
+
+ enqueue_kernel(ckNLMCalcDifference, w, h);
+ enqueue_kernel(ckNLMBlur, w, h);
+ enqueue_kernel(ckNLMCalcWeight, w, h);
+ enqueue_kernel(ckNLMBlur, w, h);
+ enqueue_kernel(ckNLMUpdateOutput, w, h);
+ }
+
+ int4 local_rect = make_int4(0, 0, w, h);
+ kernel_set_args(ckNLMNormalize, 0,
+ out_mem, weightAccum, local_rect, w);
+ enqueue_kernel(ckNLMNormalize, w, h);
+
+ return true;
+}
+
+bool OpenCLDeviceBase::denoising_construct_transform(DenoisingTask *task)
+{
+ cl_mem buffer_mem = CL_MEM_PTR(task->buffer.mem.device_pointer);
+ cl_mem transform_mem = CL_MEM_PTR(task->storage.transform.device_pointer);
+ cl_mem rank_mem = CL_MEM_PTR(task->storage.rank.device_pointer);
+
+ cl_kernel ckFilterConstructTransform = denoising_program(ustring("filter_construct_transform"));
+
+ kernel_set_args(ckFilterConstructTransform, 0,
+ buffer_mem,
+ transform_mem,
+ rank_mem,
+ task->filter_area,
+ task->rect,
+ task->buffer.pass_stride,
+ task->radius,
+ task->pca_threshold);
+
+ enqueue_kernel(ckFilterConstructTransform,
+ task->storage.w,
+ task->storage.h,
+ 256);
+
+ return true;
+}
+
+bool OpenCLDeviceBase::denoising_reconstruct(device_ptr color_ptr,
+ device_ptr color_variance_ptr,
+ device_ptr output_ptr,
+ DenoisingTask *task)
+{
+ mem_zero(task->storage.XtWX);
+ mem_zero(task->storage.XtWY);
+
+ cl_mem color_mem = CL_MEM_PTR(color_ptr);
+ cl_mem color_variance_mem = CL_MEM_PTR(color_variance_ptr);
+ cl_mem output_mem = CL_MEM_PTR(output_ptr);
+
+ cl_mem buffer_mem = CL_MEM_PTR(task->buffer.mem.device_pointer);
+ cl_mem transform_mem = CL_MEM_PTR(task->storage.transform.device_pointer);
+ cl_mem rank_mem = CL_MEM_PTR(task->storage.rank.device_pointer);
+ cl_mem XtWX_mem = CL_MEM_PTR(task->storage.XtWX.device_pointer);
+ cl_mem XtWY_mem = CL_MEM_PTR(task->storage.XtWY.device_pointer);
+
+ cl_kernel ckNLMCalcDifference = denoising_program(ustring("filter_nlm_calc_difference"));
+ cl_kernel ckNLMBlur = denoising_program(ustring("filter_nlm_blur"));
+ cl_kernel ckNLMCalcWeight = denoising_program(ustring("filter_nlm_calc_weight"));
+ cl_kernel ckNLMConstructGramian = denoising_program(ustring("filter_nlm_construct_gramian"));
+ cl_kernel ckFinalize = denoising_program(ustring("filter_finalize"));
+
+ cl_mem difference = CL_MEM_PTR(task->reconstruction_state.temporary_1_ptr);
+ cl_mem blurDifference = CL_MEM_PTR(task->reconstruction_state.temporary_2_ptr);
+
+ int r = task->radius;
+ int f = 4;
+ float a = 1.0f;
+ for(int i = 0; i < (2*r+1)*(2*r+1); i++) {
+ int dy = i / (2*r+1) - r;
+ int dx = i % (2*r+1) - r;
+
+ int local_rect[4] = {max(0, -dx), max(0, -dy),
+ task->reconstruction_state.source_w - max(0, dx),
+ task->reconstruction_state.source_h - max(0, dy)};
+
+ kernel_set_args(ckNLMCalcDifference, 0,
+ dx, dy,
+ color_mem,
+ color_variance_mem,
+ difference,
+ local_rect,
+ task->buffer.w,
+ task->buffer.pass_stride,
+ a, task->nlm_k_2);
+ enqueue_kernel(ckNLMCalcDifference,
+ task->reconstruction_state.source_w,
+ task->reconstruction_state.source_h);
+
+ kernel_set_args(ckNLMBlur, 0,
+ difference,
+ blurDifference,
+ local_rect,
+ task->buffer.w,
+ f);
+ enqueue_kernel(ckNLMBlur,
+ task->reconstruction_state.source_w,
+ task->reconstruction_state.source_h);
+
+ kernel_set_args(ckNLMCalcWeight, 0,
+ blurDifference,
+ difference,
+ local_rect,
+ task->buffer.w,
+ f);
+ enqueue_kernel(ckNLMCalcWeight,
+ task->reconstruction_state.source_w,
+ task->reconstruction_state.source_h);
+
+ /* Reuse previous arguments. */
+ enqueue_kernel(ckNLMBlur,
+ task->reconstruction_state.source_w,
+ task->reconstruction_state.source_h);
+
+ kernel_set_args(ckNLMConstructGramian, 0,
+ dx, dy,
+ blurDifference,
+ buffer_mem,
+ transform_mem,
+ rank_mem,
+ XtWX_mem,
+ XtWY_mem,
+ local_rect,
+ task->reconstruction_state.filter_rect,
+ task->buffer.w,
+ task->buffer.h,
+ f,
+ task->buffer.pass_stride);
+ enqueue_kernel(ckNLMConstructGramian,
+ task->reconstruction_state.source_w,
+ task->reconstruction_state.source_h,
+ 256);
+ }
+
+ kernel_set_args(ckFinalize, 0,
+ task->buffer.w,
+ task->buffer.h,
+ output_mem,
+ rank_mem,
+ XtWX_mem,
+ XtWY_mem,
+ task->filter_area,
+ task->reconstruction_state.buffer_params,
+ task->render_buffer.samples);
+ enqueue_kernel(ckFinalize,
+ task->reconstruction_state.source_w,
+ task->reconstruction_state.source_h);
+
+ return true;
+}
+
+bool OpenCLDeviceBase::denoising_combine_halves(device_ptr a_ptr,
+ device_ptr b_ptr,
+ device_ptr mean_ptr,
+ device_ptr variance_ptr,
+ int r, int4 rect,
+ DenoisingTask *task)
+{
+ cl_mem a_mem = CL_MEM_PTR(a_ptr);
+ cl_mem b_mem = CL_MEM_PTR(b_ptr);
+ cl_mem mean_mem = CL_MEM_PTR(mean_ptr);
+ cl_mem variance_mem = CL_MEM_PTR(variance_ptr);
+
+ cl_kernel ckFilterCombineHalves = denoising_program(ustring("filter_combine_halves"));
+
+ kernel_set_args(ckFilterCombineHalves, 0,
+ mean_mem,
+ variance_mem,
+ a_mem,
+ b_mem,
+ rect,
+ r);
+ enqueue_kernel(ckFilterCombineHalves,
+ task->rect.z-task->rect.x,
+ task->rect.w-task->rect.y);
+
+ return true;
+}
+
+bool OpenCLDeviceBase::denoising_divide_shadow(device_ptr a_ptr,
+ device_ptr b_ptr,
+ device_ptr sample_variance_ptr,
+ device_ptr sv_variance_ptr,
+ device_ptr buffer_variance_ptr,
+ DenoisingTask *task)
+{
+ cl_mem a_mem = CL_MEM_PTR(a_ptr);
+ cl_mem b_mem = CL_MEM_PTR(b_ptr);
+ cl_mem sample_variance_mem = CL_MEM_PTR(sample_variance_ptr);
+ cl_mem sv_variance_mem = CL_MEM_PTR(sv_variance_ptr);
+ cl_mem buffer_variance_mem = CL_MEM_PTR(buffer_variance_ptr);
+
+ cl_mem tiles_mem = CL_MEM_PTR(task->tiles_mem.device_pointer);
+
+ cl_kernel ckFilterDivideShadow = denoising_program(ustring("filter_divide_shadow"));
+
+ char split_kernel = is_split_kernel()? 1 : 0;
+ kernel_set_args(ckFilterDivideShadow, 0,
+ task->render_buffer.samples,
+ tiles_mem,
+ a_mem,
+ b_mem,
+ sample_variance_mem,
+ sv_variance_mem,
+ buffer_variance_mem,
+ task->rect,
+ task->render_buffer.pass_stride,
+ task->render_buffer.denoising_data_offset,
+ split_kernel);
+ enqueue_kernel(ckFilterDivideShadow,
+ task->rect.z-task->rect.x,
+ task->rect.w-task->rect.y);
+
+ return true;
+}
+
+bool OpenCLDeviceBase::denoising_get_feature(int mean_offset,
+ int variance_offset,
+ device_ptr mean_ptr,
+ device_ptr variance_ptr,
+ DenoisingTask *task)
+{
+ cl_mem mean_mem = CL_MEM_PTR(mean_ptr);
+ cl_mem variance_mem = CL_MEM_PTR(variance_ptr);
+
+ cl_mem tiles_mem = CL_MEM_PTR(task->tiles_mem.device_pointer);
+
+ cl_kernel ckFilterGetFeature = denoising_program(ustring("filter_get_feature"));
+
+ char split_kernel = is_split_kernel()? 1 : 0;
+ kernel_set_args(ckFilterGetFeature, 0,
+ task->render_buffer.samples,
+ tiles_mem,
+ mean_offset,
+ variance_offset,
+ mean_mem,
+ variance_mem,
+ task->rect,
+ task->render_buffer.pass_stride,
+ task->render_buffer.denoising_data_offset,
+ split_kernel);
+ enqueue_kernel(ckFilterGetFeature,
+ task->rect.z-task->rect.x,
+ task->rect.w-task->rect.y);
+
+ return true;
+}
+
+bool OpenCLDeviceBase::denoising_detect_outliers(device_ptr image_ptr,
+ device_ptr variance_ptr,
+ device_ptr depth_ptr,
+ device_ptr output_ptr,
+ DenoisingTask *task)
+{
+ cl_mem image_mem = CL_MEM_PTR(image_ptr);
+ cl_mem variance_mem = CL_MEM_PTR(variance_ptr);
+ cl_mem depth_mem = CL_MEM_PTR(depth_ptr);
+ cl_mem output_mem = CL_MEM_PTR(output_ptr);
+
+ cl_kernel ckFilterDetectOutliers = denoising_program(ustring("filter_detect_outliers"));
+
+ kernel_set_args(ckFilterDetectOutliers, 0,
+ image_mem,
+ variance_mem,
+ depth_mem,
+ output_mem,
+ task->rect,
+ task->buffer.pass_stride);
+ enqueue_kernel(ckFilterDetectOutliers,
+ task->rect.z-task->rect.x,
+ task->rect.w-task->rect.y);
+
+ return true;
+}
+
+bool OpenCLDeviceBase::denoising_set_tiles(device_ptr *buffers,
+ DenoisingTask *task)
+{
+ mem_alloc("Denoising Tile Info", task->tiles_mem, MEM_READ_WRITE);
+ mem_copy_to(task->tiles_mem);
+
+ cl_mem tiles_mem = CL_MEM_PTR(task->tiles_mem.device_pointer);
+
+ cl_kernel ckFilterSetTiles = denoising_program(ustring("filter_set_tiles"));
+
+ kernel_set_args(ckFilterSetTiles, 0, tiles_mem);
+ for(int i = 0; i < 9; i++) {
+ cl_mem buffer_mem = CL_MEM_PTR(buffers[i]);
+ kernel_set_args(ckFilterSetTiles, i+1, buffer_mem);
+ }
+
+ enqueue_kernel(ckFilterSetTiles, 1, 1);
+
+ return true;
+}
+
+void OpenCLDeviceBase::denoise(RenderTile &rtile, const DeviceTask &task)
+{
+ DenoisingTask denoising(this);
+
+ denoising.functions.set_tiles = function_bind(&OpenCLDeviceBase::denoising_set_tiles, this, _1, &denoising);
+ denoising.functions.construct_transform = function_bind(&OpenCLDeviceBase::denoising_construct_transform, this, &denoising);
+ denoising.functions.reconstruct = function_bind(&OpenCLDeviceBase::denoising_reconstruct, this, _1, _2, _3, &denoising);
+ denoising.functions.divide_shadow = function_bind(&OpenCLDeviceBase::denoising_divide_shadow, this, _1, _2, _3, _4, _5, &denoising);
+ denoising.functions.non_local_means = function_bind(&OpenCLDeviceBase::denoising_non_local_means, this, _1, _2, _3, _4, &denoising);
+ denoising.functions.combine_halves = function_bind(&OpenCLDeviceBase::denoising_combine_halves, this, _1, _2, _3, _4, _5, _6, &denoising);
+ denoising.functions.get_feature = function_bind(&OpenCLDeviceBase::denoising_get_feature, this, _1, _2, _3, _4, &denoising);
+ denoising.functions.detect_outliers = function_bind(&OpenCLDeviceBase::denoising_detect_outliers, this, _1, _2, _3, _4, &denoising);
+
+ denoising.filter_area = make_int4(rtile.x, rtile.y, rtile.w, rtile.h);
+ denoising.render_buffer.samples = rtile.sample;
+
+ RenderTile rtiles[9];
+ rtiles[4] = rtile;
+ task.map_neighbor_tiles(rtiles, this);
+ denoising.tiles_from_rendertiles(rtiles);
+
+ denoising.init_from_devicetask(task);
+
+ denoising.run_denoising();
+
+ task.unmap_neighbor_tiles(rtiles, this);
+}
+
void OpenCLDeviceBase::shader(DeviceTask& task)
{
/* cast arguments to cl types */
@@ -612,7 +1066,7 @@ void OpenCLDeviceBase::shader(DeviceTask& task)
string OpenCLDeviceBase::kernel_build_options(const string *debug_src)
{
- string build_options = "-cl-fast-relaxed-math ";
+ string build_options = "-cl-no-signed-zeros -cl-mad-enable ";
if(platform_name == "NVIDIA CUDA") {
build_options += "-D__KERNEL_OPENCL_NVIDIA__ "
@@ -792,7 +1246,7 @@ void OpenCLDeviceBase::store_cached_kernel(
}
string OpenCLDeviceBase::build_options_for_base_program(
- const DeviceRequestedFeatures& /*requested_features*/)
+ const DeviceRequestedFeatures& requested_features)
{
/* TODO(sergey): By default we compile all features, meaning
* mega kernel is not getting feature-based optimizations.
@@ -800,6 +1254,14 @@ string OpenCLDeviceBase::build_options_for_base_program(
* Ideally we need always compile kernel with as less features
* enabled as possible to keep performance at it's max.
*/
+
+ /* For now disable baking when not in use as this has major
+ * impact on kernel build times.
+ */
+ if(!requested_features.use_baking) {
+ return "-D__NO_BAKING__";
+ }
+
return "";
}
diff --git a/intern/cycles/device/opencl/opencl_mega.cpp b/intern/cycles/device/opencl/opencl_mega.cpp
index a2fd1d71156..06c15bcf401 100644
--- a/intern/cycles/device/opencl/opencl_mega.cpp
+++ b/intern/cycles/device/opencl/opencl_mega.cpp
@@ -108,41 +108,53 @@ public:
else if(task->type == DeviceTask::SHADER) {
shader(*task);
}
- else if(task->type == DeviceTask::PATH_TRACE) {
+ else if(task->type == DeviceTask::RENDER) {
RenderTile tile;
/* Keep rendering tiles until done. */
while(task->acquire_tile(this, tile)) {
- int start_sample = tile.start_sample;
- int end_sample = tile.start_sample + tile.num_samples;
+ if(tile.task == RenderTile::PATH_TRACE) {
+ int start_sample = tile.start_sample;
+ int end_sample = tile.start_sample + tile.num_samples;
- for(int sample = start_sample; sample < end_sample; sample++) {
- if(task->get_cancel()) {
- if(task->need_finish_queue == false)
- break;
- }
+ for(int sample = start_sample; sample < end_sample; sample++) {
+ if(task->get_cancel()) {
+ if(task->need_finish_queue == false)
+ break;
+ }
+
+ path_trace(tile, sample);
- path_trace(tile, sample);
+ tile.sample = sample + 1;
- tile.sample = sample + 1;
+ task->update_progress(&tile, tile.w*tile.h);
+ }
+ /* Complete kernel execution before release tile */
+ /* This helps in multi-device render;
+ * The device that reaches the critical-section function
+ * release_tile waits (stalling other devices from entering
+ * release_tile) for all kernels to complete. If device1 (a
+ * slow-render device) reaches release_tile first then it would
+ * stall device2 (a fast-render device) from proceeding to render
+ * next tile.
+ */
+ clFinish(cqCommandQueue);
+ }
+ else if(tile.task == RenderTile::DENOISE) {
+ tile.sample = tile.start_sample + tile.num_samples;
+ denoise(tile, *task);
task->update_progress(&tile, tile.w*tile.h);
}
- /* Complete kernel execution before release tile */
- /* This helps in multi-device render;
- * The device that reaches the critical-section function
- * release_tile waits (stalling other devices from entering
- * release_tile) for all kernels to complete. If device1 (a
- * slow-render device) reaches release_tile first then it would
- * stall device2 (a fast-render device) from proceeding to render
- * next tile.
- */
- clFinish(cqCommandQueue);
-
task->release_tile(tile);
}
}
}
+
+ bool is_split_kernel()
+ {
+ return false;
+ }
};
Device *opencl_create_mega_device(DeviceInfo& info, Stats& stats, bool background)
diff --git a/intern/cycles/device/opencl/opencl_split.cpp b/intern/cycles/device/opencl/opencl_split.cpp
index b8df57ec7b9..76d9983e9a2 100644
--- a/intern/cycles/device/opencl/opencl_split.cpp
+++ b/intern/cycles/device/opencl/opencl_split.cpp
@@ -25,6 +25,7 @@
#include "device/device_split_kernel.h"
+#include "util/util_algorithm.h"
#include "util/util_logging.h"
#include "util/util_md5.h"
#include "util/util_path.h"
@@ -70,6 +71,10 @@ public:
delete split_kernel;
}
+ virtual bool show_samples() const {
+ return true;
+ }
+
virtual bool load_kernels(const DeviceRequestedFeatures& requested_features,
vector<OpenCLDeviceBase::OpenCLProgram*> &programs)
{
@@ -100,7 +105,7 @@ public:
else if(task->type == DeviceTask::SHADER) {
shader(*task);
}
- else if(task->type == DeviceTask::PATH_TRACE) {
+ else if(task->type == DeviceTask::RENDER) {
RenderTile tile;
/* Copy dummy KernelGlobals related to OpenCL from kernel_globals.h to
@@ -123,21 +128,29 @@ public:
/* Keep rendering tiles until done. */
while(task->acquire_tile(this, tile)) {
- split_kernel->path_trace(task,
- tile,
- kgbuffer,
- *const_mem_map["__data"]);
-
- /* Complete kernel execution before release tile. */
- /* This helps in multi-device render;
- * The device that reaches the critical-section function
- * release_tile waits (stalling other devices from entering
- * release_tile) for all kernels to complete. If device1 (a
- * slow-render device) reaches release_tile first then it would
- * stall device2 (a fast-render device) from proceeding to render
- * next tile.
- */
- clFinish(cqCommandQueue);
+ if(tile.task == RenderTile::PATH_TRACE) {
+ assert(tile.task == RenderTile::PATH_TRACE);
+ split_kernel->path_trace(task,
+ tile,
+ kgbuffer,
+ *const_mem_map["__data"]);
+
+ /* Complete kernel execution before release tile. */
+ /* This helps in multi-device render;
+ * The device that reaches the critical-section function
+ * release_tile waits (stalling other devices from entering
+ * release_tile) for all kernels to complete. If device1 (a
+ * slow-render device) reaches release_tile first then it would
+ * stall device2 (a fast-render device) from proceeding to render
+ * next tile.
+ */
+ clFinish(cqCommandQueue);
+ }
+ else if(tile.task == RenderTile::DENOISE) {
+ tile.sample = tile.start_sample + tile.num_samples;
+ denoise(tile, *task);
+ task->update_progress(&tile, tile.w*tile.h);
+ }
task->release_tile(tile);
}
@@ -146,6 +159,11 @@ public:
}
}
+ bool is_split_kernel()
+ {
+ return true;
+ }
+
protected:
/* ** Those guys are for workign around some compiler-specific bugs ** */
@@ -159,17 +177,62 @@ protected:
friend class OpenCLSplitKernelFunction;
};
+struct CachedSplitMemory {
+ int id;
+ device_memory *split_data;
+ device_memory *ray_state;
+ device_ptr *rng_state;
+ device_memory *queue_index;
+ device_memory *use_queues_flag;
+ device_memory *work_pools;
+ device_ptr *buffer;
+};
+
class OpenCLSplitKernelFunction : public SplitKernelFunction {
public:
OpenCLDeviceSplitKernel* device;
OpenCLDeviceBase::OpenCLProgram program;
+ CachedSplitMemory& cached_memory;
+ int cached_id;
+
+ OpenCLSplitKernelFunction(OpenCLDeviceSplitKernel* device, CachedSplitMemory& cached_memory) :
+ device(device), cached_memory(cached_memory), cached_id(cached_memory.id-1)
+ {
+ }
- OpenCLSplitKernelFunction(OpenCLDeviceSplitKernel* device) : device(device) {}
- ~OpenCLSplitKernelFunction() { program.release(); }
+ ~OpenCLSplitKernelFunction()
+ {
+ program.release();
+ }
virtual bool enqueue(const KernelDimensions& dim, device_memory& kg, device_memory& data)
{
- device->kernel_set_args(program(), 0, kg, data);
+ if(cached_id != cached_memory.id) {
+ cl_uint start_arg_index =
+ device->kernel_set_args(program(),
+ 0,
+ kg,
+ data,
+ *cached_memory.split_data,
+ *cached_memory.ray_state,
+ *cached_memory.rng_state);
+
+/* TODO(sergey): Avoid map lookup here. */
+#define KERNEL_TEX(type, ttype, name) \
+ device->set_kernel_arg_mem(program(), &start_arg_index, #name);
+#include "kernel/kernel_textures.h"
+#undef KERNEL_TEX
+
+ start_arg_index +=
+ device->kernel_set_args(program(),
+ start_arg_index,
+ *cached_memory.queue_index,
+ *cached_memory.use_queues_flag,
+ *cached_memory.work_pools,
+ *cached_memory.buffer);
+
+ cached_id = cached_memory.id;
+ }
device->ciErr = clEnqueueNDRangeKernel(device->cqCommandQueue,
program(),
@@ -196,14 +259,15 @@ public:
class OpenCLSplitKernel : public DeviceSplitKernel {
OpenCLDeviceSplitKernel *device;
+ CachedSplitMemory cached_memory;
public:
explicit OpenCLSplitKernel(OpenCLDeviceSplitKernel *device) : DeviceSplitKernel(device), device(device) {
}
- virtual SplitKernelFunction* get_split_kernel_function(string kernel_name,
+ virtual SplitKernelFunction* get_split_kernel_function(const string& kernel_name,
const DeviceRequestedFeatures& requested_features)
{
- OpenCLSplitKernelFunction* kernel = new OpenCLSplitKernelFunction(device);
+ OpenCLSplitKernelFunction* kernel = new OpenCLSplitKernelFunction(device, cached_memory);
bool single_program = OpenCLInfo::use_single_program();
kernel->program =
@@ -332,6 +396,15 @@ public:
return false;
}
+ cached_memory.split_data = &split_data;
+ cached_memory.ray_state = &ray_state;
+ cached_memory.rng_state = &rtile.rng_state;
+ cached_memory.queue_index = &queue_index;
+ cached_memory.use_queues_flag = &use_queues_flag;
+ cached_memory.work_pools = &work_pool_wgs;
+ cached_memory.buffer = &rtile.buffer;
+ cached_memory.id++;
+
return true;
}
@@ -351,12 +424,18 @@ public:
cl_ulong max_buffer_size;
clGetDeviceInfo(device->cdDevice, CL_DEVICE_MAX_MEM_ALLOC_SIZE, sizeof(cl_ulong), &max_buffer_size, NULL);
+
+ if(DebugFlags().opencl.mem_limit) {
+ max_buffer_size = min(max_buffer_size,
+ cl_ulong(DebugFlags().opencl.mem_limit - device->stats.mem_used));
+ }
+
VLOG(1) << "Maximum device allocation size: "
<< string_human_readable_number(max_buffer_size) << " bytes. ("
<< string_human_readable_size(max_buffer_size) << ").";
size_t num_elements = max_elements_for_max_buffer_size(kg, data, max_buffer_size / 2);
- int2 global_size = make_int2(round_down((int)sqrt(num_elements), 64), (int)sqrt(num_elements));
+ int2 global_size = make_int2(max(round_down((int)sqrt(num_elements), 64), 64), (int)sqrt(num_elements));
VLOG(1) << "Global size: " << global_size << ".";
return global_size;
}
diff --git a/intern/cycles/device/opencl/opencl_util.cpp b/intern/cycles/device/opencl/opencl_util.cpp
index fe1c65a2224..0d34af3e040 100644
--- a/intern/cycles/device/opencl/opencl_util.cpp
+++ b/intern/cycles/device/opencl/opencl_util.cpp
@@ -241,9 +241,9 @@ string OpenCLCache::get_kernel_md5()
}
OpenCLDeviceBase::OpenCLProgram::OpenCLProgram(OpenCLDeviceBase *device,
- string program_name,
- string kernel_file,
- string kernel_build_options,
+ const string& program_name,
+ const string& kernel_file,
+ const string& kernel_build_options,
bool use_stdout)
: device(device),
program_name(program_name),
@@ -274,7 +274,7 @@ void OpenCLDeviceBase::OpenCLProgram::release()
}
}
-void OpenCLDeviceBase::OpenCLProgram::add_log(string msg, bool debug)
+void OpenCLDeviceBase::OpenCLProgram::add_log(const string& msg, bool debug)
{
if(!use_stdout) {
log += msg + "\n";
@@ -288,7 +288,7 @@ void OpenCLDeviceBase::OpenCLProgram::add_log(string msg, bool debug)
}
}
-void OpenCLDeviceBase::OpenCLProgram::add_error(string msg)
+void OpenCLDeviceBase::OpenCLProgram::add_error(const string& msg)
{
if(use_stdout) {
fprintf(stderr, "%s\n", msg.c_str());
@@ -608,6 +608,14 @@ bool OpenCLInfo::device_supported(const string& platform_name,
if(!get_device_name(device_id, &device_name)) {
return false;
}
+
+ int driver_major = 0;
+ int driver_minor = 0;
+ if(!get_driver_version(device_id, &driver_major, &driver_minor)) {
+ return false;
+ }
+ VLOG(3) << "OpenCL driver version " << driver_major << "." << driver_minor;
+
/* It is possible tyo have Iris GPU on AMD/Apple OpenCL framework
* (aka, it will not be on Intel framework). This isn't supported
* and needs an explicit blacklist.
@@ -618,6 +626,21 @@ bool OpenCLInfo::device_supported(const string& platform_name,
if(platform_name == "AMD Accelerated Parallel Processing" &&
device_type == CL_DEVICE_TYPE_GPU)
{
+ if(driver_major < 2236) {
+ VLOG(1) << "AMD driver version " << driver_major << "." << driver_minor << " not supported.";
+ return false;
+ }
+ const char *blacklist[] = {
+ /* GCN 1 */
+ "Tahiti", "Pitcairn", "Capeverde", "Oland",
+ NULL
+ };
+ for (int i = 0; blacklist[i] != NULL; i++) {
+ if(device_name == blacklist[i]) {
+ VLOG(1) << "AMD device " << device_name << " not supported";
+ return false;
+ }
+ }
return true;
}
if(platform_name == "Apple" && device_type == CL_DEVICE_TYPE_GPU) {
@@ -684,7 +707,7 @@ bool OpenCLInfo::device_version_check(cl_device_id device,
return true;
}
-string OpenCLInfo::get_hardware_id(string platform_name, cl_device_id device_id)
+string OpenCLInfo::get_hardware_id(const string& platform_name, cl_device_id device_id)
{
if(platform_name == "AMD Accelerated Parallel Processing" || platform_name == "Apple") {
/* Use cl_amd_device_topology extension. */
@@ -902,7 +925,7 @@ bool OpenCLInfo::get_platform_name(cl_platform_id platform_id,
string OpenCLInfo::get_platform_name(cl_platform_id platform_id)
{
string platform_name;
- if (!get_platform_name(platform_id, &platform_name)) {
+ if(!get_platform_name(platform_id, &platform_name)) {
return "";
}
return platform_name;
@@ -1063,7 +1086,7 @@ string OpenCLInfo::get_readable_device_name(cl_device_id device_id)
CL_DEVICE_BOARD_NAME_AMD,
sizeof(board_name),
&board_name,
- &length) == CL_SUCCESS)
+ &length) == CL_SUCCESS)
{
if(length != 0 && board_name[0] != '\0') {
return board_name;
@@ -1073,6 +1096,48 @@ string OpenCLInfo::get_readable_device_name(cl_device_id device_id)
return get_device_name(device_id);
}
+bool OpenCLInfo::get_driver_version(cl_device_id device_id,
+ int *major,
+ int *minor,
+ cl_int* error)
+{
+ char buffer[1024];
+ cl_int err;
+ if((err = clGetDeviceInfo(device_id,
+ CL_DRIVER_VERSION,
+ sizeof(buffer),
+ &buffer,
+ NULL)) != CL_SUCCESS)
+ {
+ if(error != NULL) {
+ *error = err;
+ }
+ return false;
+ }
+ if(error != NULL) {
+ *error = CL_SUCCESS;
+ }
+ if(sscanf(buffer, "%d.%d", major, minor) < 2) {
+ VLOG(1) << string_printf("OpenCL: failed to parse driver version string (%s).", buffer);
+ return false;
+ }
+ return true;
+}
+
+int OpenCLInfo::mem_address_alignment(cl_device_id device_id)
+{
+ int base_align_bits;
+ if(clGetDeviceInfo(device_id,
+ CL_DEVICE_MEM_BASE_ADDR_ALIGN,
+ sizeof(int),
+ &base_align_bits,
+ NULL) == CL_SUCCESS)
+ {
+ return base_align_bits/8;
+ }
+ return 1;
+}
+
CCL_NAMESPACE_END
#endif