Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'intern/cycles/kernel/geom/curve_intersect.h')
-rw-r--r--intern/cycles/kernel/geom/curve_intersect.h771
1 files changed, 771 insertions, 0 deletions
diff --git a/intern/cycles/kernel/geom/curve_intersect.h b/intern/cycles/kernel/geom/curve_intersect.h
new file mode 100644
index 00000000000..fb0b80b281f
--- /dev/null
+++ b/intern/cycles/kernel/geom/curve_intersect.h
@@ -0,0 +1,771 @@
+/*
+ * Copyright 2009-2020 Intel Corporation. Adapted from Embree with
+ * with modifications.
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#pragma once
+
+CCL_NAMESPACE_BEGIN
+
+/* Curve primitive intersection functions.
+ *
+ * The code here was adapted from curve_intersector_sweep.h in Embree, to get
+ * an exact match between Embree CPU ray-tracing and our GPU ray-tracing. */
+
+#define CURVE_NUM_BEZIER_SUBDIVISIONS 3
+#define CURVE_NUM_BEZIER_SUBDIVISIONS_UNSTABLE (CURVE_NUM_BEZIER_SUBDIVISIONS + 1)
+#define CURVE_NUM_BEZIER_STEPS 2
+#define CURVE_NUM_JACOBIAN_ITERATIONS 5
+
+#ifdef __HAIR__
+
+/* Catmull-rom curve evaluation. */
+
+ccl_device_inline float4 catmull_rom_basis_eval(const float4 curve[4], float u)
+{
+ const float t = u;
+ const float s = 1.0f - u;
+ const float n0 = -t * s * s;
+ const float n1 = 2.0f + t * t * (3.0f * t - 5.0f);
+ const float n2 = 2.0f + s * s * (3.0f * s - 5.0f);
+ const float n3 = -s * t * t;
+ return 0.5f * (curve[0] * n0 + curve[1] * n1 + curve[2] * n2 + curve[3] * n3);
+}
+
+ccl_device_inline float4 catmull_rom_basis_derivative(const float4 curve[4], float u)
+{
+ const float t = u;
+ const float s = 1.0f - u;
+ const float n0 = -s * s + 2.0f * s * t;
+ const float n1 = 2.0f * t * (3.0f * t - 5.0f) + 3.0f * t * t;
+ const float n2 = 2.0f * s * (3.0f * t + 2.0f) - 3.0f * s * s;
+ const float n3 = -2.0f * s * t + t * t;
+ return 0.5f * (curve[0] * n0 + curve[1] * n1 + curve[2] * n2 + curve[3] * n3);
+}
+
+ccl_device_inline float4 catmull_rom_basis_derivative2(const float4 curve[4], float u)
+{
+
+ const float t = u;
+ const float n0 = -3.0f * t + 2.0f;
+ const float n1 = 9.0f * t - 5.0f;
+ const float n2 = -9.0f * t + 4.0f;
+ const float n3 = 3.0f * t - 1.0f;
+ return (curve[0] * n0 + curve[1] * n1 + curve[2] * n2 + curve[3] * n3);
+}
+
+/* Thick Curve */
+
+ccl_device_inline float3 dnormalize(const float3 p, const float3 dp)
+{
+ const float pp = dot(p, p);
+ const float pdp = dot(p, dp);
+ return (pp * dp - pdp * p) / (pp * sqrtf(pp));
+}
+
+ccl_device_inline float sqr_point_to_line_distance(const float3 PmQ0, const float3 Q1mQ0)
+{
+ const float3 N = cross(PmQ0, Q1mQ0);
+ const float3 D = Q1mQ0;
+ return dot(N, N) / dot(D, D);
+}
+
+ccl_device_inline bool cylinder_intersect(const float3 cylinder_start,
+ const float3 cylinder_end,
+ const float cylinder_radius,
+ const float3 ray_dir,
+ ccl_private float2 *t_o,
+ ccl_private float *u0_o,
+ ccl_private float3 *Ng0_o,
+ ccl_private float *u1_o,
+ ccl_private float3 *Ng1_o)
+{
+ /* Calculate quadratic equation to solve. */
+ const float rl = 1.0f / len(cylinder_end - cylinder_start);
+ const float3 P0 = cylinder_start, dP = (cylinder_end - cylinder_start) * rl;
+ const float3 O = -P0, dO = ray_dir;
+
+ const float dOdO = dot(dO, dO);
+ const float OdO = dot(dO, O);
+ const float OO = dot(O, O);
+ const float dOz = dot(dP, dO);
+ const float Oz = dot(dP, O);
+
+ const float A = dOdO - sqr(dOz);
+ const float B = 2.0f * (OdO - dOz * Oz);
+ const float C = OO - sqr(Oz) - sqr(cylinder_radius);
+
+ /* We miss the cylinder if determinant is smaller than zero. */
+ const float D = B * B - 4.0f * A * C;
+ if (!(D >= 0.0f)) {
+ *t_o = make_float2(FLT_MAX, -FLT_MAX);
+ return false;
+ }
+
+ /* Special case for rays that are parallel to the cylinder. */
+ const float eps = 16.0f * FLT_EPSILON * max(fabsf(dOdO), fabsf(sqr(dOz)));
+ if (fabsf(A) < eps) {
+ if (C <= 0.0f) {
+ *t_o = make_float2(-FLT_MAX, FLT_MAX);
+ return true;
+ }
+ else {
+ *t_o = make_float2(-FLT_MAX, FLT_MAX);
+ return false;
+ }
+ }
+
+ /* Standard case for rays that are not parallel to the cylinder. */
+ const float Q = sqrtf(D);
+ const float rcp_2A = 1.0f / (2.0f * A);
+ const float t0 = (-B - Q) * rcp_2A;
+ const float t1 = (-B + Q) * rcp_2A;
+
+ /* Calculates u and Ng for near hit. */
+ {
+ *u0_o = (t0 * dOz + Oz) * rl;
+ const float3 Pr = t0 * ray_dir;
+ const float3 Pl = (*u0_o) * (cylinder_end - cylinder_start) + cylinder_start;
+ *Ng0_o = Pr - Pl;
+ }
+
+ /* Calculates u and Ng for far hit. */
+ {
+ *u1_o = (t1 * dOz + Oz) * rl;
+ const float3 Pr = t1 * ray_dir;
+ const float3 Pl = (*u1_o) * (cylinder_end - cylinder_start) + cylinder_start;
+ *Ng1_o = Pr - Pl;
+ }
+
+ *t_o = make_float2(t0, t1);
+
+ return true;
+}
+
+ccl_device_inline float2 half_plane_intersect(const float3 P, const float3 N, const float3 ray_dir)
+{
+ const float3 O = -P;
+ const float3 D = ray_dir;
+ const float ON = dot(O, N);
+ const float DN = dot(D, N);
+ const float min_rcp_input = 1e-18f;
+ const bool eps = fabsf(DN) < min_rcp_input;
+ const float t = -ON / DN;
+ const float lower = (eps || DN < 0.0f) ? -FLT_MAX : t;
+ const float upper = (eps || DN > 0.0f) ? FLT_MAX : t;
+ return make_float2(lower, upper);
+}
+
+ccl_device bool curve_intersect_iterative(const float3 ray_dir,
+ ccl_private float *ray_tfar,
+ const float dt,
+ const float4 curve[4],
+ float u,
+ float t,
+ const bool use_backfacing,
+ ccl_private Intersection *isect)
+{
+ const float length_ray_dir = len(ray_dir);
+
+ /* Error of curve evaluations is proportional to largest coordinate. */
+ const float4 box_min = min(min(curve[0], curve[1]), min(curve[2], curve[3]));
+ const float4 box_max = max(min(curve[0], curve[1]), max(curve[2], curve[3]));
+ const float4 box_abs = max(fabs(box_min), fabs(box_max));
+ const float P_err = 16.0f * FLT_EPSILON *
+ max(box_abs.x, max(box_abs.y, max(box_abs.z, box_abs.w)));
+ const float radius_max = box_max.w;
+
+ for (int i = 0; i < CURVE_NUM_JACOBIAN_ITERATIONS; i++) {
+ const float3 Q = ray_dir * t;
+ const float3 dQdt = ray_dir;
+ const float Q_err = 16.0f * FLT_EPSILON * length_ray_dir * t;
+
+ const float4 P4 = catmull_rom_basis_eval(curve, u);
+ const float4 dPdu4 = catmull_rom_basis_derivative(curve, u);
+
+ const float3 P = float4_to_float3(P4);
+ const float3 dPdu = float4_to_float3(dPdu4);
+ const float radius = P4.w;
+ const float dradiusdu = dPdu4.w;
+
+ const float3 ddPdu = float4_to_float3(catmull_rom_basis_derivative2(curve, u));
+
+ const float3 R = Q - P;
+ const float len_R = len(R);
+ const float R_err = max(Q_err, P_err);
+ const float3 dRdu = -dPdu;
+ const float3 dRdt = dQdt;
+
+ const float3 T = normalize(dPdu);
+ const float3 dTdu = dnormalize(dPdu, ddPdu);
+ const float cos_err = P_err / len(dPdu);
+
+ const float f = dot(R, T);
+ const float f_err = len_R * P_err + R_err + cos_err * (1.0f + len_R);
+ const float dfdu = dot(dRdu, T) + dot(R, dTdu);
+ const float dfdt = dot(dRdt, T);
+
+ const float K = dot(R, R) - sqr(f);
+ const float dKdu = (dot(R, dRdu) - f * dfdu);
+ const float dKdt = (dot(R, dRdt) - f * dfdt);
+ const float rsqrt_K = inversesqrtf(K);
+
+ const float g = sqrtf(K) - radius;
+ const float g_err = R_err + f_err + 16.0f * FLT_EPSILON * radius_max;
+ const float dgdu = dKdu * rsqrt_K - dradiusdu;
+ const float dgdt = dKdt * rsqrt_K;
+
+ const float invdet = 1.0f / (dfdu * dgdt - dgdu * dfdt);
+ u -= (dgdt * f - dfdt * g) * invdet;
+ t -= (-dgdu * f + dfdu * g) * invdet;
+
+ if (fabsf(f) < f_err && fabsf(g) < g_err) {
+ t += dt;
+ if (!(0.0f <= t && t <= *ray_tfar)) {
+ return false; /* Rejects NaNs */
+ }
+ if (!(u >= 0.0f && u <= 1.0f)) {
+ return false; /* Rejects NaNs */
+ }
+
+ /* Back-face culling. */
+ const float3 R = normalize(Q - P);
+ const float3 U = dradiusdu * R + dPdu;
+ const float3 V = cross(dPdu, R);
+ const float3 Ng = cross(V, U);
+ if (!use_backfacing && dot(ray_dir, Ng) > 0.0f) {
+ return false;
+ }
+
+ /* Record intersection. */
+ *ray_tfar = t;
+ isect->t = t;
+ isect->u = u;
+ isect->v = 0.0f;
+
+ return true;
+ }
+ }
+ return false;
+}
+
+ccl_device bool curve_intersect_recursive(const float3 ray_orig,
+ const float3 ray_dir,
+ float ray_tfar,
+ float4 curve[4],
+ ccl_private Intersection *isect)
+{
+ /* Move ray closer to make intersection stable. */
+ const float3 center = float4_to_float3(0.25f * (curve[0] + curve[1] + curve[2] + curve[3]));
+ const float dt = dot(center - ray_orig, ray_dir) / dot(ray_dir, ray_dir);
+ const float3 ref = ray_orig + ray_dir * dt;
+ const float4 ref4 = make_float4(ref.x, ref.y, ref.z, 0.0f);
+ curve[0] -= ref4;
+ curve[1] -= ref4;
+ curve[2] -= ref4;
+ curve[3] -= ref4;
+
+ const bool use_backfacing = false;
+ const float step_size = 1.0f / (float)(CURVE_NUM_BEZIER_STEPS);
+
+ int depth = 0;
+
+ /* todo: optimize stack for GPU somehow? Possibly some bitflags are enough, and
+ * u0/u1 can be derived from the depth. */
+ struct {
+ float u0, u1;
+ int i;
+ } stack[CURVE_NUM_BEZIER_SUBDIVISIONS_UNSTABLE];
+
+ bool found = false;
+
+ float u0 = 0.0f;
+ float u1 = 1.0f;
+ int i = 0;
+
+ while (1) {
+ for (; i < CURVE_NUM_BEZIER_STEPS; i++) {
+ const float step = i * step_size;
+
+ /* Subdivide curve. */
+ const float dscale = (u1 - u0) * (1.0f / 3.0f) * step_size;
+ const float vu0 = mix(u0, u1, step);
+ const float vu1 = mix(u0, u1, step + step_size);
+
+ const float4 P0 = catmull_rom_basis_eval(curve, vu0);
+ const float4 dP0du = dscale * catmull_rom_basis_derivative(curve, vu0);
+ const float4 P3 = catmull_rom_basis_eval(curve, vu1);
+ const float4 dP3du = dscale * catmull_rom_basis_derivative(curve, vu1);
+
+ const float4 P1 = P0 + dP0du;
+ const float4 P2 = P3 - dP3du;
+
+ /* Calculate bounding cylinders. */
+ const float rr1 = sqr_point_to_line_distance(float4_to_float3(dP0du),
+ float4_to_float3(P3 - P0));
+ const float rr2 = sqr_point_to_line_distance(float4_to_float3(dP3du),
+ float4_to_float3(P3 - P0));
+ const float maxr12 = sqrtf(max(rr1, rr2));
+ const float one_plus_ulp = 1.0f + 2.0f * FLT_EPSILON;
+ const float one_minus_ulp = 1.0f - 2.0f * FLT_EPSILON;
+ float r_outer = max(max(P0.w, P1.w), max(P2.w, P3.w)) + maxr12;
+ float r_inner = min(min(P0.w, P1.w), min(P2.w, P3.w)) - maxr12;
+ r_outer = one_plus_ulp * r_outer;
+ r_inner = max(0.0f, one_minus_ulp * r_inner);
+ bool valid = true;
+
+ /* Intersect with outer cylinder. */
+ float2 tc_outer;
+ float u_outer0, u_outer1;
+ float3 Ng_outer0, Ng_outer1;
+ valid = cylinder_intersect(float4_to_float3(P0),
+ float4_to_float3(P3),
+ r_outer,
+ ray_dir,
+ &tc_outer,
+ &u_outer0,
+ &Ng_outer0,
+ &u_outer1,
+ &Ng_outer1);
+ if (!valid) {
+ continue;
+ }
+
+ /* Intersect with cap-planes. */
+ float2 tp = make_float2(-dt, ray_tfar - dt);
+ tp = make_float2(max(tp.x, tc_outer.x), min(tp.y, tc_outer.y));
+ const float2 h0 = half_plane_intersect(
+ float4_to_float3(P0), float4_to_float3(dP0du), ray_dir);
+ tp = make_float2(max(tp.x, h0.x), min(tp.y, h0.y));
+ const float2 h1 = half_plane_intersect(
+ float4_to_float3(P3), -float4_to_float3(dP3du), ray_dir);
+ tp = make_float2(max(tp.x, h1.x), min(tp.y, h1.y));
+ valid = tp.x <= tp.y;
+ if (!valid) {
+ continue;
+ }
+
+ /* Clamp and correct u parameter. */
+ u_outer0 = clamp(u_outer0, 0.0f, 1.0f);
+ u_outer1 = clamp(u_outer1, 0.0f, 1.0f);
+ u_outer0 = mix(u0, u1, (step + u_outer0) * (1.0f / (float)(CURVE_NUM_BEZIER_STEPS + 1)));
+ u_outer1 = mix(u0, u1, (step + u_outer1) * (1.0f / (float)(CURVE_NUM_BEZIER_STEPS + 1)));
+
+ /* Intersect with inner cylinder. */
+ float2 tc_inner;
+ float u_inner0, u_inner1;
+ float3 Ng_inner0, Ng_inner1;
+ const bool valid_inner = cylinder_intersect(float4_to_float3(P0),
+ float4_to_float3(P3),
+ r_inner,
+ ray_dir,
+ &tc_inner,
+ &u_inner0,
+ &Ng_inner0,
+ &u_inner1,
+ &Ng_inner1);
+
+ /* At the unstable area we subdivide deeper. */
+# if 0
+ const bool unstable0 = (!valid_inner) |
+ (fabsf(dot(normalize(ray_dir), normalize(Ng_inner0))) < 0.3f);
+ const bool unstable1 = (!valid_inner) |
+ (fabsf(dot(normalize(ray_dir), normalize(Ng_inner1))) < 0.3f);
+# else
+ /* On the GPU appears to be a little faster if always enabled. */
+ (void)valid_inner;
+
+ const bool unstable0 = true;
+ const bool unstable1 = true;
+# endif
+
+ /* Subtract the inner interval from the current hit interval. */
+ float2 tp0 = make_float2(tp.x, min(tp.y, tc_inner.x));
+ float2 tp1 = make_float2(max(tp.x, tc_inner.y), tp.y);
+ bool valid0 = valid && (tp0.x <= tp0.y);
+ bool valid1 = valid && (tp1.x <= tp1.y);
+ if (!(valid0 || valid1)) {
+ continue;
+ }
+
+ /* Process one or two hits. */
+ bool recurse = false;
+ if (valid0) {
+ const int termDepth = unstable0 ? CURVE_NUM_BEZIER_SUBDIVISIONS_UNSTABLE :
+ CURVE_NUM_BEZIER_SUBDIVISIONS;
+ if (depth >= termDepth) {
+ found |= curve_intersect_iterative(
+ ray_dir, &ray_tfar, dt, curve, u_outer0, tp0.x, use_backfacing, isect);
+ }
+ else {
+ recurse = true;
+ }
+ }
+
+ if (valid1 && (tp1.x + dt <= ray_tfar)) {
+ const int termDepth = unstable1 ? CURVE_NUM_BEZIER_SUBDIVISIONS_UNSTABLE :
+ CURVE_NUM_BEZIER_SUBDIVISIONS;
+ if (depth >= termDepth) {
+ found |= curve_intersect_iterative(
+ ray_dir, &ray_tfar, dt, curve, u_outer1, tp1.y, use_backfacing, isect);
+ }
+ else {
+ recurse = true;
+ }
+ }
+
+ if (recurse) {
+ stack[depth].u0 = u0;
+ stack[depth].u1 = u1;
+ stack[depth].i = i + 1;
+ depth++;
+
+ u0 = vu0;
+ u1 = vu1;
+ i = -1;
+ }
+ }
+
+ if (depth > 0) {
+ depth--;
+ u0 = stack[depth].u0;
+ u1 = stack[depth].u1;
+ i = stack[depth].i;
+ }
+ else {
+ break;
+ }
+ }
+
+ return found;
+}
+
+/* Ribbons */
+
+ccl_device_inline bool cylinder_culling_test(const float2 p1, const float2 p2, const float r)
+{
+ /* Performs culling against a cylinder. */
+ const float2 dp = p2 - p1;
+ const float num = dp.x * p1.y - dp.y * p1.x;
+ const float den2 = dot(dp, dp);
+ return num * num <= r * r * den2;
+}
+
+/**
+ * Intersects a ray with a quad with back-face culling
+ * enabled. The quad v0,v1,v2,v3 is split into two triangles
+ * v0,v1,v3 and v2,v3,v1. The edge v1,v2 decides which of the two
+ * triangles gets intersected.
+ */
+ccl_device_inline bool ribbon_intersect_quad(const float ray_tfar,
+ const float3 quad_v0,
+ const float3 quad_v1,
+ const float3 quad_v2,
+ const float3 quad_v3,
+ ccl_private float *u_o,
+ ccl_private float *v_o,
+ ccl_private float *t_o)
+{
+ /* Calculate vertices relative to ray origin? */
+ const float3 O = make_float3(0.0f, 0.0f, 0.0f);
+ const float3 D = make_float3(0.0f, 0.0f, 1.0f);
+ const float3 va = quad_v0 - O;
+ const float3 vb = quad_v1 - O;
+ const float3 vc = quad_v2 - O;
+ const float3 vd = quad_v3 - O;
+
+ const float3 edb = vb - vd;
+ const float WW = dot(cross(vd, edb), D);
+ const float3 v0 = (WW <= 0.0f) ? va : vc;
+ const float3 v1 = (WW <= 0.0f) ? vb : vd;
+ const float3 v2 = (WW <= 0.0f) ? vd : vb;
+
+ /* Calculate edges? */
+ const float3 e0 = v2 - v0;
+ const float3 e1 = v0 - v1;
+
+ /* perform edge tests */
+ const float U = dot(cross(v0, e0), D);
+ const float V = dot(cross(v1, e1), D);
+ if (!(max(U, V) <= 0.0f)) {
+ return false;
+ }
+
+ /* Calculate geometry normal and denominator? */
+ const float3 Ng = cross(e1, e0);
+ const float den = dot(Ng, D);
+ const float rcpDen = 1.0f / den;
+
+ /* Perform depth test? */
+ const float t = rcpDen * dot(v0, Ng);
+ if (!(0.0f <= t && t <= ray_tfar)) {
+ return false;
+ }
+
+ /* Avoid division by 0? */
+ if (!(den != 0.0f)) {
+ return false;
+ }
+
+ /* Update hit information? */
+ *t_o = t;
+ *u_o = U * rcpDen;
+ *v_o = V * rcpDen;
+ *u_o = (WW <= 0.0f) ? *u_o : 1.0f - *u_o;
+ *v_o = (WW <= 0.0f) ? *v_o : 1.0f - *v_o;
+ return true;
+}
+
+ccl_device_inline void ribbon_ray_space(const float3 ray_dir, float3 ray_space[3])
+{
+ const float3 dx0 = make_float3(0, ray_dir.z, -ray_dir.y);
+ const float3 dx1 = make_float3(-ray_dir.z, 0, ray_dir.x);
+ ray_space[0] = normalize(dot(dx0, dx0) > dot(dx1, dx1) ? dx0 : dx1);
+ ray_space[1] = normalize(cross(ray_dir, ray_space[0]));
+ ray_space[2] = ray_dir;
+}
+
+ccl_device_inline float4 ribbon_to_ray_space(const float3 ray_space[3],
+ const float3 ray_org,
+ const float4 P4)
+{
+ float3 P = float4_to_float3(P4) - ray_org;
+ return make_float4(dot(ray_space[0], P), dot(ray_space[1], P), dot(ray_space[2], P), P4.w);
+}
+
+ccl_device_inline bool ribbon_intersect(const float3 ray_org,
+ const float3 ray_dir,
+ float ray_tfar,
+ const int N,
+ float4 curve[4],
+ ccl_private Intersection *isect)
+{
+ /* Transform control points into ray space. */
+ float3 ray_space[3];
+ ribbon_ray_space(ray_dir, ray_space);
+
+ curve[0] = ribbon_to_ray_space(ray_space, ray_org, curve[0]);
+ curve[1] = ribbon_to_ray_space(ray_space, ray_org, curve[1]);
+ curve[2] = ribbon_to_ray_space(ray_space, ray_org, curve[2]);
+ curve[3] = ribbon_to_ray_space(ray_space, ray_org, curve[3]);
+
+ const float4 mx = max(max(fabs(curve[0]), fabs(curve[1])), max(fabs(curve[2]), fabs(curve[3])));
+ const float eps = 4.0f * FLT_EPSILON * max(max(mx.x, mx.y), max(mx.z, mx.w));
+ const float step_size = 1.0f / (float)N;
+
+ /* Evaluate first point and radius scaled normal direction. */
+ float4 p0 = catmull_rom_basis_eval(curve, 0.0f);
+ float3 dp0dt = float4_to_float3(catmull_rom_basis_derivative(curve, 0.0f));
+ if (max3(fabs(dp0dt)) < eps) {
+ const float4 p1 = catmull_rom_basis_eval(curve, step_size);
+ dp0dt = float4_to_float3(p1 - p0);
+ }
+ float3 wn0 = normalize(make_float3(dp0dt.y, -dp0dt.x, 0.0f)) * p0.w;
+
+ /* Evaluate the bezier curve. */
+ for (int i = 0; i < N; i++) {
+ const float u = i * step_size;
+ const float4 p1 = catmull_rom_basis_eval(curve, u + step_size);
+ const bool valid = cylinder_culling_test(
+ make_float2(p0.x, p0.y), make_float2(p1.x, p1.y), max(p0.w, p1.w));
+
+ /* Evaluate next point. */
+ float3 dp1dt = float4_to_float3(catmull_rom_basis_derivative(curve, u + step_size));
+ dp1dt = (max3(fabs(dp1dt)) < eps) ? float4_to_float3(p1 - p0) : dp1dt;
+ const float3 wn1 = normalize(make_float3(dp1dt.y, -dp1dt.x, 0.0f)) * p1.w;
+
+ if (valid) {
+ /* Construct quad coordinates. */
+ const float3 lp0 = float4_to_float3(p0) + wn0;
+ const float3 lp1 = float4_to_float3(p1) + wn1;
+ const float3 up0 = float4_to_float3(p0) - wn0;
+ const float3 up1 = float4_to_float3(p1) - wn1;
+
+ /* Intersect quad. */
+ float vu, vv, vt;
+ bool valid0 = ribbon_intersect_quad(ray_tfar, lp0, lp1, up1, up0, &vu, &vv, &vt);
+
+ if (valid0) {
+ /* ignore self intersections */
+ const float avoidance_factor = 2.0f;
+ if (avoidance_factor != 0.0f) {
+ float r = mix(p0.w, p1.w, vu);
+ valid0 = vt > avoidance_factor * r;
+ }
+
+ if (valid0) {
+ vv = 2.0f * vv - 1.0f;
+
+ /* Record intersection. */
+ ray_tfar = vt;
+ isect->t = vt;
+ isect->u = u + vu * step_size;
+ isect->v = vv;
+ return true;
+ }
+ }
+ }
+
+ /* Store point for next step. */
+ p0 = p1;
+ wn0 = wn1;
+ }
+ return false;
+}
+
+ccl_device_forceinline bool curve_intersect(KernelGlobals kg,
+ ccl_private Intersection *isect,
+ const float3 P,
+ const float3 dir,
+ const float tmax,
+ int object,
+ int prim,
+ float time,
+ int type)
+{
+ const bool is_motion = (type & PRIMITIVE_ALL_MOTION);
+
+ KernelCurve kcurve = kernel_tex_fetch(__curves, prim);
+
+ int k0 = kcurve.first_key + PRIMITIVE_UNPACK_SEGMENT(type);
+ int k1 = k0 + 1;
+ int ka = max(k0 - 1, kcurve.first_key);
+ int kb = min(k1 + 1, kcurve.first_key + kcurve.num_keys - 1);
+
+ float4 curve[4];
+ if (!is_motion) {
+ curve[0] = kernel_tex_fetch(__curve_keys, ka);
+ curve[1] = kernel_tex_fetch(__curve_keys, k0);
+ curve[2] = kernel_tex_fetch(__curve_keys, k1);
+ curve[3] = kernel_tex_fetch(__curve_keys, kb);
+ }
+ else {
+ motion_curve_keys(kg, object, prim, time, ka, k0, k1, kb, curve);
+ }
+
+ if (type & (PRIMITIVE_CURVE_RIBBON | PRIMITIVE_MOTION_CURVE_RIBBON)) {
+ /* todo: adaptive number of subdivisions could help performance here. */
+ const int subdivisions = kernel_data.bvh.curve_subdivisions;
+ if (ribbon_intersect(P, dir, tmax, subdivisions, curve, isect)) {
+ isect->prim = prim;
+ isect->object = object;
+ isect->type = type;
+ return true;
+ }
+
+ return false;
+ }
+ else {
+ if (curve_intersect_recursive(P, dir, tmax, curve, isect)) {
+ isect->prim = prim;
+ isect->object = object;
+ isect->type = type;
+ return true;
+ }
+
+ return false;
+ }
+}
+
+ccl_device_inline void curve_shader_setup(KernelGlobals kg,
+ ccl_private ShaderData *sd,
+ float3 P,
+ float3 D,
+ float t,
+ const int isect_object,
+ const int isect_prim)
+{
+ if (!(sd->object_flag & SD_OBJECT_TRANSFORM_APPLIED)) {
+ const Transform tfm = object_get_inverse_transform(kg, sd);
+
+ P = transform_point(&tfm, P);
+ D = transform_direction(&tfm, D * t);
+ D = safe_normalize_len(D, &t);
+ }
+
+ KernelCurve kcurve = kernel_tex_fetch(__curves, isect_prim);
+
+ int k0 = kcurve.first_key + PRIMITIVE_UNPACK_SEGMENT(sd->type);
+ int k1 = k0 + 1;
+ int ka = max(k0 - 1, kcurve.first_key);
+ int kb = min(k1 + 1, kcurve.first_key + kcurve.num_keys - 1);
+
+ float4 P_curve[4];
+
+ if (!(sd->type & PRIMITIVE_ALL_MOTION)) {
+ P_curve[0] = kernel_tex_fetch(__curve_keys, ka);
+ P_curve[1] = kernel_tex_fetch(__curve_keys, k0);
+ P_curve[2] = kernel_tex_fetch(__curve_keys, k1);
+ P_curve[3] = kernel_tex_fetch(__curve_keys, kb);
+ }
+ else {
+ motion_curve_keys(kg, sd->object, sd->prim, sd->time, ka, k0, k1, kb, P_curve);
+ }
+
+ P = P + D * t;
+
+ const float4 dPdu4 = catmull_rom_basis_derivative(P_curve, sd->u);
+ const float3 dPdu = float4_to_float3(dPdu4);
+
+ if (sd->type & (PRIMITIVE_CURVE_RIBBON | PRIMITIVE_MOTION_CURVE_RIBBON)) {
+ /* Rounded smooth normals for ribbons, to approximate thick curve shape. */
+ const float3 tangent = normalize(dPdu);
+ const float3 bitangent = normalize(cross(tangent, -D));
+ const float sine = sd->v;
+ const float cosine = safe_sqrtf(1.0f - sine * sine);
+
+ sd->N = normalize(sine * bitangent - cosine * normalize(cross(tangent, bitangent)));
+ sd->Ng = -D;
+
+# if 0
+ /* This approximates the position and geometric normal of a thick curve too,
+ * but gives too many issues with wrong self intersections. */
+ const float dPdu_radius = dPdu4.w;
+ sd->Ng = sd->N;
+ P += sd->N * dPdu_radius;
+# endif
+ }
+ else {
+ /* Thick curves, compute normal using direction from inside the curve.
+ * This could be optimized by recording the normal in the intersection,
+ * however for Optix this would go beyond the size of the payload. */
+ /* NOTE: It is possible that P will be the same as P_inside (precision issues, or very small
+ * radius). In this case use the view direction to approximate the normal. */
+ const float3 P_inside = float4_to_float3(catmull_rom_basis_eval(P_curve, sd->u));
+ const float3 Ng = (!isequal_float3(P, P_inside)) ? normalize(P - P_inside) : -sd->I;
+
+ sd->N = Ng;
+ sd->Ng = Ng;
+ sd->v = 0.0f;
+ }
+
+# ifdef __DPDU__
+ /* dPdu/dPdv */
+ sd->dPdu = dPdu;
+ sd->dPdv = cross(dPdu, sd->Ng);
+# endif
+
+ if (!(sd->object_flag & SD_OBJECT_TRANSFORM_APPLIED)) {
+ const Transform tfm = object_get_transform(kg, sd);
+ P = transform_point(&tfm, P);
+ }
+
+ sd->P = P;
+ sd->shader = kernel_tex_fetch(__curves, sd->prim).shader_id;
+}
+
+#endif
+
+CCL_NAMESPACE_END