Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'intern/cycles/kernel/geom/geom_curve.h')
-rw-r--r--intern/cycles/kernel/geom/geom_curve.h148
1 files changed, 74 insertions, 74 deletions
diff --git a/intern/cycles/kernel/geom/geom_curve.h b/intern/cycles/kernel/geom/geom_curve.h
index c4e9e2ababe..9653ad8f1bb 100644
--- a/intern/cycles/kernel/geom/geom_curve.h
+++ b/intern/cycles/kernel/geom/geom_curve.h
@@ -32,22 +32,22 @@ ccl_device float curve_attribute_float(KernelGlobals *kg, const ShaderData *sd,
if(dy) *dy = 0.0f;
#endif
- return kernel_tex_fetch(__attributes_float, offset + sd->prim);
+ return kernel_tex_fetch(__attributes_float, offset + ccl_fetch(sd, prim));
}
else if(elem == ATTR_ELEMENT_CURVE_KEY || elem == ATTR_ELEMENT_CURVE_KEY_MOTION) {
- float4 curvedata = kernel_tex_fetch(__curves, sd->prim);
- int k0 = __float_as_int(curvedata.x) + PRIMITIVE_UNPACK_SEGMENT(sd->type);
+ float4 curvedata = kernel_tex_fetch(__curves, ccl_fetch(sd, prim));
+ int k0 = __float_as_int(curvedata.x) + PRIMITIVE_UNPACK_SEGMENT(ccl_fetch(sd, type));
int k1 = k0 + 1;
float f0 = kernel_tex_fetch(__attributes_float, offset + k0);
float f1 = kernel_tex_fetch(__attributes_float, offset + k1);
#ifdef __RAY_DIFFERENTIALS__
- if(dx) *dx = sd->du.dx*(f1 - f0);
+ if(dx) *dx = ccl_fetch(sd, du).dx*(f1 - f0);
if(dy) *dy = 0.0f;
#endif
- return (1.0f - sd->u)*f0 + sd->u*f1;
+ return (1.0f - ccl_fetch(sd, u))*f0 + ccl_fetch(sd, u)*f1;
}
else {
#ifdef __RAY_DIFFERENTIALS__
@@ -71,22 +71,22 @@ ccl_device float3 curve_attribute_float3(KernelGlobals *kg, const ShaderData *sd
if(dy) *dy = make_float3(0.0f, 0.0f, 0.0f);
#endif
- return float4_to_float3(kernel_tex_fetch(__attributes_float3, offset + sd->prim));
+ return float4_to_float3(kernel_tex_fetch(__attributes_float3, offset + ccl_fetch(sd, prim)));
}
else if(elem == ATTR_ELEMENT_CURVE_KEY || elem == ATTR_ELEMENT_CURVE_KEY_MOTION) {
- float4 curvedata = kernel_tex_fetch(__curves, sd->prim);
- int k0 = __float_as_int(curvedata.x) + PRIMITIVE_UNPACK_SEGMENT(sd->type);
+ float4 curvedata = kernel_tex_fetch(__curves, ccl_fetch(sd, prim));
+ int k0 = __float_as_int(curvedata.x) + PRIMITIVE_UNPACK_SEGMENT(ccl_fetch(sd, type));
int k1 = k0 + 1;
float3 f0 = float4_to_float3(kernel_tex_fetch(__attributes_float3, offset + k0));
float3 f1 = float4_to_float3(kernel_tex_fetch(__attributes_float3, offset + k1));
#ifdef __RAY_DIFFERENTIALS__
- if(dx) *dx = sd->du.dx*(f1 - f0);
+ if(dx) *dx = ccl_fetch(sd, du).dx*(f1 - f0);
if(dy) *dy = make_float3(0.0f, 0.0f, 0.0f);
#endif
- return (1.0f - sd->u)*f0 + sd->u*f1;
+ return (1.0f - ccl_fetch(sd, u))*f0 + ccl_fetch(sd, u)*f1;
}
else {
#ifdef __RAY_DIFFERENTIALS__
@@ -104,22 +104,22 @@ ccl_device float curve_thickness(KernelGlobals *kg, ShaderData *sd)
{
float r = 0.0f;
- if(sd->type & PRIMITIVE_ALL_CURVE) {
- float4 curvedata = kernel_tex_fetch(__curves, sd->prim);
- int k0 = __float_as_int(curvedata.x) + PRIMITIVE_UNPACK_SEGMENT(sd->type);
+ if(ccl_fetch(sd, type) & PRIMITIVE_ALL_CURVE) {
+ float4 curvedata = kernel_tex_fetch(__curves, ccl_fetch(sd, prim));
+ int k0 = __float_as_int(curvedata.x) + PRIMITIVE_UNPACK_SEGMENT(ccl_fetch(sd, type));
int k1 = k0 + 1;
float4 P_curve[2];
- if(sd->type & PRIMITIVE_CURVE) {
+ if(ccl_fetch(sd, type) & PRIMITIVE_CURVE) {
P_curve[0]= kernel_tex_fetch(__curve_keys, k0);
P_curve[1]= kernel_tex_fetch(__curve_keys, k1);
}
else {
- motion_curve_keys(kg, sd->object, sd->prim, sd->time, k0, k1, P_curve);
+ motion_curve_keys(kg, ccl_fetch(sd, object), ccl_fetch(sd, prim), ccl_fetch(sd, time), k0, k1, P_curve);
}
- r = (P_curve[1].w - P_curve[0].w) * sd->u + P_curve[0].w;
+ r = (P_curve[1].w - P_curve[0].w) * ccl_fetch(sd, u) + P_curve[0].w;
}
return r*2.0f;
@@ -130,8 +130,8 @@ ccl_device float curve_thickness(KernelGlobals *kg, ShaderData *sd)
ccl_device float3 curve_motion_center_location(KernelGlobals *kg, ShaderData *sd)
{
- float4 curvedata = kernel_tex_fetch(__curves, sd->prim);
- int k0 = __float_as_int(curvedata.x) + PRIMITIVE_UNPACK_SEGMENT(sd->type);
+ float4 curvedata = kernel_tex_fetch(__curves, ccl_fetch(sd, prim));
+ int k0 = __float_as_int(curvedata.x) + PRIMITIVE_UNPACK_SEGMENT(ccl_fetch(sd, type));
int k1 = k0 + 1;
float4 P_curve[2];
@@ -139,7 +139,7 @@ ccl_device float3 curve_motion_center_location(KernelGlobals *kg, ShaderData *sd
P_curve[0]= kernel_tex_fetch(__curve_keys, k0);
P_curve[1]= kernel_tex_fetch(__curve_keys, k1);
- return float4_to_float3(P_curve[1]) * sd->u + float4_to_float3(P_curve[0]) * (1.0f - sd->u);
+ return float4_to_float3(P_curve[1]) * ccl_fetch(sd, u) + float4_to_float3(P_curve[0]) * (1.0f - ccl_fetch(sd, u));
}
/* Curve tangent normal */
@@ -148,14 +148,14 @@ ccl_device float3 curve_tangent_normal(KernelGlobals *kg, ShaderData *sd)
{
float3 tgN = make_float3(0.0f,0.0f,0.0f);
- if(sd->type & PRIMITIVE_ALL_CURVE) {
+ if(ccl_fetch(sd, type) & PRIMITIVE_ALL_CURVE) {
- tgN = -(-sd->I - sd->dPdu * (dot(sd->dPdu,-sd->I) / len_squared(sd->dPdu)));
+ tgN = -(-ccl_fetch(sd, I) - ccl_fetch(sd, dPdu) * (dot(ccl_fetch(sd, dPdu),-ccl_fetch(sd, I)) / len_squared(ccl_fetch(sd, dPdu))));
tgN = normalize(tgN);
/* need to find suitable scaled gd for corrected normal */
#if 0
- tgN = normalize(tgN - gd * sd->dPdu);
+ tgN = normalize(tgN - gd * ccl_fetch(sd, dPdu));
#endif
}
@@ -442,12 +442,12 @@ ccl_device_inline bool bvh_cardinal_curve_intersect(KernelGlobals *kg, Intersect
float r_ext = mw_extension + r_curr;
float coverage = 1.0f;
- if (bminz - r_curr > isect->t || bmaxz + r_curr < epsilon || bminx > r_ext|| bmaxx < -r_ext|| bminy > r_ext|| bmaxy < -r_ext) {
+ if(bminz - r_curr > isect->t || bmaxz + r_curr < epsilon || bminx > r_ext|| bmaxx < -r_ext|| bminy > r_ext|| bmaxy < -r_ext) {
/* the bounding box does not overlap the square centered at O */
tree += level;
level = tree & -tree;
}
- else if (level == 1) {
+ else if(level == 1) {
/* the maximum recursion depth is reached.
* check if dP0.(Q-P0)>=0 and dPn.(Pn-Q)>=0.
@@ -459,13 +459,13 @@ ccl_device_inline bool bvh_cardinal_curve_intersect(KernelGlobals *kg, Intersect
if(flags & CURVE_KN_RIBBONS) {
float3 tg = (p_en - p_st);
float w = tg.x * tg.x + tg.y * tg.y;
- if (w == 0) {
+ if(w == 0) {
tree++;
level = tree & -tree;
continue;
}
w = -(p_st.x * tg.x + p_st.y * tg.y) / w;
- w = clamp((float)w, 0.0f, 1.0f);
+ w = saturate(w);
/* compute u on the curve segment */
u = i_st * (1 - w) + i_en * w;
@@ -474,17 +474,17 @@ ccl_device_inline bool bvh_cardinal_curve_intersect(KernelGlobals *kg, Intersect
float3 p_curr = ((curve_coef[3] * u + curve_coef[2]) * u + curve_coef[1]) * u + curve_coef[0];
float3 dp_st = (3 * curve_coef[3] * i_st + 2 * curve_coef[2]) * i_st + curve_coef[1];
- if (dot(tg, dp_st)< 0)
+ if(dot(tg, dp_st)< 0)
dp_st *= -1;
- if (dot(dp_st, -p_st) + p_curr.z * dp_st.z < 0) {
+ if(dot(dp_st, -p_st) + p_curr.z * dp_st.z < 0) {
tree++;
level = tree & -tree;
continue;
}
float3 dp_en = (3 * curve_coef[3] * i_en + 2 * curve_coef[2]) * i_en + curve_coef[1];
- if (dot(tg, dp_en) < 0)
+ if(dot(tg, dp_en) < 0)
dp_en *= -1;
- if (dot(dp_en, p_en) - p_curr.z * dp_en.z < 0) {
+ if(dot(dp_en, p_en) - p_curr.z * dp_en.z < 0) {
tree++;
level = tree & -tree;
continue;
@@ -500,13 +500,13 @@ ccl_device_inline bool bvh_cardinal_curve_intersect(KernelGlobals *kg, Intersect
float d0 = d - r_curr;
float d1 = d + r_curr;
float inv_mw_extension = 1.0f/mw_extension;
- if (d0 >= 0)
+ if(d0 >= 0)
coverage = (min(d1 * inv_mw_extension, 1.0f) - min(d0 * inv_mw_extension, 1.0f)) * 0.5f;
else // inside
coverage = (min(d1 * inv_mw_extension, 1.0f) + min(-d0 * inv_mw_extension, 1.0f)) * 0.5f;
}
- if (p_curr.x * p_curr.x + p_curr.y * p_curr.y >= r_ext * r_ext || p_curr.z <= epsilon || isect->t < p_curr.z) {
+ if(p_curr.x * p_curr.x + p_curr.y * p_curr.y >= r_ext * r_ext || p_curr.z <= epsilon || isect->t < p_curr.z) {
tree++;
level = tree & -tree;
continue;
@@ -548,7 +548,7 @@ ccl_device_inline bool bvh_cardinal_curve_intersect(KernelGlobals *kg, Intersect
float tb = 2*(tdif.z - tg.z*(tdifz + gd*(tdifz*gd + or1)));
float tc = dot(tdif,tdif) - tdifz * tdifz * (1 + gd*gd) - or1*or1 - 2*or1*tdifz*gd;
float td = tb*tb - 4*cyla*tc;
- if (td < 0.0f) {
+ if(td < 0.0f) {
tree++;
level = tree & -tree;
continue;
@@ -559,10 +559,10 @@ ccl_device_inline bool bvh_cardinal_curve_intersect(KernelGlobals *kg, Intersect
t = tcentre + correction;
float3 dp_st = (3 * curve_coef[3] * i_st + 2 * curve_coef[2]) * i_st + curve_coef[1];
- if (dot(tg, dp_st)< 0)
+ if(dot(tg, dp_st)< 0)
dp_st *= -1;
float3 dp_en = (3 * curve_coef[3] * i_en + 2 * curve_coef[2]) * i_en + curve_coef[1];
- if (dot(tg, dp_en) < 0)
+ if(dot(tg, dp_en) < 0)
dp_en *= -1;
if(flags & CURVE_KN_BACKFACING && (dot(dp_st, -p_st) + t * dp_st.z < 0 || dot(dp_en, p_en) - t * dp_en.z < 0 || isect->t < t || t <= 0.0f)) {
@@ -570,14 +570,14 @@ ccl_device_inline bool bvh_cardinal_curve_intersect(KernelGlobals *kg, Intersect
t = tcentre + correction;
}
- if (dot(dp_st, -p_st) + t * dp_st.z < 0 || dot(dp_en, p_en) - t * dp_en.z < 0 || isect->t < t || t <= 0.0f) {
+ if(dot(dp_st, -p_st) + t * dp_st.z < 0 || dot(dp_en, p_en) - t * dp_en.z < 0 || isect->t < t || t <= 0.0f) {
tree++;
level = tree & -tree;
continue;
}
float w = (zcentre + (tg.z * correction)) * invl;
- w = clamp((float)w, 0.0f, 1.0f);
+ w = saturate(w);
/* compute u on the curve segment */
u = i_st * (1 - w) + i_en * w;
@@ -600,12 +600,12 @@ ccl_device_inline bool bvh_cardinal_curve_intersect(KernelGlobals *kg, Intersect
#endif
{
/* record intersection */
+ isect->t = t;
+ isect->u = u;
+ isect->v = gd;
isect->prim = curveAddr;
isect->object = object;
isect->type = type;
- isect->u = u;
- isect->v = gd;
- isect->t = t;
hit = true;
}
@@ -646,8 +646,8 @@ ccl_device_inline bool bvh_curve_intersect(KernelGlobals *kg, Intersection *isec
float4 P_curve[2];
if(type & PRIMITIVE_CURVE) {
- P_curve[0]= kernel_tex_fetch(__curve_keys, k0);
- P_curve[1]= kernel_tex_fetch(__curve_keys, k1);
+ P_curve[0] = kernel_tex_fetch(__curve_keys, k0);
+ P_curve[1] = kernel_tex_fetch(__curve_keys, k1);
}
else {
int fobject = (object == OBJECT_NONE)? kernel_tex_fetch(__prim_object, curveAddr): object;
@@ -709,7 +709,7 @@ ccl_device_inline bool bvh_curve_intersect(KernelGlobals *kg, Intersection *isec
const ssef sphere_dif1 = (dif + dif_second) * 0.5f;
const ssef dir = load4f(direction);
const ssef sphere_b_tmp = dot3_splat(dir, sphere_dif1);
- const ssef sphere_dif2 = nmsub(sphere_b_tmp, dir, sphere_dif1);
+ const ssef sphere_dif2 = nmadd(sphere_b_tmp, dir, sphere_dif1);
#endif
float mr = max(r1, r2);
@@ -777,7 +777,7 @@ ccl_device_inline bool bvh_curve_intersect(KernelGlobals *kg, Intersection *isec
float tc = dot3(tdif, tdif) - tdifz*tdifz - tdifma*tdifma;
float td = tb*tb - 4*a*tc;
- if (td < 0.0f)
+ if(td < 0.0f)
return false;
float rootd = 0.0f;
@@ -818,7 +818,7 @@ ccl_device_inline bool bvh_curve_intersect(KernelGlobals *kg, Intersection *isec
if(t > 0.0f && t < isect->t && z >= 0 && z <= l) {
- if (flags & CURVE_KN_ENCLOSEFILTER) {
+ if(flags & CURVE_KN_ENCLOSEFILTER) {
float enc_ratio = 1.01f;
if((difz > -r1 * enc_ratio) && (dot3(dif_second, tg) < r2 * enc_ratio)) {
float a2 = 1.0f - (dirz*dirz*(1 + gd*gd*enc_ratio*enc_ratio));
@@ -835,12 +835,12 @@ ccl_device_inline bool bvh_curve_intersect(KernelGlobals *kg, Intersection *isec
#endif
{
/* record intersection */
+ isect->t = t;
+ isect->u = z*invl;
+ isect->v = gd;
isect->prim = curveAddr;
isect->object = object;
isect->type = type;
- isect->u = z*invl;
- isect->v = gd;
- isect->t = t;
return true;
}
@@ -890,7 +890,7 @@ ccl_device_inline float3 bvh_curve_refine(KernelGlobals *kg, ShaderData *sd, con
if(isect->object != OBJECT_NONE) {
#ifdef __OBJECT_MOTION__
- Transform tfm = sd->ob_itfm;
+ Transform tfm = ccl_fetch(sd, ob_itfm);
#else
Transform tfm = object_fetch_transform(kg, isect->object, OBJECT_INVERSE_TRANSFORM);
#endif
@@ -903,7 +903,7 @@ ccl_device_inline float3 bvh_curve_refine(KernelGlobals *kg, ShaderData *sd, con
int prim = kernel_tex_fetch(__prim_index, isect->prim);
float4 v00 = kernel_tex_fetch(__curves, prim);
- int k0 = __float_as_int(v00.x) + PRIMITIVE_UNPACK_SEGMENT(sd->type);
+ int k0 = __float_as_int(v00.x) + PRIMITIVE_UNPACK_SEGMENT(ccl_fetch(sd, type));
int k1 = k0 + 1;
float3 tg;
@@ -914,14 +914,14 @@ ccl_device_inline float3 bvh_curve_refine(KernelGlobals *kg, ShaderData *sd, con
float4 P_curve[4];
- if(sd->type & PRIMITIVE_CURVE) {
+ if(ccl_fetch(sd, type) & PRIMITIVE_CURVE) {
P_curve[0] = kernel_tex_fetch(__curve_keys, ka);
P_curve[1] = kernel_tex_fetch(__curve_keys, k0);
P_curve[2] = kernel_tex_fetch(__curve_keys, k1);
P_curve[3] = kernel_tex_fetch(__curve_keys, kb);
}
else {
- motion_cardinal_curve_keys(kg, sd->object, sd->prim, sd->time, ka, k0, k1, kb, P_curve);
+ motion_cardinal_curve_keys(kg, ccl_fetch(sd, object), ccl_fetch(sd, prim), ccl_fetch(sd, time), ka, k0, k1, kb, P_curve);
}
float3 p[4];
@@ -933,43 +933,43 @@ ccl_device_inline float3 bvh_curve_refine(KernelGlobals *kg, ShaderData *sd, con
P = P + D*t;
#ifdef __UV__
- sd->u = isect->u;
- sd->v = 0.0f;
+ ccl_fetch(sd, u) = isect->u;
+ ccl_fetch(sd, v) = 0.0f;
#endif
tg = normalize(curvetangent(isect->u, p[0], p[1], p[2], p[3]));
if(kernel_data.curve.curveflags & CURVE_KN_RIBBONS) {
- sd->Ng = normalize(-(D - tg * (dot(tg, D))));
+ ccl_fetch(sd, Ng) = normalize(-(D - tg * (dot(tg, D))));
}
else {
/* direction from inside to surface of curve */
float3 p_curr = curvepoint(isect->u, p[0], p[1], p[2], p[3]);
- sd->Ng = normalize(P - p_curr);
+ ccl_fetch(sd, Ng) = normalize(P - p_curr);
/* adjustment for changing radius */
float gd = isect->v;
if(gd != 0.0f) {
- sd->Ng = sd->Ng - gd * tg;
- sd->Ng = normalize(sd->Ng);
+ ccl_fetch(sd, Ng) = ccl_fetch(sd, Ng) - gd * tg;
+ ccl_fetch(sd, Ng) = normalize(ccl_fetch(sd, Ng));
}
}
/* todo: sometimes the normal is still so that this is detected as
* backfacing even if cull backfaces is enabled */
- sd->N = sd->Ng;
+ ccl_fetch(sd, N) = ccl_fetch(sd, Ng);
}
else {
float4 P_curve[2];
- if(sd->type & PRIMITIVE_CURVE) {
+ if(ccl_fetch(sd, type) & PRIMITIVE_CURVE) {
P_curve[0]= kernel_tex_fetch(__curve_keys, k0);
P_curve[1]= kernel_tex_fetch(__curve_keys, k1);
}
else {
- motion_curve_keys(kg, sd->object, sd->prim, sd->time, k0, k1, P_curve);
+ motion_curve_keys(kg, ccl_fetch(sd, object), ccl_fetch(sd, prim), ccl_fetch(sd, time), k0, k1, P_curve);
}
float l = 1.0f;
@@ -980,39 +980,39 @@ ccl_device_inline float3 bvh_curve_refine(KernelGlobals *kg, ShaderData *sd, con
float3 dif = P - float4_to_float3(P_curve[0]);
#ifdef __UV__
- sd->u = dot(dif,tg)/l;
- sd->v = 0.0f;
+ ccl_fetch(sd, u) = dot(dif,tg)/l;
+ ccl_fetch(sd, v) = 0.0f;
#endif
- if (flag & CURVE_KN_TRUETANGENTGNORMAL) {
- sd->Ng = -(D - tg * dot(tg, D));
- sd->Ng = normalize(sd->Ng);
+ if(flag & CURVE_KN_TRUETANGENTGNORMAL) {
+ ccl_fetch(sd, Ng) = -(D - tg * dot(tg, D));
+ ccl_fetch(sd, Ng) = normalize(ccl_fetch(sd, Ng));
}
else {
float gd = isect->v;
/* direction from inside to surface of curve */
- sd->Ng = (dif - tg * sd->u * l) / (P_curve[0].w + sd->u * l * gd);
+ ccl_fetch(sd, Ng) = (dif - tg * ccl_fetch(sd, u) * l) / (P_curve[0].w + ccl_fetch(sd, u) * l * gd);
/* adjustment for changing radius */
- if (gd != 0.0f) {
- sd->Ng = sd->Ng - gd * tg;
- sd->Ng = normalize(sd->Ng);
+ if(gd != 0.0f) {
+ ccl_fetch(sd, Ng) = ccl_fetch(sd, Ng) - gd * tg;
+ ccl_fetch(sd, Ng) = normalize(ccl_fetch(sd, Ng));
}
}
- sd->N = sd->Ng;
+ ccl_fetch(sd, N) = ccl_fetch(sd, Ng);
}
#ifdef __DPDU__
/* dPdu/dPdv */
- sd->dPdu = tg;
- sd->dPdv = cross(tg, sd->Ng);
+ ccl_fetch(sd, dPdu) = tg;
+ ccl_fetch(sd, dPdv) = cross(tg, ccl_fetch(sd, Ng));
#endif
if(isect->object != OBJECT_NONE) {
#ifdef __OBJECT_MOTION__
- Transform tfm = sd->ob_tfm;
+ Transform tfm = ccl_fetch(sd, ob_tfm);
#else
Transform tfm = object_fetch_transform(kg, isect->object, OBJECT_TRANSFORM);
#endif