Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'intern/cycles/kernel/geom/geom_curve_intersect.h')
-rw-r--r--intern/cycles/kernel/geom/geom_curve_intersect.h934
1 files changed, 934 insertions, 0 deletions
diff --git a/intern/cycles/kernel/geom/geom_curve_intersect.h b/intern/cycles/kernel/geom/geom_curve_intersect.h
new file mode 100644
index 00000000000..e9a149ea1ab
--- /dev/null
+++ b/intern/cycles/kernel/geom/geom_curve_intersect.h
@@ -0,0 +1,934 @@
+/*
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+CCL_NAMESPACE_BEGIN
+
+/* Curve primitive intersection functions. */
+
+#ifdef __HAIR__
+
+#if defined(__KERNEL_CUDA__) && (__CUDA_ARCH__ < 300)
+# define ccl_device_curveintersect ccl_device
+#else
+# define ccl_device_curveintersect ccl_device_forceinline
+#endif
+
+#ifdef __KERNEL_SSE2__
+ccl_device_inline ssef transform_point_T3(const ssef t[3], const ssef &a)
+{
+ return madd(shuffle<0>(a), t[0], madd(shuffle<1>(a), t[1], shuffle<2>(a) * t[2]));
+}
+#endif
+
+/* On CPU pass P and dir by reference to aligned vector. */
+ccl_device_curveintersect bool cardinal_curve_intersect(
+ KernelGlobals *kg,
+ Intersection *isect,
+ const float3 ccl_ref P,
+ const float3 ccl_ref dir,
+ uint visibility,
+ int object,
+ int curveAddr,
+ float time,
+ int type,
+ uint *lcg_state,
+ float difl,
+ float extmax)
+{
+ const bool is_curve_primitive = (type & PRIMITIVE_CURVE);
+
+ if(!is_curve_primitive && kernel_data.bvh.use_bvh_steps) {
+ const float2 prim_time = kernel_tex_fetch(__prim_time, curveAddr);
+ if(time < prim_time.x || time > prim_time.y) {
+ return false;
+ }
+ }
+
+ int segment = PRIMITIVE_UNPACK_SEGMENT(type);
+ float epsilon = 0.0f;
+ float r_st, r_en;
+
+ int depth = kernel_data.curve.subdivisions;
+ int flags = kernel_data.curve.curveflags;
+ int prim = kernel_tex_fetch(__prim_index, curveAddr);
+
+#ifdef __KERNEL_SSE2__
+ ssef vdir = load4f(dir);
+ ssef vcurve_coef[4];
+ const float3 *curve_coef = (float3 *)vcurve_coef;
+
+ {
+ ssef dtmp = vdir * vdir;
+ ssef d_ss = mm_sqrt(dtmp + shuffle<2>(dtmp));
+ ssef rd_ss = load1f_first(1.0f) / d_ss;
+
+ ssei v00vec = load4i((ssei *)&kg->__curves.data[prim]);
+ int2 &v00 = (int2 &)v00vec;
+
+ int k0 = v00.x + segment;
+ int k1 = k0 + 1;
+ int ka = max(k0 - 1, v00.x);
+ int kb = min(k1 + 1, v00.x + v00.y - 1);
+
+#if defined(__KERNEL_AVX2__) && defined(__KERNEL_SSE__) && (!defined(_MSC_VER) || _MSC_VER > 1800)
+ avxf P_curve_0_1, P_curve_2_3;
+ if(is_curve_primitive) {
+ P_curve_0_1 = _mm256_loadu2_m128(&kg->__curve_keys.data[k0].x, &kg->__curve_keys.data[ka].x);
+ P_curve_2_3 = _mm256_loadu2_m128(&kg->__curve_keys.data[kb].x, &kg->__curve_keys.data[k1].x);
+ }
+ else {
+ int fobject = (object == OBJECT_NONE) ? kernel_tex_fetch(__prim_object, curveAddr) : object;
+ motion_cardinal_curve_keys_avx(kg, fobject, prim, time, ka, k0, k1, kb, &P_curve_0_1,&P_curve_2_3);
+ }
+#else /* __KERNEL_AVX2__ */
+ ssef P_curve[4];
+
+ if(is_curve_primitive) {
+ P_curve[0] = load4f(&kg->__curve_keys.data[ka].x);
+ P_curve[1] = load4f(&kg->__curve_keys.data[k0].x);
+ P_curve[2] = load4f(&kg->__curve_keys.data[k1].x);
+ P_curve[3] = load4f(&kg->__curve_keys.data[kb].x);
+ }
+ else {
+ int fobject = (object == OBJECT_NONE)? kernel_tex_fetch(__prim_object, curveAddr): object;
+ motion_cardinal_curve_keys(kg, fobject, prim, time, ka, k0, k1, kb, (float4*)&P_curve);
+ }
+#endif /* __KERNEL_AVX2__ */
+
+ ssef rd_sgn = set_sign_bit<0, 1, 1, 1>(shuffle<0>(rd_ss));
+ ssef mul_zxxy = shuffle<2, 0, 0, 1>(vdir) * rd_sgn;
+ ssef mul_yz = shuffle<1, 2, 1, 2>(vdir) * mul_zxxy;
+ ssef mul_shuf = shuffle<0, 1, 2, 3>(mul_zxxy, mul_yz);
+ ssef vdir0 = vdir & cast(ssei(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0));
+
+ ssef htfm0 = shuffle<0, 2, 0, 3>(mul_shuf, vdir0);
+ ssef htfm1 = shuffle<1, 0, 1, 3>(load1f_first(extract<0>(d_ss)), vdir0);
+ ssef htfm2 = shuffle<1, 3, 2, 3>(mul_shuf, vdir0);
+
+#if defined(__KERNEL_AVX2__) && defined(__KERNEL_SSE__) && (!defined(_MSC_VER) || _MSC_VER > 1800)
+ const avxf vPP = _mm256_broadcast_ps(&P.m128);
+ const avxf htfm00 = avxf(htfm0.m128, htfm0.m128);
+ const avxf htfm11 = avxf(htfm1.m128, htfm1.m128);
+ const avxf htfm22 = avxf(htfm2.m128, htfm2.m128);
+
+ const avxf p01 = madd(shuffle<0>(P_curve_0_1 - vPP),
+ htfm00,
+ madd(shuffle<1>(P_curve_0_1 - vPP),
+ htfm11,
+ shuffle<2>(P_curve_0_1 - vPP) * htfm22));
+ const avxf p23 = madd(shuffle<0>(P_curve_2_3 - vPP),
+ htfm00,
+ madd(shuffle<1>(P_curve_2_3 - vPP),
+ htfm11,
+ shuffle<2>(P_curve_2_3 - vPP)*htfm22));
+
+ const ssef p0 = _mm256_castps256_ps128(p01);
+ const ssef p1 = _mm256_extractf128_ps(p01, 1);
+ const ssef p2 = _mm256_castps256_ps128(p23);
+ const ssef p3 = _mm256_extractf128_ps(p23, 1);
+
+ const ssef P_curve_1 = _mm256_extractf128_ps(P_curve_0_1, 1);
+ r_st = ((float4 &)P_curve_1).w;
+ const ssef P_curve_2 = _mm256_castps256_ps128(P_curve_2_3);
+ r_en = ((float4 &)P_curve_2).w;
+#else /* __KERNEL_AVX2__ */
+ ssef htfm[] = { htfm0, htfm1, htfm2 };
+ ssef vP = load4f(P);
+ ssef p0 = transform_point_T3(htfm, P_curve[0] - vP);
+ ssef p1 = transform_point_T3(htfm, P_curve[1] - vP);
+ ssef p2 = transform_point_T3(htfm, P_curve[2] - vP);
+ ssef p3 = transform_point_T3(htfm, P_curve[3] - vP);
+
+ r_st = ((float4 &)P_curve[1]).w;
+ r_en = ((float4 &)P_curve[2]).w;
+#endif /* __KERNEL_AVX2__ */
+
+ float fc = 0.71f;
+ ssef vfc = ssef(fc);
+ ssef vfcxp3 = vfc * p3;
+
+ vcurve_coef[0] = p1;
+ vcurve_coef[1] = vfc * (p2 - p0);
+ vcurve_coef[2] = madd(ssef(fc * 2.0f), p0, madd(ssef(fc - 3.0f), p1, msub(ssef(3.0f - 2.0f * fc), p2, vfcxp3)));
+ vcurve_coef[3] = msub(ssef(fc - 2.0f), p2 - p1, msub(vfc, p0, vfcxp3));
+
+ }
+#else
+ float3 curve_coef[4];
+
+ /* curve Intersection check */
+ /* obtain curve parameters */
+ {
+ /* ray transform created - this should be created at beginning of intersection loop */
+ Transform htfm;
+ float d = sqrtf(dir.x * dir.x + dir.z * dir.z);
+ htfm = make_transform(
+ dir.z / d, 0, -dir.x /d, 0,
+ -dir.x * dir.y /d, d, -dir.y * dir.z /d, 0,
+ dir.x, dir.y, dir.z, 0,
+ 0, 0, 0, 1);
+
+ float4 v00 = kernel_tex_fetch(__curves, prim);
+
+ int k0 = __float_as_int(v00.x) + segment;
+ int k1 = k0 + 1;
+
+ int ka = max(k0 - 1,__float_as_int(v00.x));
+ int kb = min(k1 + 1,__float_as_int(v00.x) + __float_as_int(v00.y) - 1);
+
+ float4 P_curve[4];
+
+ if(is_curve_primitive) {
+ P_curve[0] = kernel_tex_fetch(__curve_keys, ka);
+ P_curve[1] = kernel_tex_fetch(__curve_keys, k0);
+ P_curve[2] = kernel_tex_fetch(__curve_keys, k1);
+ P_curve[3] = kernel_tex_fetch(__curve_keys, kb);
+ }
+ else {
+ int fobject = (object == OBJECT_NONE)? kernel_tex_fetch(__prim_object, curveAddr): object;
+ motion_cardinal_curve_keys(kg, fobject, prim, time, ka, k0, k1, kb, P_curve);
+ }
+
+ float3 p0 = transform_point(&htfm, float4_to_float3(P_curve[0]) - P);
+ float3 p1 = transform_point(&htfm, float4_to_float3(P_curve[1]) - P);
+ float3 p2 = transform_point(&htfm, float4_to_float3(P_curve[2]) - P);
+ float3 p3 = transform_point(&htfm, float4_to_float3(P_curve[3]) - P);
+
+ float fc = 0.71f;
+ curve_coef[0] = p1;
+ curve_coef[1] = -fc*p0 + fc*p2;
+ curve_coef[2] = 2.0f * fc * p0 + (fc - 3.0f) * p1 + (3.0f - 2.0f * fc) * p2 - fc * p3;
+ curve_coef[3] = -fc * p0 + (2.0f - fc) * p1 + (fc - 2.0f) * p2 + fc * p3;
+ r_st = P_curve[1].w;
+ r_en = P_curve[2].w;
+ }
+#endif
+
+ float r_curr = max(r_st, r_en);
+
+ if((flags & CURVE_KN_RIBBONS) || !(flags & CURVE_KN_BACKFACING))
+ epsilon = 2 * r_curr;
+
+ /* find bounds - this is slow for cubic curves */
+ float upper, lower;
+
+ float zextrem[4];
+ curvebounds(&lower, &upper, &zextrem[0], &zextrem[1], &zextrem[2], &zextrem[3], curve_coef[0].z, curve_coef[1].z, curve_coef[2].z, curve_coef[3].z);
+ if(lower - r_curr > isect->t || upper + r_curr < epsilon)
+ return false;
+
+ /* minimum width extension */
+ float mw_extension = min(difl * fabsf(upper), extmax);
+ float r_ext = mw_extension + r_curr;
+
+ float xextrem[4];
+ curvebounds(&lower, &upper, &xextrem[0], &xextrem[1], &xextrem[2], &xextrem[3], curve_coef[0].x, curve_coef[1].x, curve_coef[2].x, curve_coef[3].x);
+ if(lower > r_ext || upper < -r_ext)
+ return false;
+
+ float yextrem[4];
+ curvebounds(&lower, &upper, &yextrem[0], &yextrem[1], &yextrem[2], &yextrem[3], curve_coef[0].y, curve_coef[1].y, curve_coef[2].y, curve_coef[3].y);
+ if(lower > r_ext || upper < -r_ext)
+ return false;
+
+ /* setup recurrent loop */
+ int level = 1 << depth;
+ int tree = 0;
+ float resol = 1.0f / (float)level;
+ bool hit = false;
+
+ /* begin loop */
+ while(!(tree >> (depth))) {
+ const float i_st = tree * resol;
+ const float i_en = i_st + (level * resol);
+
+#ifdef __KERNEL_SSE2__
+ ssef vi_st = ssef(i_st), vi_en = ssef(i_en);
+ ssef vp_st = madd(madd(madd(vcurve_coef[3], vi_st, vcurve_coef[2]), vi_st, vcurve_coef[1]), vi_st, vcurve_coef[0]);
+ ssef vp_en = madd(madd(madd(vcurve_coef[3], vi_en, vcurve_coef[2]), vi_en, vcurve_coef[1]), vi_en, vcurve_coef[0]);
+
+ ssef vbmin = min(vp_st, vp_en);
+ ssef vbmax = max(vp_st, vp_en);
+
+ float3 &bmin = (float3 &)vbmin, &bmax = (float3 &)vbmax;
+ float &bminx = bmin.x, &bminy = bmin.y, &bminz = bmin.z;
+ float &bmaxx = bmax.x, &bmaxy = bmax.y, &bmaxz = bmax.z;
+ float3 &p_st = (float3 &)vp_st, &p_en = (float3 &)vp_en;
+#else
+ float3 p_st = ((curve_coef[3] * i_st + curve_coef[2]) * i_st + curve_coef[1]) * i_st + curve_coef[0];
+ float3 p_en = ((curve_coef[3] * i_en + curve_coef[2]) * i_en + curve_coef[1]) * i_en + curve_coef[0];
+
+ float bminx = min(p_st.x, p_en.x);
+ float bmaxx = max(p_st.x, p_en.x);
+ float bminy = min(p_st.y, p_en.y);
+ float bmaxy = max(p_st.y, p_en.y);
+ float bminz = min(p_st.z, p_en.z);
+ float bmaxz = max(p_st.z, p_en.z);
+#endif
+
+ if(xextrem[0] >= i_st && xextrem[0] <= i_en) {
+ bminx = min(bminx,xextrem[1]);
+ bmaxx = max(bmaxx,xextrem[1]);
+ }
+ if(xextrem[2] >= i_st && xextrem[2] <= i_en) {
+ bminx = min(bminx,xextrem[3]);
+ bmaxx = max(bmaxx,xextrem[3]);
+ }
+ if(yextrem[0] >= i_st && yextrem[0] <= i_en) {
+ bminy = min(bminy,yextrem[1]);
+ bmaxy = max(bmaxy,yextrem[1]);
+ }
+ if(yextrem[2] >= i_st && yextrem[2] <= i_en) {
+ bminy = min(bminy,yextrem[3]);
+ bmaxy = max(bmaxy,yextrem[3]);
+ }
+ if(zextrem[0] >= i_st && zextrem[0] <= i_en) {
+ bminz = min(bminz,zextrem[1]);
+ bmaxz = max(bmaxz,zextrem[1]);
+ }
+ if(zextrem[2] >= i_st && zextrem[2] <= i_en) {
+ bminz = min(bminz,zextrem[3]);
+ bmaxz = max(bmaxz,zextrem[3]);
+ }
+
+ float r1 = r_st + (r_en - r_st) * i_st;
+ float r2 = r_st + (r_en - r_st) * i_en;
+ r_curr = max(r1, r2);
+
+ mw_extension = min(difl * fabsf(bmaxz), extmax);
+ float r_ext = mw_extension + r_curr;
+ float coverage = 1.0f;
+
+ if(bminz - r_curr > isect->t || bmaxz + r_curr < epsilon || bminx > r_ext|| bmaxx < -r_ext|| bminy > r_ext|| bmaxy < -r_ext) {
+ /* the bounding box does not overlap the square centered at O */
+ tree += level;
+ level = tree & -tree;
+ }
+ else if(level == 1) {
+
+ /* the maximum recursion depth is reached.
+ * check if dP0.(Q-P0)>=0 and dPn.(Pn-Q)>=0.
+ * dP* is reversed if necessary.*/
+ float t = isect->t;
+ float u = 0.0f;
+ float gd = 0.0f;
+
+ if(flags & CURVE_KN_RIBBONS) {
+ float3 tg = (p_en - p_st);
+#ifdef __KERNEL_SSE__
+ const float3 tg_sq = tg * tg;
+ float w = tg_sq.x + tg_sq.y;
+#else
+ float w = tg.x * tg.x + tg.y * tg.y;
+#endif
+ if(w == 0) {
+ tree++;
+ level = tree & -tree;
+ continue;
+ }
+#ifdef __KERNEL_SSE__
+ const float3 p_sttg = p_st * tg;
+ w = -(p_sttg.x + p_sttg.y) / w;
+#else
+ w = -(p_st.x * tg.x + p_st.y * tg.y) / w;
+#endif
+ w = saturate(w);
+
+ /* compute u on the curve segment */
+ u = i_st * (1 - w) + i_en * w;
+ r_curr = r_st + (r_en - r_st) * u;
+ /* compare x-y distances */
+ float3 p_curr = ((curve_coef[3] * u + curve_coef[2]) * u + curve_coef[1]) * u + curve_coef[0];
+
+ float3 dp_st = (3 * curve_coef[3] * i_st + 2 * curve_coef[2]) * i_st + curve_coef[1];
+ if(dot(tg, dp_st)< 0)
+ dp_st *= -1;
+ if(dot(dp_st, -p_st) + p_curr.z * dp_st.z < 0) {
+ tree++;
+ level = tree & -tree;
+ continue;
+ }
+ float3 dp_en = (3 * curve_coef[3] * i_en + 2 * curve_coef[2]) * i_en + curve_coef[1];
+ if(dot(tg, dp_en) < 0)
+ dp_en *= -1;
+ if(dot(dp_en, p_en) - p_curr.z * dp_en.z < 0) {
+ tree++;
+ level = tree & -tree;
+ continue;
+ }
+
+ /* compute coverage */
+ float r_ext = r_curr;
+ coverage = 1.0f;
+ if(difl != 0.0f) {
+ mw_extension = min(difl * fabsf(bmaxz), extmax);
+ r_ext = mw_extension + r_curr;
+#ifdef __KERNEL_SSE__
+ const float3 p_curr_sq = p_curr * p_curr;
+ const float3 dxxx(_mm_sqrt_ss(_mm_hadd_ps(p_curr_sq.m128, p_curr_sq.m128)));
+ float d = dxxx.x;
+#else
+ float d = sqrtf(p_curr.x * p_curr.x + p_curr.y * p_curr.y);
+#endif
+ float d0 = d - r_curr;
+ float d1 = d + r_curr;
+ float inv_mw_extension = 1.0f/mw_extension;
+ if(d0 >= 0)
+ coverage = (min(d1 * inv_mw_extension, 1.0f) - min(d0 * inv_mw_extension, 1.0f)) * 0.5f;
+ else // inside
+ coverage = (min(d1 * inv_mw_extension, 1.0f) + min(-d0 * inv_mw_extension, 1.0f)) * 0.5f;
+ }
+
+ if(p_curr.x * p_curr.x + p_curr.y * p_curr.y >= r_ext * r_ext || p_curr.z <= epsilon || isect->t < p_curr.z) {
+ tree++;
+ level = tree & -tree;
+ continue;
+ }
+
+ t = p_curr.z;
+
+ /* stochastic fade from minimum width */
+ if(difl != 0.0f && lcg_state) {
+ if(coverage != 1.0f && (lcg_step_float(lcg_state) > coverage))
+ return hit;
+ }
+ }
+ else {
+ float l = len(p_en - p_st);
+ /* minimum width extension */
+ float or1 = r1;
+ float or2 = r2;
+
+ if(difl != 0.0f) {
+ mw_extension = min(len(p_st - P) * difl, extmax);
+ or1 = r1 < mw_extension ? mw_extension : r1;
+ mw_extension = min(len(p_en - P) * difl, extmax);
+ or2 = r2 < mw_extension ? mw_extension : r2;
+ }
+ /* --- */
+ float invl = 1.0f/l;
+ float3 tg = (p_en - p_st) * invl;
+ gd = (or2 - or1) * invl;
+ float difz = -dot(p_st,tg);
+ float cyla = 1.0f - (tg.z * tg.z * (1 + gd*gd));
+ float invcyla = 1.0f/cyla;
+ float halfb = (-p_st.z - tg.z*(difz + gd*(difz*gd + or1)));
+ float tcentre = -halfb*invcyla;
+ float zcentre = difz + (tg.z * tcentre);
+ float3 tdif = - p_st;
+ tdif.z += tcentre;
+ float tdifz = dot(tdif,tg);
+ float tb = 2*(tdif.z - tg.z*(tdifz + gd*(tdifz*gd + or1)));
+ float tc = dot(tdif,tdif) - tdifz * tdifz * (1 + gd*gd) - or1*or1 - 2*or1*tdifz*gd;
+ float td = tb*tb - 4*cyla*tc;
+ if(td < 0.0f) {
+ tree++;
+ level = tree & -tree;
+ continue;
+ }
+
+ float rootd = sqrtf(td);
+ float correction = (-tb - rootd) * 0.5f * invcyla;
+ t = tcentre + correction;
+
+ float3 dp_st = (3 * curve_coef[3] * i_st + 2 * curve_coef[2]) * i_st + curve_coef[1];
+ if(dot(tg, dp_st)< 0)
+ dp_st *= -1;
+ float3 dp_en = (3 * curve_coef[3] * i_en + 2 * curve_coef[2]) * i_en + curve_coef[1];
+ if(dot(tg, dp_en) < 0)
+ dp_en *= -1;
+
+ if(flags & CURVE_KN_BACKFACING && (dot(dp_st, -p_st) + t * dp_st.z < 0 || dot(dp_en, p_en) - t * dp_en.z < 0 || isect->t < t || t <= 0.0f)) {
+ correction = (-tb + rootd) * 0.5f * invcyla;
+ t = tcentre + correction;
+ }
+
+ if(dot(dp_st, -p_st) + t * dp_st.z < 0 || dot(dp_en, p_en) - t * dp_en.z < 0 || isect->t < t || t <= 0.0f) {
+ tree++;
+ level = tree & -tree;
+ continue;
+ }
+
+ float w = (zcentre + (tg.z * correction)) * invl;
+ w = saturate(w);
+ /* compute u on the curve segment */
+ u = i_st * (1 - w) + i_en * w;
+
+ /* stochastic fade from minimum width */
+ if(difl != 0.0f && lcg_state) {
+ r_curr = r1 + (r2 - r1) * w;
+ r_ext = or1 + (or2 - or1) * w;
+ coverage = r_curr/r_ext;
+
+ if(coverage != 1.0f && (lcg_step_float(lcg_state) > coverage))
+ return hit;
+ }
+ }
+ /* we found a new intersection */
+
+#ifdef __VISIBILITY_FLAG__
+ /* visibility flag test. we do it here under the assumption
+ * that most triangles are culled by node flags */
+ if(kernel_tex_fetch(__prim_visibility, curveAddr) & visibility)
+#endif
+ {
+ /* record intersection */
+ isect->t = t;
+ isect->u = u;
+ isect->v = gd;
+ isect->prim = curveAddr;
+ isect->object = object;
+ isect->type = type;
+ hit = true;
+ }
+
+ tree++;
+ level = tree & -tree;
+ }
+ else {
+ /* split the curve into two curves and process */
+ level = level >> 1;
+ }
+ }
+
+ return hit;
+}
+
+ccl_device_curveintersect bool curve_intersect(KernelGlobals *kg,
+ Intersection *isect,
+ float3 P,
+ float3 direction,
+ uint visibility,
+ int object,
+ int curveAddr,
+ float time,
+ int type,
+ uint *lcg_state,
+ float difl,
+ float extmax)
+{
+ /* define few macros to minimize code duplication for SSE */
+#ifndef __KERNEL_SSE2__
+# define len3_squared(x) len_squared(x)
+# define len3(x) len(x)
+# define dot3(x, y) dot(x, y)
+#endif
+
+ const bool is_curve_primitive = (type & PRIMITIVE_CURVE);
+
+ if(!is_curve_primitive && kernel_data.bvh.use_bvh_steps) {
+ const float2 prim_time = kernel_tex_fetch(__prim_time, curveAddr);
+ if(time < prim_time.x || time > prim_time.y) {
+ return false;
+ }
+ }
+
+ int segment = PRIMITIVE_UNPACK_SEGMENT(type);
+ /* curve Intersection check */
+ int flags = kernel_data.curve.curveflags;
+
+ int prim = kernel_tex_fetch(__prim_index, curveAddr);
+ float4 v00 = kernel_tex_fetch(__curves, prim);
+
+ int cnum = __float_as_int(v00.x);
+ int k0 = cnum + segment;
+ int k1 = k0 + 1;
+
+#ifndef __KERNEL_SSE2__
+ float4 P_curve[2];
+
+ if(is_curve_primitive) {
+ P_curve[0] = kernel_tex_fetch(__curve_keys, k0);
+ P_curve[1] = kernel_tex_fetch(__curve_keys, k1);
+ }
+ else {
+ int fobject = (object == OBJECT_NONE)? kernel_tex_fetch(__prim_object, curveAddr): object;
+ motion_curve_keys(kg, fobject, prim, time, k0, k1, P_curve);
+ }
+
+ float or1 = P_curve[0].w;
+ float or2 = P_curve[1].w;
+ float3 p1 = float4_to_float3(P_curve[0]);
+ float3 p2 = float4_to_float3(P_curve[1]);
+
+ /* minimum width extension */
+ float r1 = or1;
+ float r2 = or2;
+ float3 dif = P - p1;
+ float3 dif_second = P - p2;
+ if(difl != 0.0f) {
+ float pixelsize = min(len3(dif) * difl, extmax);
+ r1 = or1 < pixelsize ? pixelsize : or1;
+ pixelsize = min(len3(dif_second) * difl, extmax);
+ r2 = or2 < pixelsize ? pixelsize : or2;
+ }
+ /* --- */
+
+ float3 p21_diff = p2 - p1;
+ float3 sphere_dif1 = (dif + dif_second) * 0.5f;
+ float3 dir = direction;
+ float sphere_b_tmp = dot3(dir, sphere_dif1);
+ float3 sphere_dif2 = sphere_dif1 - sphere_b_tmp * dir;
+#else
+ ssef P_curve[2];
+
+ if(is_curve_primitive) {
+ P_curve[0] = load4f(&kg->__curve_keys.data[k0].x);
+ P_curve[1] = load4f(&kg->__curve_keys.data[k1].x);
+ }
+ else {
+ int fobject = (object == OBJECT_NONE)? kernel_tex_fetch(__prim_object, curveAddr): object;
+ motion_curve_keys(kg, fobject, prim, time, k0, k1, (float4*)&P_curve);
+ }
+
+ const ssef or12 = shuffle<3, 3, 3, 3>(P_curve[0], P_curve[1]);
+
+ ssef r12 = or12;
+ const ssef vP = load4f(P);
+ const ssef dif = vP - P_curve[0];
+ const ssef dif_second = vP - P_curve[1];
+ if(difl != 0.0f) {
+ const ssef len1_sq = len3_squared_splat(dif);
+ const ssef len2_sq = len3_squared_splat(dif_second);
+ const ssef len12 = mm_sqrt(shuffle<0, 0, 0, 0>(len1_sq, len2_sq));
+ const ssef pixelsize12 = min(len12 * difl, ssef(extmax));
+ r12 = max(or12, pixelsize12);
+ }
+ float or1 = extract<0>(or12), or2 = extract<0>(shuffle<2>(or12));
+ float r1 = extract<0>(r12), r2 = extract<0>(shuffle<2>(r12));
+
+ const ssef p21_diff = P_curve[1] - P_curve[0];
+ const ssef sphere_dif1 = (dif + dif_second) * 0.5f;
+ const ssef dir = load4f(direction);
+ const ssef sphere_b_tmp = dot3_splat(dir, sphere_dif1);
+ const ssef sphere_dif2 = nmadd(sphere_b_tmp, dir, sphere_dif1);
+#endif
+
+ float mr = max(r1, r2);
+ float l = len3(p21_diff);
+ float invl = 1.0f / l;
+ float sp_r = mr + 0.5f * l;
+
+ float sphere_b = dot3(dir, sphere_dif2);
+ float sdisc = sphere_b * sphere_b - len3_squared(sphere_dif2) + sp_r * sp_r;
+
+ if(sdisc < 0.0f)
+ return false;
+
+ /* obtain parameters and test midpoint distance for suitable modes */
+#ifndef __KERNEL_SSE2__
+ float3 tg = p21_diff * invl;
+#else
+ const ssef tg = p21_diff * invl;
+#endif
+ float gd = (r2 - r1) * invl;
+
+ float dirz = dot3(dir, tg);
+ float difz = dot3(dif, tg);
+
+ float a = 1.0f - (dirz*dirz*(1 + gd*gd));
+
+ float halfb = dot3(dir, dif) - dirz*(difz + gd*(difz*gd + r1));
+
+ float tcentre = -halfb/a;
+ float zcentre = difz + (dirz * tcentre);
+
+ if((tcentre > isect->t) && !(flags & CURVE_KN_ACCURATE))
+ return false;
+ if((zcentre < 0 || zcentre > l) && !(flags & CURVE_KN_ACCURATE) && !(flags & CURVE_KN_INTERSECTCORRECTION))
+ return false;
+
+ /* test minimum separation */
+#ifndef __KERNEL_SSE2__
+ float3 cprod = cross(tg, dir);
+ float cprod2sq = len3_squared(cross(tg, dif));
+#else
+ const ssef cprod = cross(tg, dir);
+ float cprod2sq = len3_squared(cross_zxy(tg, dif));
+#endif
+ float cprodsq = len3_squared(cprod);
+ float distscaled = dot3(cprod, dif);
+
+ if(cprodsq == 0)
+ distscaled = cprod2sq;
+ else
+ distscaled = (distscaled*distscaled)/cprodsq;
+
+ if(distscaled > mr*mr)
+ return false;
+
+ /* calculate true intersection */
+#ifndef __KERNEL_SSE2__
+ float3 tdif = dif + tcentre * dir;
+#else
+ const ssef tdif = madd(ssef(tcentre), dir, dif);
+#endif
+ float tdifz = dot3(tdif, tg);
+ float tdifma = tdifz*gd + r1;
+ float tb = 2*(dot3(dir, tdif) - dirz*(tdifz + gd*tdifma));
+ float tc = dot3(tdif, tdif) - tdifz*tdifz - tdifma*tdifma;
+ float td = tb*tb - 4*a*tc;
+
+ if(td < 0.0f)
+ return false;
+
+ float rootd = 0.0f;
+ float correction = 0.0f;
+ if(flags & CURVE_KN_ACCURATE) {
+ rootd = sqrtf(td);
+ correction = ((-tb - rootd)/(2*a));
+ }
+
+ float t = tcentre + correction;
+
+ if(t < isect->t) {
+
+ if(flags & CURVE_KN_INTERSECTCORRECTION) {
+ rootd = sqrtf(td);
+ correction = ((-tb - rootd)/(2*a));
+ t = tcentre + correction;
+ }
+
+ float z = zcentre + (dirz * correction);
+ // bool backface = false;
+
+ if(flags & CURVE_KN_BACKFACING && (t < 0.0f || z < 0 || z > l)) {
+ // backface = true;
+ correction = ((-tb + rootd)/(2*a));
+ t = tcentre + correction;
+ z = zcentre + (dirz * correction);
+ }
+
+ /* stochastic fade from minimum width */
+ float adjradius = or1 + z * (or2 - or1) * invl;
+ adjradius = adjradius / (r1 + z * gd);
+ if(lcg_state && adjradius != 1.0f) {
+ if(lcg_step_float(lcg_state) > adjradius)
+ return false;
+ }
+ /* --- */
+
+ if(t > 0.0f && t < isect->t && z >= 0 && z <= l) {
+
+ if(flags & CURVE_KN_ENCLOSEFILTER) {
+ float enc_ratio = 1.01f;
+ if((difz > -r1 * enc_ratio) && (dot3(dif_second, tg) < r2 * enc_ratio)) {
+ float a2 = 1.0f - (dirz*dirz*(1 + gd*gd*enc_ratio*enc_ratio));
+ float c2 = dot3(dif, dif) - difz * difz * (1 + gd*gd*enc_ratio*enc_ratio) - r1*r1*enc_ratio*enc_ratio - 2*r1*difz*gd*enc_ratio;
+ if(a2*c2 < 0.0f)
+ return false;
+ }
+ }
+
+#ifdef __VISIBILITY_FLAG__
+ /* visibility flag test. we do it here under the assumption
+ * that most triangles are culled by node flags */
+ if(kernel_tex_fetch(__prim_visibility, curveAddr) & visibility)
+#endif
+ {
+ /* record intersection */
+ isect->t = t;
+ isect->u = z*invl;
+ isect->v = gd;
+ isect->prim = curveAddr;
+ isect->object = object;
+ isect->type = type;
+
+ return true;
+ }
+ }
+ }
+
+ return false;
+
+#ifndef __KERNEL_SSE2__
+# undef len3_squared
+# undef len3
+# undef dot3
+#endif
+}
+
+ccl_device_inline float3 curvetangent(float t, float3 p0, float3 p1, float3 p2, float3 p3)
+{
+ float fc = 0.71f;
+ float data[4];
+ float t2 = t * t;
+ data[0] = -3.0f * fc * t2 + 4.0f * fc * t - fc;
+ data[1] = 3.0f * (2.0f - fc) * t2 + 2.0f * (fc - 3.0f) * t;
+ data[2] = 3.0f * (fc - 2.0f) * t2 + 2.0f * (3.0f - 2.0f * fc) * t + fc;
+ data[3] = 3.0f * fc * t2 - 2.0f * fc * t;
+ return data[0] * p0 + data[1] * p1 + data[2] * p2 + data[3] * p3;
+}
+
+ccl_device_inline float3 curvepoint(float t, float3 p0, float3 p1, float3 p2, float3 p3)
+{
+ float data[4];
+ float fc = 0.71f;
+ float t2 = t * t;
+ float t3 = t2 * t;
+ data[0] = -fc * t3 + 2.0f * fc * t2 - fc * t;
+ data[1] = (2.0f - fc) * t3 + (fc - 3.0f) * t2 + 1.0f;
+ data[2] = (fc - 2.0f) * t3 + (3.0f - 2.0f * fc) * t2 + fc * t;
+ data[3] = fc * t3 - fc * t2;
+ return data[0] * p0 + data[1] * p1 + data[2] * p2 + data[3] * p3;
+}
+
+ccl_device_inline float3 curve_refine(KernelGlobals *kg,
+ ShaderData *sd,
+ const Intersection *isect,
+ const Ray *ray)
+{
+ int flag = kernel_data.curve.curveflags;
+ float t = isect->t;
+ float3 P = ray->P;
+ float3 D = ray->D;
+
+ if(isect->object != OBJECT_NONE) {
+#ifdef __OBJECT_MOTION__
+ Transform tfm = sd->ob_itfm;
+#else
+ Transform tfm = object_fetch_transform(kg, isect->object, OBJECT_INVERSE_TRANSFORM);
+#endif
+
+ P = transform_point(&tfm, P);
+ D = transform_direction(&tfm, D*t);
+ D = normalize_len(D, &t);
+ }
+
+ int prim = kernel_tex_fetch(__prim_index, isect->prim);
+ float4 v00 = kernel_tex_fetch(__curves, prim);
+
+ int k0 = __float_as_int(v00.x) + PRIMITIVE_UNPACK_SEGMENT(sd->type);
+ int k1 = k0 + 1;
+
+ float3 tg;
+
+ if(flag & CURVE_KN_INTERPOLATE) {
+ int ka = max(k0 - 1,__float_as_int(v00.x));
+ int kb = min(k1 + 1,__float_as_int(v00.x) + __float_as_int(v00.y) - 1);
+
+ float4 P_curve[4];
+
+ if(sd->type & PRIMITIVE_CURVE) {
+ P_curve[0] = kernel_tex_fetch(__curve_keys, ka);
+ P_curve[1] = kernel_tex_fetch(__curve_keys, k0);
+ P_curve[2] = kernel_tex_fetch(__curve_keys, k1);
+ P_curve[3] = kernel_tex_fetch(__curve_keys, kb);
+ }
+ else {
+ motion_cardinal_curve_keys(kg, sd->object, sd->prim, sd->time, ka, k0, k1, kb, P_curve);
+ }
+
+ float3 p[4];
+ p[0] = float4_to_float3(P_curve[0]);
+ p[1] = float4_to_float3(P_curve[1]);
+ p[2] = float4_to_float3(P_curve[2]);
+ p[3] = float4_to_float3(P_curve[3]);
+
+ P = P + D*t;
+
+#ifdef __UV__
+ sd->u = isect->u;
+ sd->v = 0.0f;
+#endif
+
+ tg = normalize(curvetangent(isect->u, p[0], p[1], p[2], p[3]));
+
+ if(kernel_data.curve.curveflags & CURVE_KN_RIBBONS) {
+ sd->Ng = normalize(-(D - tg * (dot(tg, D))));
+ }
+ else {
+ /* direction from inside to surface of curve */
+ float3 p_curr = curvepoint(isect->u, p[0], p[1], p[2], p[3]);
+ sd->Ng = normalize(P - p_curr);
+
+ /* adjustment for changing radius */
+ float gd = isect->v;
+
+ if(gd != 0.0f) {
+ sd->Ng = sd->Ng - gd * tg;
+ sd->Ng = normalize(sd->Ng);
+ }
+ }
+
+ /* todo: sometimes the normal is still so that this is detected as
+ * backfacing even if cull backfaces is enabled */
+
+ sd->N = sd->Ng;
+ }
+ else {
+ float4 P_curve[2];
+
+ if(sd->type & PRIMITIVE_CURVE) {
+ P_curve[0]= kernel_tex_fetch(__curve_keys, k0);
+ P_curve[1]= kernel_tex_fetch(__curve_keys, k1);
+ }
+ else {
+ motion_curve_keys(kg, sd->object, sd->prim, sd->time, k0, k1, P_curve);
+ }
+
+ float l = 1.0f;
+ tg = normalize_len(float4_to_float3(P_curve[1] - P_curve[0]), &l);
+
+ P = P + D*t;
+
+ float3 dif = P - float4_to_float3(P_curve[0]);
+
+#ifdef __UV__
+ sd->u = dot(dif,tg)/l;
+ sd->v = 0.0f;
+#endif
+
+ if(flag & CURVE_KN_TRUETANGENTGNORMAL) {
+ sd->Ng = -(D - tg * dot(tg, D));
+ sd->Ng = normalize(sd->Ng);
+ }
+ else {
+ float gd = isect->v;
+
+ /* direction from inside to surface of curve */
+ sd->Ng = (dif - tg * sd->u * l) / (P_curve[0].w + sd->u * l * gd);
+
+ /* adjustment for changing radius */
+ if(gd != 0.0f) {
+ sd->Ng = sd->Ng - gd * tg;
+ sd->Ng = normalize(sd->Ng);
+ }
+ }
+
+ sd->N = sd->Ng;
+ }
+
+#ifdef __DPDU__
+ /* dPdu/dPdv */
+ sd->dPdu = tg;
+ sd->dPdv = cross(tg, sd->Ng);
+#endif
+
+ if(isect->object != OBJECT_NONE) {
+#ifdef __OBJECT_MOTION__
+ Transform tfm = sd->ob_tfm;
+#else
+ Transform tfm = object_fetch_transform(kg, isect->object, OBJECT_TRANSFORM);
+#endif
+
+ P = transform_point(&tfm, P);
+ }
+
+ return P;
+}
+
+#endif
+
+CCL_NAMESPACE_END