Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'intern/cycles/kernel/integrator/surface_shader.h')
-rw-r--r--intern/cycles/kernel/integrator/surface_shader.h588
1 files changed, 588 insertions, 0 deletions
diff --git a/intern/cycles/kernel/integrator/surface_shader.h b/intern/cycles/kernel/integrator/surface_shader.h
new file mode 100644
index 00000000000..64b5556f7e9
--- /dev/null
+++ b/intern/cycles/kernel/integrator/surface_shader.h
@@ -0,0 +1,588 @@
+/* SPDX-License-Identifier: Apache-2.0
+ * Copyright 2011-2022 Blender Foundation */
+
+/* Functions to evaluate shaders. */
+
+#pragma once
+
+#include "kernel/closure/alloc.h"
+#include "kernel/closure/bsdf.h"
+#include "kernel/closure/bsdf_util.h"
+#include "kernel/closure/emissive.h"
+
+#ifdef __SVM__
+# include "kernel/svm/svm.h"
+#endif
+#ifdef __OSL__
+# include "kernel/osl/osl.h"
+#endif
+
+CCL_NAMESPACE_BEGIN
+
+ccl_device_inline void surface_shader_prepare_closures(KernelGlobals kg,
+ ConstIntegratorState state,
+ ccl_private ShaderData *sd,
+ const uint32_t path_flag)
+{
+ /* Filter out closures. */
+ if (kernel_data.integrator.filter_closures) {
+ if (kernel_data.integrator.filter_closures & FILTER_CLOSURE_EMISSION) {
+ sd->closure_emission_background = zero_spectrum();
+ }
+
+ if (kernel_data.integrator.filter_closures & FILTER_CLOSURE_DIRECT_LIGHT) {
+ sd->flag &= ~SD_BSDF_HAS_EVAL;
+ }
+
+ if (path_flag & PATH_RAY_CAMERA) {
+ for (int i = 0; i < sd->num_closure; i++) {
+ ccl_private ShaderClosure *sc = &sd->closure[i];
+
+ if ((CLOSURE_IS_BSDF_DIFFUSE(sc->type) &&
+ (kernel_data.integrator.filter_closures & FILTER_CLOSURE_DIFFUSE)) ||
+ (CLOSURE_IS_BSDF_GLOSSY(sc->type) &&
+ (kernel_data.integrator.filter_closures & FILTER_CLOSURE_GLOSSY)) ||
+ (CLOSURE_IS_BSDF_TRANSMISSION(sc->type) &&
+ (kernel_data.integrator.filter_closures & FILTER_CLOSURE_TRANSMISSION))) {
+ sc->type = CLOSURE_NONE_ID;
+ sc->sample_weight = 0.0f;
+ }
+ else if ((CLOSURE_IS_BSDF_TRANSPARENT(sc->type) &&
+ (kernel_data.integrator.filter_closures & FILTER_CLOSURE_TRANSPARENT))) {
+ sc->type = CLOSURE_HOLDOUT_ID;
+ sc->sample_weight = 0.0f;
+ sd->flag |= SD_HOLDOUT;
+ }
+ }
+ }
+ }
+
+ /* Defensive sampling.
+ *
+ * We can likely also do defensive sampling at deeper bounces, particularly
+ * for cases like a perfect mirror but possibly also others. This will need
+ * a good heuristic. */
+ if (INTEGRATOR_STATE(state, path, bounce) + INTEGRATOR_STATE(state, path, transparent_bounce) ==
+ 0 &&
+ sd->num_closure > 1) {
+ float sum = 0.0f;
+
+ for (int i = 0; i < sd->num_closure; i++) {
+ ccl_private ShaderClosure *sc = &sd->closure[i];
+ if (CLOSURE_IS_BSDF_OR_BSSRDF(sc->type)) {
+ sum += sc->sample_weight;
+ }
+ }
+
+ for (int i = 0; i < sd->num_closure; i++) {
+ ccl_private ShaderClosure *sc = &sd->closure[i];
+ if (CLOSURE_IS_BSDF_OR_BSSRDF(sc->type)) {
+ sc->sample_weight = max(sc->sample_weight, 0.125f * sum);
+ }
+ }
+ }
+
+ /* Filter glossy.
+ *
+ * Blurring of bsdf after bounces, for rays that have a small likelihood
+ * of following this particular path (diffuse, rough glossy) */
+ if (kernel_data.integrator.filter_glossy != FLT_MAX
+#ifdef __MNEE__
+ && !(INTEGRATOR_STATE(state, path, mnee) & PATH_MNEE_VALID)
+#endif
+ ) {
+ float blur_pdf = kernel_data.integrator.filter_glossy *
+ INTEGRATOR_STATE(state, path, min_ray_pdf);
+
+ if (blur_pdf < 1.0f) {
+ float blur_roughness = sqrtf(1.0f - blur_pdf) * 0.5f;
+
+ for (int i = 0; i < sd->num_closure; i++) {
+ ccl_private ShaderClosure *sc = &sd->closure[i];
+ if (CLOSURE_IS_BSDF(sc->type)) {
+ bsdf_blur(kg, sc, blur_roughness);
+ }
+ }
+ }
+ }
+}
+
+/* BSDF */
+
+ccl_device_inline bool surface_shader_is_transmission(ccl_private const ShaderData *sd,
+ const float3 omega_in)
+{
+ return dot(sd->N, omega_in) < 0.0f;
+}
+
+ccl_device_forceinline bool _surface_shader_exclude(ClosureType type, uint light_shader_flags)
+{
+ if (!(light_shader_flags & SHADER_EXCLUDE_ANY)) {
+ return false;
+ }
+ if (light_shader_flags & SHADER_EXCLUDE_DIFFUSE) {
+ if (CLOSURE_IS_BSDF_DIFFUSE(type)) {
+ return true;
+ }
+ }
+ if (light_shader_flags & SHADER_EXCLUDE_GLOSSY) {
+ if (CLOSURE_IS_BSDF_GLOSSY(type)) {
+ return true;
+ }
+ }
+ if (light_shader_flags & SHADER_EXCLUDE_TRANSMIT) {
+ if (CLOSURE_IS_BSDF_TRANSMISSION(type)) {
+ return true;
+ }
+ }
+ return false;
+}
+
+ccl_device_inline float _surface_shader_bsdf_eval_mis(KernelGlobals kg,
+ ccl_private ShaderData *sd,
+ const float3 omega_in,
+ const bool is_transmission,
+ ccl_private const ShaderClosure *skip_sc,
+ ccl_private BsdfEval *result_eval,
+ float sum_pdf,
+ float sum_sample_weight,
+ const uint light_shader_flags)
+{
+ /* This is the veach one-sample model with balance heuristic,
+ * some PDF factors drop out when using balance heuristic weighting. */
+ for (int i = 0; i < sd->num_closure; i++) {
+ ccl_private const ShaderClosure *sc = &sd->closure[i];
+
+ if (sc == skip_sc) {
+ continue;
+ }
+
+ if (CLOSURE_IS_BSDF_OR_BSSRDF(sc->type)) {
+ if (CLOSURE_IS_BSDF(sc->type) && !_surface_shader_exclude(sc->type, light_shader_flags)) {
+ float bsdf_pdf = 0.0f;
+ Spectrum eval = bsdf_eval(kg, sd, sc, omega_in, is_transmission, &bsdf_pdf);
+
+ if (bsdf_pdf != 0.0f) {
+ bsdf_eval_accum(result_eval, sc->type, eval * sc->weight);
+ sum_pdf += bsdf_pdf * sc->sample_weight;
+ }
+ }
+
+ sum_sample_weight += sc->sample_weight;
+ }
+ }
+
+ return (sum_sample_weight > 0.0f) ? sum_pdf / sum_sample_weight : 0.0f;
+}
+
+#ifndef __KERNEL_CUDA__
+ccl_device
+#else
+ccl_device_inline
+#endif
+ float
+ surface_shader_bsdf_eval(KernelGlobals kg,
+ ccl_private ShaderData *sd,
+ const float3 omega_in,
+ const bool is_transmission,
+ ccl_private BsdfEval *bsdf_eval,
+ const uint light_shader_flags)
+{
+ bsdf_eval_init(bsdf_eval, CLOSURE_NONE_ID, zero_spectrum());
+
+ return _surface_shader_bsdf_eval_mis(
+ kg, sd, omega_in, is_transmission, NULL, bsdf_eval, 0.0f, 0.0f, light_shader_flags);
+}
+
+/* Randomly sample a BSSRDF or BSDF proportional to ShaderClosure.sample_weight. */
+ccl_device_inline ccl_private const ShaderClosure *surface_shader_bsdf_bssrdf_pick(
+ ccl_private const ShaderData *ccl_restrict sd, ccl_private float2 *rand_bsdf)
+{
+ int sampled = 0;
+
+ if (sd->num_closure > 1) {
+ /* Pick a BSDF or based on sample weights. */
+ float sum = 0.0f;
+
+ for (int i = 0; i < sd->num_closure; i++) {
+ ccl_private const ShaderClosure *sc = &sd->closure[i];
+
+ if (CLOSURE_IS_BSDF_OR_BSSRDF(sc->type)) {
+ sum += sc->sample_weight;
+ }
+ }
+
+ float r = (*rand_bsdf).x * sum;
+ float partial_sum = 0.0f;
+
+ for (int i = 0; i < sd->num_closure; i++) {
+ ccl_private const ShaderClosure *sc = &sd->closure[i];
+
+ if (CLOSURE_IS_BSDF_OR_BSSRDF(sc->type)) {
+ float next_sum = partial_sum + sc->sample_weight;
+
+ if (r < next_sum) {
+ sampled = i;
+
+ /* Rescale to reuse for direction sample, to better preserve stratification. */
+ (*rand_bsdf).x = (r - partial_sum) / sc->sample_weight;
+ break;
+ }
+
+ partial_sum = next_sum;
+ }
+ }
+ }
+
+ return &sd->closure[sampled];
+}
+
+/* Return weight for picked BSSRDF. */
+ccl_device_inline Spectrum
+surface_shader_bssrdf_sample_weight(ccl_private const ShaderData *ccl_restrict sd,
+ ccl_private const ShaderClosure *ccl_restrict bssrdf_sc)
+{
+ Spectrum weight = bssrdf_sc->weight;
+
+ if (sd->num_closure > 1) {
+ float sum = 0.0f;
+ for (int i = 0; i < sd->num_closure; i++) {
+ ccl_private const ShaderClosure *sc = &sd->closure[i];
+
+ if (CLOSURE_IS_BSDF_OR_BSSRDF(sc->type)) {
+ sum += sc->sample_weight;
+ }
+ }
+ weight *= sum / bssrdf_sc->sample_weight;
+ }
+
+ return weight;
+}
+
+/* Sample direction for picked BSDF, and return evaluation and pdf for all
+ * BSDFs combined using MIS. */
+ccl_device int surface_shader_bsdf_sample_closure(KernelGlobals kg,
+ ccl_private ShaderData *sd,
+ ccl_private const ShaderClosure *sc,
+ const float2 rand_bsdf,
+ ccl_private BsdfEval *bsdf_eval,
+ ccl_private float3 *omega_in,
+ ccl_private float *pdf)
+{
+ /* BSSRDF should already have been handled elsewhere. */
+ kernel_assert(CLOSURE_IS_BSDF(sc->type));
+
+ int label;
+ Spectrum eval = zero_spectrum();
+
+ *pdf = 0.0f;
+ label = bsdf_sample(kg, sd, sc, rand_bsdf.x, rand_bsdf.y, &eval, omega_in, pdf);
+
+ if (*pdf != 0.0f) {
+ bsdf_eval_init(bsdf_eval, sc->type, eval * sc->weight);
+
+ if (sd->num_closure > 1) {
+ const bool is_transmission = surface_shader_is_transmission(sd, *omega_in);
+ float sweight = sc->sample_weight;
+ *pdf = _surface_shader_bsdf_eval_mis(
+ kg, sd, *omega_in, is_transmission, sc, bsdf_eval, *pdf * sweight, sweight, 0);
+ }
+ }
+
+ return label;
+}
+
+ccl_device float surface_shader_average_roughness(ccl_private const ShaderData *sd)
+{
+ float roughness = 0.0f;
+ float sum_weight = 0.0f;
+
+ for (int i = 0; i < sd->num_closure; i++) {
+ ccl_private const ShaderClosure *sc = &sd->closure[i];
+
+ if (CLOSURE_IS_BSDF(sc->type)) {
+ /* sqrt once to undo the squaring from multiplying roughness on the
+ * two axes, and once for the squared roughness convention. */
+ float weight = fabsf(average(sc->weight));
+ roughness += weight * sqrtf(safe_sqrtf(bsdf_get_roughness_squared(sc)));
+ sum_weight += weight;
+ }
+ }
+
+ return (sum_weight > 0.0f) ? roughness / sum_weight : 0.0f;
+}
+
+ccl_device Spectrum surface_shader_transparency(KernelGlobals kg, ccl_private const ShaderData *sd)
+{
+ if (sd->flag & SD_HAS_ONLY_VOLUME) {
+ return one_spectrum();
+ }
+ else if (sd->flag & SD_TRANSPARENT) {
+ return sd->closure_transparent_extinction;
+ }
+ else {
+ return zero_spectrum();
+ }
+}
+
+ccl_device void surface_shader_disable_transparency(KernelGlobals kg, ccl_private ShaderData *sd)
+{
+ if (sd->flag & SD_TRANSPARENT) {
+ for (int i = 0; i < sd->num_closure; i++) {
+ ccl_private ShaderClosure *sc = &sd->closure[i];
+
+ if (sc->type == CLOSURE_BSDF_TRANSPARENT_ID) {
+ sc->sample_weight = 0.0f;
+ sc->weight = zero_spectrum();
+ }
+ }
+
+ sd->flag &= ~SD_TRANSPARENT;
+ }
+}
+
+ccl_device Spectrum surface_shader_alpha(KernelGlobals kg, ccl_private const ShaderData *sd)
+{
+ Spectrum alpha = one_spectrum() - surface_shader_transparency(kg, sd);
+
+ alpha = saturate(alpha);
+
+ return alpha;
+}
+
+ccl_device Spectrum surface_shader_diffuse(KernelGlobals kg, ccl_private const ShaderData *sd)
+{
+ Spectrum eval = zero_spectrum();
+
+ for (int i = 0; i < sd->num_closure; i++) {
+ ccl_private const ShaderClosure *sc = &sd->closure[i];
+
+ if (CLOSURE_IS_BSDF_DIFFUSE(sc->type) || CLOSURE_IS_BSSRDF(sc->type))
+ eval += sc->weight;
+ }
+
+ return eval;
+}
+
+ccl_device Spectrum surface_shader_glossy(KernelGlobals kg, ccl_private const ShaderData *sd)
+{
+ Spectrum eval = zero_spectrum();
+
+ for (int i = 0; i < sd->num_closure; i++) {
+ ccl_private const ShaderClosure *sc = &sd->closure[i];
+
+ if (CLOSURE_IS_BSDF_GLOSSY(sc->type))
+ eval += sc->weight;
+ }
+
+ return eval;
+}
+
+ccl_device Spectrum surface_shader_transmission(KernelGlobals kg, ccl_private const ShaderData *sd)
+{
+ Spectrum eval = zero_spectrum();
+
+ for (int i = 0; i < sd->num_closure; i++) {
+ ccl_private const ShaderClosure *sc = &sd->closure[i];
+
+ if (CLOSURE_IS_BSDF_TRANSMISSION(sc->type))
+ eval += sc->weight;
+ }
+
+ return eval;
+}
+
+ccl_device float3 surface_shader_average_normal(KernelGlobals kg, ccl_private const ShaderData *sd)
+{
+ float3 N = zero_float3();
+
+ for (int i = 0; i < sd->num_closure; i++) {
+ ccl_private const ShaderClosure *sc = &sd->closure[i];
+ if (CLOSURE_IS_BSDF_OR_BSSRDF(sc->type))
+ N += sc->N * fabsf(average(sc->weight));
+ }
+
+ return (is_zero(N)) ? sd->N : normalize(N);
+}
+
+ccl_device Spectrum surface_shader_ao(KernelGlobals kg,
+ ccl_private const ShaderData *sd,
+ const float ao_factor,
+ ccl_private float3 *N_)
+{
+ Spectrum eval = zero_spectrum();
+ float3 N = zero_float3();
+
+ for (int i = 0; i < sd->num_closure; i++) {
+ ccl_private const ShaderClosure *sc = &sd->closure[i];
+
+ if (CLOSURE_IS_BSDF_DIFFUSE(sc->type)) {
+ ccl_private const DiffuseBsdf *bsdf = (ccl_private const DiffuseBsdf *)sc;
+ eval += sc->weight * ao_factor;
+ N += bsdf->N * fabsf(average(sc->weight));
+ }
+ }
+
+ *N_ = (is_zero(N)) ? sd->N : normalize(N);
+ return eval;
+}
+
+#ifdef __SUBSURFACE__
+ccl_device float3 surface_shader_bssrdf_normal(ccl_private const ShaderData *sd)
+{
+ float3 N = zero_float3();
+
+ for (int i = 0; i < sd->num_closure; i++) {
+ ccl_private const ShaderClosure *sc = &sd->closure[i];
+
+ if (CLOSURE_IS_BSSRDF(sc->type)) {
+ ccl_private const Bssrdf *bssrdf = (ccl_private const Bssrdf *)sc;
+ float avg_weight = fabsf(average(sc->weight));
+
+ N += bssrdf->N * avg_weight;
+ }
+ }
+
+ return (is_zero(N)) ? sd->N : normalize(N);
+}
+#endif /* __SUBSURFACE__ */
+
+/* Constant emission optimization */
+
+ccl_device bool surface_shader_constant_emission(KernelGlobals kg,
+ int shader,
+ ccl_private Spectrum *eval)
+{
+ int shader_index = shader & SHADER_MASK;
+ int shader_flag = kernel_data_fetch(shaders, shader_index).flags;
+
+ if (shader_flag & SD_HAS_CONSTANT_EMISSION) {
+ const float3 emission_rgb = make_float3(
+ kernel_data_fetch(shaders, shader_index).constant_emission[0],
+ kernel_data_fetch(shaders, shader_index).constant_emission[1],
+ kernel_data_fetch(shaders, shader_index).constant_emission[2]);
+ *eval = rgb_to_spectrum(emission_rgb);
+
+ return true;
+ }
+
+ return false;
+}
+
+/* Background */
+
+ccl_device Spectrum surface_shader_background(ccl_private const ShaderData *sd)
+{
+ if (sd->flag & SD_EMISSION) {
+ return sd->closure_emission_background;
+ }
+ else {
+ return zero_spectrum();
+ }
+}
+
+/* Emission */
+
+ccl_device Spectrum surface_shader_emission(ccl_private const ShaderData *sd)
+{
+ if (sd->flag & SD_EMISSION) {
+ return emissive_simple_eval(sd->Ng, sd->I) * sd->closure_emission_background;
+ }
+ else {
+ return zero_spectrum();
+ }
+}
+
+/* Holdout */
+
+ccl_device Spectrum surface_shader_apply_holdout(KernelGlobals kg, ccl_private ShaderData *sd)
+{
+ Spectrum weight = zero_spectrum();
+
+ /* For objects marked as holdout, preserve transparency and remove all other
+ * closures, replacing them with a holdout weight. */
+ if (sd->object_flag & SD_OBJECT_HOLDOUT_MASK) {
+ if ((sd->flag & SD_TRANSPARENT) && !(sd->flag & SD_HAS_ONLY_VOLUME)) {
+ weight = one_spectrum() - sd->closure_transparent_extinction;
+
+ for (int i = 0; i < sd->num_closure; i++) {
+ ccl_private ShaderClosure *sc = &sd->closure[i];
+ if (!CLOSURE_IS_BSDF_TRANSPARENT(sc->type)) {
+ sc->type = NBUILTIN_CLOSURES;
+ }
+ }
+
+ sd->flag &= ~(SD_CLOSURE_FLAGS - (SD_TRANSPARENT | SD_BSDF));
+ }
+ else {
+ weight = one_spectrum();
+ }
+ }
+ else {
+ for (int i = 0; i < sd->num_closure; i++) {
+ ccl_private const ShaderClosure *sc = &sd->closure[i];
+ if (CLOSURE_IS_HOLDOUT(sc->type)) {
+ weight += sc->weight;
+ }
+ }
+ }
+
+ return weight;
+}
+
+/* Surface Evaluation */
+
+template<uint node_feature_mask, typename ConstIntegratorGenericState>
+ccl_device void surface_shader_eval(KernelGlobals kg,
+ ConstIntegratorGenericState state,
+ ccl_private ShaderData *ccl_restrict sd,
+ ccl_global float *ccl_restrict buffer,
+ uint32_t path_flag,
+ bool use_caustics_storage = false)
+{
+ /* If path is being terminated, we are tracing a shadow ray or evaluating
+ * emission, then we don't need to store closures. The emission and shadow
+ * shader data also do not have a closure array to save GPU memory. */
+ int max_closures;
+ if (path_flag & (PATH_RAY_TERMINATE | PATH_RAY_SHADOW | PATH_RAY_EMISSION)) {
+ max_closures = 0;
+ }
+ else {
+ max_closures = use_caustics_storage ? CAUSTICS_MAX_CLOSURE : kernel_data.max_closures;
+ }
+
+ sd->num_closure = 0;
+ sd->num_closure_left = max_closures;
+
+#ifdef __OSL__
+ if (kg->osl) {
+ if (sd->object == OBJECT_NONE && sd->lamp == LAMP_NONE) {
+ OSLShader::eval_background(kg, state, sd, path_flag);
+ }
+ else {
+ OSLShader::eval_surface(kg, state, sd, path_flag);
+ }
+ }
+ else
+#endif
+ {
+#ifdef __SVM__
+ svm_eval_nodes<node_feature_mask, SHADER_TYPE_SURFACE>(kg, state, sd, buffer, path_flag);
+#else
+ if (sd->object == OBJECT_NONE) {
+ sd->closure_emission_background = make_spectrum(0.8f);
+ sd->flag |= SD_EMISSION;
+ }
+ else {
+ ccl_private DiffuseBsdf *bsdf = (ccl_private DiffuseBsdf *)bsdf_alloc(
+ sd, sizeof(DiffuseBsdf), make_spectrum(0.8f));
+ if (bsdf != NULL) {
+ bsdf->N = sd->N;
+ sd->flag |= bsdf_diffuse_setup(bsdf);
+ }
+ }
+#endif
+ }
+}
+
+CCL_NAMESPACE_END