Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'intern/cycles/kernel/svm/bsdf_microfacet.h')
-rw-r--r--intern/cycles/kernel/svm/bsdf_microfacet.h503
1 files changed, 503 insertions, 0 deletions
diff --git a/intern/cycles/kernel/svm/bsdf_microfacet.h b/intern/cycles/kernel/svm/bsdf_microfacet.h
new file mode 100644
index 00000000000..3acd3ba4c85
--- /dev/null
+++ b/intern/cycles/kernel/svm/bsdf_microfacet.h
@@ -0,0 +1,503 @@
+/*
+ * Adapted from Open Shading Language with this license:
+ *
+ * Copyright (c) 2009-2010 Sony Pictures Imageworks Inc., et al.
+ * All Rights Reserved.
+ *
+ * Modifications Copyright 2011, Blender Foundation.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met:
+ * * Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * * Neither the name of Sony Pictures Imageworks nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+*/
+
+#ifndef __BSDF_MICROFACET_H__
+#define __BSDF_MICROFACET_H__
+
+CCL_NAMESPACE_BEGIN
+
+/* GGX */
+
+typedef struct BsdfMicrofacetGGXClosure {
+ //float3 m_N;
+ float m_ag;
+ float m_eta;
+} BsdfMicrofacetGGXClosure;
+
+__device void bsdf_microfacet_ggx_setup(ShaderData *sd, ShaderClosure *sc, float ag, float eta, bool refractive)
+{
+ float m_ag = clamp(ag, 1e-5f, 1.0f);
+ float m_eta = eta;
+
+ sc->data0 = m_ag;
+ sc->data1 = m_eta;
+
+ if(refractive)
+ sc->type = CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID;
+ else
+ sc->type = CLOSURE_BSDF_MICROFACET_GGX_ID;
+
+ sd->flag |= SD_BSDF|SD_BSDF_HAS_EVAL|SD_BSDF_GLOSSY;
+}
+
+__device void bsdf_microfacet_ggx_blur(ShaderClosure *sc, float roughness)
+{
+ float m_ag = sc->data0;
+ m_ag = fmaxf(roughness, m_ag);
+ sc->data0 = m_ag;
+}
+
+__device float3 bsdf_microfacet_ggx_eval_reflect(const ShaderData *sd, const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf)
+{
+ float m_ag = sc->data0;
+ //float m_eta = sc->data1;
+ int m_refractive = sc->type == CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID;
+ float3 m_N = sd->N;
+
+ if(m_refractive) return make_float3 (0, 0, 0);
+ float cosNO = dot(m_N, I);
+ float cosNI = dot(m_N, omega_in);
+ if(cosNI > 0 && cosNO > 0) {
+ // get half vector
+ float3 Hr = normalize(omega_in + I);
+ // eq. 20: (F*G*D)/(4*in*on)
+ // eq. 33: first we calculate D(m) with m=Hr:
+ float alpha2 = m_ag * m_ag;
+ float cosThetaM = dot(m_N, Hr);
+ float cosThetaM2 = cosThetaM * cosThetaM;
+ float tanThetaM2 = (1 - cosThetaM2) / cosThetaM2;
+ float cosThetaM4 = cosThetaM2 * cosThetaM2;
+ float D = alpha2 / (M_PI_F * cosThetaM4 * (alpha2 + tanThetaM2) * (alpha2 + tanThetaM2));
+ // eq. 34: now calculate G1(i,m) and G1(o,m)
+ float G1o = 2 / (1 + sqrtf(1 + alpha2 * (1 - cosNO * cosNO) / (cosNO * cosNO)));
+ float G1i = 2 / (1 + sqrtf(1 + alpha2 * (1 - cosNI * cosNI) / (cosNI * cosNI)));
+ float G = G1o * G1i;
+ float out = (G * D) * 0.25f / cosNO;
+ // eq. 24
+ float pm = D * cosThetaM;
+ // convert into pdf of the sampled direction
+ // eq. 38 - but see also:
+ // eq. 17 in http://www.graphics.cornell.edu/~bjw/wardnotes.pdf
+ *pdf = pm * 0.25f / dot(Hr, I);
+ return make_float3 (out, out, out);
+ }
+ return make_float3 (0, 0, 0);
+}
+
+__device float3 bsdf_microfacet_ggx_eval_transmit(const ShaderData *sd, const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf)
+{
+ float m_ag = sc->data0;
+ float m_eta = sc->data1;
+ int m_refractive = sc->type == CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID;
+ float3 m_N = sd->N;
+
+ if(!m_refractive) return make_float3 (0, 0, 0);
+ float cosNO = dot(m_N, I);
+ float cosNI = dot(m_N, omega_in);
+ if(cosNO <= 0 || cosNI >= 0)
+ return make_float3 (0, 0, 0); // vectors on same side -- not possible
+ // compute half-vector of the refraction (eq. 16)
+ float3 ht = -(m_eta * omega_in + I);
+ float3 Ht = normalize(ht);
+ float cosHO = dot(Ht, I);
+
+ float cosHI = dot(Ht, omega_in);
+ // eq. 33: first we calculate D(m) with m=Ht:
+ float alpha2 = m_ag * m_ag;
+ float cosThetaM = dot(m_N, Ht);
+ float cosThetaM2 = cosThetaM * cosThetaM;
+ float tanThetaM2 = (1 - cosThetaM2) / cosThetaM2;
+ float cosThetaM4 = cosThetaM2 * cosThetaM2;
+ float D = alpha2 / (M_PI_F * cosThetaM4 * (alpha2 + tanThetaM2) * (alpha2 + tanThetaM2));
+ // eq. 34: now calculate G1(i,m) and G1(o,m)
+ float G1o = 2 / (1 + sqrtf(1 + alpha2 * (1 - cosNO * cosNO) / (cosNO * cosNO)));
+ float G1i = 2 / (1 + sqrtf(1 + alpha2 * (1 - cosNI * cosNI) / (cosNI * cosNI)));
+ float G = G1o * G1i;
+ // probability
+ float invHt2 = 1 / dot(ht, ht);
+ *pdf = D * fabsf(cosThetaM) * (fabsf(cosHI) * (m_eta * m_eta)) * invHt2;
+ float out = (fabsf(cosHI * cosHO) * (m_eta * m_eta) * (G * D) * invHt2) / cosNO;
+ return make_float3 (out, out, out);
+}
+
+__device float bsdf_microfacet_ggx_albedo(const ShaderData *sd, const ShaderClosure *sc, const float3 I)
+{
+ return 1.0f;
+}
+
+__device int bsdf_microfacet_ggx_sample(const ShaderData *sd, const ShaderClosure *sc, float randu, float randv, float3 *eval, float3 *omega_in, float3 *domega_in_dx, float3 *domega_in_dy, float *pdf)
+{
+ float m_ag = sc->data0;
+ float m_eta = sc->data1;
+ int m_refractive = sc->type == CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID;
+ float3 m_N = sd->N;
+
+ float cosNO = dot(m_N, sd->I);
+ if(cosNO > 0) {
+ float3 X, Y, Z = m_N;
+ make_orthonormals(Z, &X, &Y);
+ // generate a random microfacet normal m
+ // eq. 35,36:
+ // we take advantage of cos(atan(x)) == 1/sqrt(1+x^2)
+ //tttt and sin(atan(x)) == x/sqrt(1+x^2)
+ float alpha2 = m_ag * m_ag;
+ float tanThetaM2 = alpha2 * randu / (1 - randu);
+ float cosThetaM = 1 / sqrtf(1 + tanThetaM2);
+ float sinThetaM = cosThetaM * sqrtf(tanThetaM2);
+ float phiM = 2 * M_PI_F * randv;
+ float3 m = (cosf(phiM) * sinThetaM) * X +
+ (sinf(phiM) * sinThetaM) * Y +
+ cosThetaM * Z;
+ if(!m_refractive) {
+ float cosMO = dot(m, sd->I);
+ if(cosMO > 0) {
+ // eq. 39 - compute actual reflected direction
+ *omega_in = 2 * cosMO * m - sd->I;
+ if(dot(sd->Ng, *omega_in) > 0) {
+ // microfacet normal is visible to this ray
+ // eq. 33
+ float cosThetaM2 = cosThetaM * cosThetaM;
+ float cosThetaM4 = cosThetaM2 * cosThetaM2;
+ float D = alpha2 / (M_PI_F * cosThetaM4 * (alpha2 + tanThetaM2) * (alpha2 + tanThetaM2));
+ // eq. 24
+ float pm = D * cosThetaM;
+ // convert into pdf of the sampled direction
+ // eq. 38 - but see also:
+ // eq. 17 in http://www.graphics.cornell.edu/~bjw/wardnotes.pdf
+ *pdf = pm * 0.25f / cosMO;
+ // eval BRDF*cosNI
+ float cosNI = dot(m_N, *omega_in);
+ // eq. 34: now calculate G1(i,m) and G1(o,m)
+ float G1o = 2 / (1 + sqrtf(1 + alpha2 * (1 - cosNO * cosNO) / (cosNO * cosNO)));
+ float G1i = 2 / (1 + sqrtf(1 + alpha2 * (1 - cosNI * cosNI) / (cosNI * cosNI)));
+ float G = G1o * G1i;
+ // eq. 20: (F*G*D)/(4*in*on)
+ float out = (G * D) * 0.25f / cosNO;
+ *eval = make_float3(out, out, out);
+#ifdef __RAY_DIFFERENTIALS__
+ *domega_in_dx = (2 * dot(m, sd->dI.dx)) * m - sd->dI.dx;
+ *domega_in_dy = (2 * dot(m, sd->dI.dy)) * m - sd->dI.dy;
+ // Since there is some blur to this reflection, make the
+ // derivatives a bit bigger. In theory this varies with the
+ // roughness but the exact relationship is complex and
+ // requires more ops than are practical.
+ *domega_in_dx *= 10.0f;
+ *domega_in_dy *= 10.0f;
+#endif
+ }
+ }
+ } else {
+ // CAUTION: the i and o variables are inverted relative to the paper
+ // eq. 39 - compute actual refractive direction
+ float3 R, T;
+#ifdef __RAY_DIFFERENTIALS__
+ float3 dRdx, dRdy, dTdx, dTdy;
+#endif
+ bool inside;
+ fresnel_dielectric(m_eta, m, sd->I, &R, &T,
+#ifdef __RAY_DIFFERENTIALS__
+ sd->dI.dx, sd->dI.dy, &dRdx, &dRdy, &dTdx, &dTdy,
+#endif
+ &inside);
+
+ if(!inside) {
+ *omega_in = T;
+#ifdef __RAY_DIFFERENTIALS__
+ *domega_in_dx = dTdx;
+ *domega_in_dy = dTdy;
+#endif
+ // eq. 33
+ float cosThetaM2 = cosThetaM * cosThetaM;
+ float cosThetaM4 = cosThetaM2 * cosThetaM2;
+ float D = alpha2 / (M_PI_F * cosThetaM4 * (alpha2 + tanThetaM2) * (alpha2 + tanThetaM2));
+ // eq. 24
+ float pm = D * cosThetaM;
+ // eval BRDF*cosNI
+ float cosNI = dot(m_N, *omega_in);
+ // eq. 34: now calculate G1(i,m) and G1(o,m)
+ float G1o = 2 / (1 + sqrtf(1 + alpha2 * (1 - cosNO * cosNO) / (cosNO * cosNO)));
+ float G1i = 2 / (1 + sqrtf(1 + alpha2 * (1 - cosNI * cosNI) / (cosNI * cosNI)));
+ float G = G1o * G1i;
+ // eq. 21
+ float cosHI = dot(m, *omega_in);
+ float cosHO = dot(m, sd->I);
+ float Ht2 = m_eta * cosHI + cosHO;
+ Ht2 *= Ht2;
+ float out = (fabsf(cosHI * cosHO) * (m_eta * m_eta) * (G * D)) / (cosNO * Ht2);
+ // eq. 38 and eq. 17
+ *pdf = pm * (m_eta * m_eta) * fabsf(cosHI) / Ht2;
+ *eval = make_float3(out, out, out);
+#ifdef __RAY_DIFFERENTIALS__
+ // Since there is some blur to this refraction, make the
+ // derivatives a bit bigger. In theory this varies with the
+ // roughness but the exact relationship is complex and
+ // requires more ops than are practical.
+ *domega_in_dx *= 10.0f;
+ *domega_in_dy *= 10.0f;
+#endif
+ }
+ }
+ }
+ return (m_refractive) ? LABEL_TRANSMIT|LABEL_GLOSSY : LABEL_REFLECT|LABEL_GLOSSY;
+}
+
+/* BECKMANN */
+
+typedef struct BsdfMicrofacetBeckmannClosure {
+ //float3 m_N;
+ float m_ab;
+ float m_eta;
+} BsdfMicrofacetBeckmannClosure;
+
+__device void bsdf_microfacet_beckmann_setup(ShaderData *sd, ShaderClosure *sc, float ab, float eta, bool refractive)
+{
+ float m_ab = clamp(ab, 1e-5f, 1.0f);
+ float m_eta = eta;
+
+ sc->data0 = m_ab;
+ sc->data1 = m_eta;
+
+ if(refractive)
+ sc->type = CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID;
+ else
+ sc->type = CLOSURE_BSDF_MICROFACET_BECKMANN_ID;
+
+ sd->flag |= SD_BSDF|SD_BSDF_HAS_EVAL|SD_BSDF_GLOSSY;
+}
+
+__device void bsdf_microfacet_beckmann_blur(ShaderClosure *sc, float roughness)
+{
+ float m_ab = sc->data0;
+ m_ab = fmaxf(roughness, m_ab);
+ sc->data0 = m_ab;
+}
+
+__device float3 bsdf_microfacet_beckmann_eval_reflect(const ShaderData *sd, const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf)
+{
+ float m_ab = sc->data0;
+ //float m_eta = sc->data1;
+ int m_refractive = sc->type == CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID;
+ float3 m_N = sd->N;
+
+ if(m_refractive) return make_float3 (0, 0, 0);
+ float cosNO = dot(m_N, I);
+ float cosNI = dot(m_N, omega_in);
+ if(cosNO > 0 && cosNI > 0) {
+ // get half vector
+ float3 Hr = normalize(omega_in + I);
+ // eq. 20: (F*G*D)/(4*in*on)
+ // eq. 25: first we calculate D(m) with m=Hr:
+ float alpha2 = m_ab * m_ab;
+ float cosThetaM = dot(m_N, Hr);
+ float cosThetaM2 = cosThetaM * cosThetaM;
+ float tanThetaM2 = (1 - cosThetaM2) / cosThetaM2;
+ float cosThetaM4 = cosThetaM2 * cosThetaM2;
+ float D = expf(-tanThetaM2 / alpha2) / (M_PI_F * alpha2 * cosThetaM4);
+ // eq. 26, 27: now calculate G1(i,m) and G1(o,m)
+ float ao = 1 / (m_ab * sqrtf((1 - cosNO * cosNO) / (cosNO * cosNO)));
+ float ai = 1 / (m_ab * sqrtf((1 - cosNI * cosNI) / (cosNI * cosNI)));
+ float G1o = ao < 1.6f ? (3.535f * ao + 2.181f * ao * ao) / (1 + 2.276f * ao + 2.577f * ao * ao) : 1.0f;
+ float G1i = ai < 1.6f ? (3.535f * ai + 2.181f * ai * ai) / (1 + 2.276f * ai + 2.577f * ai * ai) : 1.0f;
+ float G = G1o * G1i;
+ float out = (G * D) * 0.25f / cosNO;
+ // eq. 24
+ float pm = D * cosThetaM;
+ // convert into pdf of the sampled direction
+ // eq. 38 - but see also:
+ // eq. 17 in http://www.graphics.cornell.edu/~bjw/wardnotes.pdf
+ *pdf = pm * 0.25f / dot(Hr, I);
+ return make_float3 (out, out, out);
+ }
+ return make_float3 (0, 0, 0);
+}
+
+__device float3 bsdf_microfacet_beckmann_eval_transmit(const ShaderData *sd, const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf)
+{
+ float m_ab = sc->data0;
+ float m_eta = sc->data1;
+ int m_refractive = sc->type == CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID;
+ float3 m_N = sd->N;
+
+ if(!m_refractive) return make_float3 (0, 0, 0);
+ float cosNO = dot(m_N, I);
+ float cosNI = dot(m_N, omega_in);
+ if(cosNO <= 0 || cosNI >= 0)
+ return make_float3 (0, 0, 0);
+ // compute half-vector of the refraction (eq. 16)
+ float3 ht = -(m_eta * omega_in + I);
+ float3 Ht = normalize(ht);
+ float cosHO = dot(Ht, I);
+
+ float cosHI = dot(Ht, omega_in);
+ // eq. 33: first we calculate D(m) with m=Ht:
+ float alpha2 = m_ab * m_ab;
+ float cosThetaM = dot(m_N, Ht);
+ float cosThetaM2 = cosThetaM * cosThetaM;
+ float tanThetaM2 = (1 - cosThetaM2) / cosThetaM2;
+ float cosThetaM4 = cosThetaM2 * cosThetaM2;
+ float D = expf(-tanThetaM2 / alpha2) / (M_PI_F * alpha2 * cosThetaM4);
+ // eq. 26, 27: now calculate G1(i,m) and G1(o,m)
+ float ao = 1 / (m_ab * sqrtf((1 - cosNO * cosNO) / (cosNO * cosNO)));
+ float ai = 1 / (m_ab * sqrtf((1 - cosNI * cosNI) / (cosNI * cosNI)));
+ float G1o = ao < 1.6f ? (3.535f * ao + 2.181f * ao * ao) / (1 + 2.276f * ao + 2.577f * ao * ao) : 1.0f;
+ float G1i = ai < 1.6f ? (3.535f * ai + 2.181f * ai * ai) / (1 + 2.276f * ai + 2.577f * ai * ai) : 1.0f;
+ float G = G1o * G1i;
+ // probability
+ float invHt2 = 1 / dot(ht, ht);
+ *pdf = D * fabsf(cosThetaM) * (fabsf(cosHI) * (m_eta * m_eta)) * invHt2;
+ float out = (fabsf(cosHI * cosHO) * (m_eta * m_eta) * (G * D) * invHt2) / cosNO;
+ return make_float3 (out, out, out);
+}
+
+__device float bsdf_microfacet_beckmann_albedo(const ShaderData *sd, const ShaderClosure *sc, const float3 I)
+{
+ return 1.0f;
+}
+
+__device int bsdf_microfacet_beckmann_sample(const ShaderData *sd, const ShaderClosure *sc, float randu, float randv, float3 *eval, float3 *omega_in, float3 *domega_in_dx, float3 *domega_in_dy, float *pdf)
+{
+ float m_ab = sc->data0;
+ float m_eta = sc->data1;
+ int m_refractive = sc->type == CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID;
+ float3 m_N = sd->N;
+
+ float cosNO = dot(m_N, sd->I);
+ if(cosNO > 0) {
+ float3 X, Y, Z = m_N;
+ make_orthonormals(Z, &X, &Y);
+ // generate a random microfacet normal m
+ // eq. 35,36:
+ // we take advantage of cos(atan(x)) == 1/sqrt(1+x^2)
+ //tttt and sin(atan(x)) == x/sqrt(1+x^2)
+ float alpha2 = m_ab * m_ab;
+ float tanThetaM = sqrtf(-alpha2 * logf(1 - randu));
+ float cosThetaM = 1 / sqrtf(1 + tanThetaM * tanThetaM);
+ float sinThetaM = cosThetaM * tanThetaM;
+ float phiM = 2 * M_PI_F * randv;
+ float3 m = (cosf(phiM) * sinThetaM) * X +
+ (sinf(phiM) * sinThetaM) * Y +
+ cosThetaM * Z;
+
+ if(!m_refractive) {
+ float cosMO = dot(m, sd->I);
+ if(cosMO > 0) {
+ // eq. 39 - compute actual reflected direction
+ *omega_in = 2 * cosMO * m - sd->I;
+ if(dot(sd->Ng, *omega_in) > 0) {
+ // microfacet normal is visible to this ray
+ // eq. 25
+ float cosThetaM2 = cosThetaM * cosThetaM;
+ float tanThetaM2 = tanThetaM * tanThetaM;
+ float cosThetaM4 = cosThetaM2 * cosThetaM2;
+ float D = expf(-tanThetaM2 / alpha2) / (M_PI_F * alpha2 * cosThetaM4);
+ // eq. 24
+ float pm = D * cosThetaM;
+ // convert into pdf of the sampled direction
+ // eq. 38 - but see also:
+ // eq. 17 in http://www.graphics.cornell.edu/~bjw/wardnotes.pdf
+ *pdf = pm * 0.25f / cosMO;
+ // Eval BRDF*cosNI
+ float cosNI = dot(m_N, *omega_in);
+ // eq. 26, 27: now calculate G1(i,m) and G1(o,m)
+ float ao = 1 / (m_ab * sqrtf((1 - cosNO * cosNO) / (cosNO * cosNO)));
+ float ai = 1 / (m_ab * sqrtf((1 - cosNI * cosNI) / (cosNI * cosNI)));
+ float G1o = ao < 1.6f ? (3.535f * ao + 2.181f * ao * ao) / (1 + 2.276f * ao + 2.577f * ao * ao) : 1.0f;
+ float G1i = ai < 1.6f ? (3.535f * ai + 2.181f * ai * ai) / (1 + 2.276f * ai + 2.577f * ai * ai) : 1.0f;
+ float G = G1o * G1i;
+ // eq. 20: (F*G*D)/(4*in*on)
+ float out = (G * D) * 0.25f / cosNO;
+ *eval = make_float3(out, out, out);
+#ifdef __RAY_DIFFERENTIALS__
+ *domega_in_dx = (2 * dot(m, sd->dI.dx)) * m - sd->dI.dx;
+ *domega_in_dy = (2 * dot(m, sd->dI.dy)) * m - sd->dI.dy;
+ // Since there is some blur to this reflection, make the
+ // derivatives a bit bigger. In theory this varies with the
+ // roughness but the exact relationship is complex and
+ // requires more ops than are practical.
+ *domega_in_dx *= 10.0f;
+ *domega_in_dy *= 10.0f;
+#endif
+ }
+ }
+ } else {
+ // CAUTION: the i and o variables are inverted relative to the paper
+ // eq. 39 - compute actual refractive direction
+ float3 R, T;
+#ifdef __RAY_DIFFERENTIALS__
+ float3 dRdx, dRdy, dTdx, dTdy;
+#endif
+ bool inside;
+ fresnel_dielectric(m_eta, m, sd->I, &R, &T,
+#ifdef __RAY_DIFFERENTIALS__
+ sd->dI.dx, sd->dI.dy, &dRdx, &dRdy, &dTdx, &dTdy,
+#endif
+ &inside);
+
+ if(!inside) {
+ *omega_in = T;
+#ifdef __RAY_DIFFERENTIALS__
+ *domega_in_dx = dTdx;
+ *domega_in_dy = dTdy;
+#endif
+
+ // eq. 33
+ float cosThetaM2 = cosThetaM * cosThetaM;
+ float tanThetaM2 = tanThetaM * tanThetaM;
+ float cosThetaM4 = cosThetaM2 * cosThetaM2;
+ float D = expf(-tanThetaM2 / alpha2) / (M_PI_F * alpha2 * cosThetaM4);
+ // eq. 24
+ float pm = D * cosThetaM;
+ // eval BRDF*cosNI
+ float cosNI = dot(m_N, *omega_in);
+ // eq. 26, 27: now calculate G1(i,m) and G1(o,m)
+ float ao = 1 / (m_ab * sqrtf((1 - cosNO * cosNO) / (cosNO * cosNO)));
+ float ai = 1 / (m_ab * sqrtf((1 - cosNI * cosNI) / (cosNI * cosNI)));
+ float G1o = ao < 1.6f ? (3.535f * ao + 2.181f * ao * ao) / (1 + 2.276f * ao + 2.577f * ao * ao) : 1.0f;
+ float G1i = ai < 1.6f ? (3.535f * ai + 2.181f * ai * ai) / (1 + 2.276f * ai + 2.577f * ai * ai) : 1.0f;
+ float G = G1o * G1i;
+ // eq. 21
+ float cosHI = dot(m, *omega_in);
+ float cosHO = dot(m, sd->I);
+ float Ht2 = m_eta * cosHI + cosHO;
+ Ht2 *= Ht2;
+ float out = (fabsf(cosHI * cosHO) * (m_eta * m_eta) * (G * D)) / (cosNO * Ht2);
+ // eq. 38 and eq. 17
+ *pdf = pm * (m_eta * m_eta) * fabsf(cosHI) / Ht2;
+ *eval = make_float3(out, out, out);
+#ifdef __RAY_DIFFERENTIALS__
+ // Since there is some blur to this refraction, make the
+ // derivatives a bit bigger. In theory this varies with the
+ // roughness but the exact relationship is complex and
+ // requires more ops than are practical.
+ *domega_in_dx *= 10.0f;
+ *domega_in_dy *= 10.0f;
+#endif
+ }
+ }
+ }
+ return (m_refractive) ? LABEL_TRANSMIT|LABEL_GLOSSY : LABEL_REFLECT|LABEL_GLOSSY;
+}
+
+CCL_NAMESPACE_END
+
+#endif /* __BSDF_MICROFACET_H__ */
+