Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'intern/cycles/scene/shader_nodes.cpp')
-rw-r--r--intern/cycles/scene/shader_nodes.cpp7171
1 files changed, 7171 insertions, 0 deletions
diff --git a/intern/cycles/scene/shader_nodes.cpp b/intern/cycles/scene/shader_nodes.cpp
new file mode 100644
index 00000000000..14d051350fb
--- /dev/null
+++ b/intern/cycles/scene/shader_nodes.cpp
@@ -0,0 +1,7171 @@
+/*
+ * Copyright 2011-2013 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "scene/shader_nodes.h"
+#include "scene/colorspace.h"
+#include "scene/constant_fold.h"
+#include "scene/film.h"
+#include "scene/image.h"
+#include "scene/image_sky.h"
+#include "scene/integrator.h"
+#include "scene/light.h"
+#include "scene/mesh.h"
+#include "scene/osl.h"
+#include "scene/scene.h"
+#include "scene/svm.h"
+
+#include "sky_model.h"
+
+#include "util/color.h"
+#include "util/foreach.h"
+#include "util/log.h"
+#include "util/transform.h"
+
+#include "kernel/svm/color_util.h"
+#include "kernel/svm/mapping_util.h"
+#include "kernel/svm/math_util.h"
+#include "kernel/svm/ramp_util.h"
+
+CCL_NAMESPACE_BEGIN
+
+/* Texture Mapping */
+
+#define TEXTURE_MAPPING_DEFINE(TextureNode) \
+ SOCKET_POINT(tex_mapping.translation, "Translation", zero_float3()); \
+ SOCKET_VECTOR(tex_mapping.rotation, "Rotation", zero_float3()); \
+ SOCKET_VECTOR(tex_mapping.scale, "Scale", one_float3()); \
+\
+ SOCKET_VECTOR(tex_mapping.min, "Min", make_float3(-FLT_MAX, -FLT_MAX, -FLT_MAX)); \
+ SOCKET_VECTOR(tex_mapping.max, "Max", make_float3(FLT_MAX, FLT_MAX, FLT_MAX)); \
+ SOCKET_BOOLEAN(tex_mapping.use_minmax, "Use Min Max", false); \
+\
+ static NodeEnum mapping_axis_enum; \
+ mapping_axis_enum.insert("none", TextureMapping::NONE); \
+ mapping_axis_enum.insert("x", TextureMapping::X); \
+ mapping_axis_enum.insert("y", TextureMapping::Y); \
+ mapping_axis_enum.insert("z", TextureMapping::Z); \
+ SOCKET_ENUM(tex_mapping.x_mapping, "x_mapping", mapping_axis_enum, TextureMapping::X); \
+ SOCKET_ENUM(tex_mapping.y_mapping, "y_mapping", mapping_axis_enum, TextureMapping::Y); \
+ SOCKET_ENUM(tex_mapping.z_mapping, "z_mapping", mapping_axis_enum, TextureMapping::Z); \
+\
+ static NodeEnum mapping_type_enum; \
+ mapping_type_enum.insert("point", TextureMapping::POINT); \
+ mapping_type_enum.insert("texture", TextureMapping::TEXTURE); \
+ mapping_type_enum.insert("vector", TextureMapping::VECTOR); \
+ mapping_type_enum.insert("normal", TextureMapping::NORMAL); \
+ SOCKET_ENUM(tex_mapping.type, "Type", mapping_type_enum, TextureMapping::TEXTURE); \
+\
+ static NodeEnum mapping_projection_enum; \
+ mapping_projection_enum.insert("flat", TextureMapping::FLAT); \
+ mapping_projection_enum.insert("cube", TextureMapping::CUBE); \
+ mapping_projection_enum.insert("tube", TextureMapping::TUBE); \
+ mapping_projection_enum.insert("sphere", TextureMapping::SPHERE); \
+ SOCKET_ENUM(tex_mapping.projection, "Projection", mapping_projection_enum, TextureMapping::FLAT);
+
+TextureMapping::TextureMapping()
+{
+}
+
+Transform TextureMapping::compute_transform()
+{
+ Transform mmat = transform_scale(zero_float3());
+
+ if (x_mapping != NONE)
+ mmat[0][x_mapping - 1] = 1.0f;
+ if (y_mapping != NONE)
+ mmat[1][y_mapping - 1] = 1.0f;
+ if (z_mapping != NONE)
+ mmat[2][z_mapping - 1] = 1.0f;
+
+ float3 scale_clamped = scale;
+
+ if (type == TEXTURE || type == NORMAL) {
+ /* keep matrix invertible */
+ if (fabsf(scale.x) < 1e-5f)
+ scale_clamped.x = signf(scale.x) * 1e-5f;
+ if (fabsf(scale.y) < 1e-5f)
+ scale_clamped.y = signf(scale.y) * 1e-5f;
+ if (fabsf(scale.z) < 1e-5f)
+ scale_clamped.z = signf(scale.z) * 1e-5f;
+ }
+
+ Transform smat = transform_scale(scale_clamped);
+ Transform rmat = transform_euler(rotation);
+ Transform tmat = transform_translate(translation);
+
+ Transform mat;
+
+ switch (type) {
+ case TEXTURE:
+ /* inverse transform on texture coordinate gives
+ * forward transform on texture */
+ mat = tmat * rmat * smat;
+ mat = transform_inverse(mat);
+ break;
+ case POINT:
+ /* full transform */
+ mat = tmat * rmat * smat;
+ break;
+ case VECTOR:
+ /* no translation for vectors */
+ mat = rmat * smat;
+ break;
+ case NORMAL:
+ /* no translation for normals, and inverse transpose */
+ mat = rmat * smat;
+ mat = transform_transposed_inverse(mat);
+ break;
+ }
+
+ /* projection last */
+ mat = mat * mmat;
+
+ return mat;
+}
+
+bool TextureMapping::skip()
+{
+ if (translation != zero_float3())
+ return false;
+ if (rotation != zero_float3())
+ return false;
+ if (scale != one_float3())
+ return false;
+
+ if (x_mapping != X || y_mapping != Y || z_mapping != Z)
+ return false;
+ if (use_minmax)
+ return false;
+
+ return true;
+}
+
+void TextureMapping::compile(SVMCompiler &compiler, int offset_in, int offset_out)
+{
+ compiler.add_node(NODE_TEXTURE_MAPPING, offset_in, offset_out);
+
+ Transform tfm = compute_transform();
+ compiler.add_node(tfm.x);
+ compiler.add_node(tfm.y);
+ compiler.add_node(tfm.z);
+
+ if (use_minmax) {
+ compiler.add_node(NODE_MIN_MAX, offset_out, offset_out);
+ compiler.add_node(float3_to_float4(min));
+ compiler.add_node(float3_to_float4(max));
+ }
+
+ if (type == NORMAL) {
+ compiler.add_node(NODE_VECTOR_MATH,
+ NODE_VECTOR_MATH_NORMALIZE,
+ compiler.encode_uchar4(offset_out, offset_out, offset_out),
+ compiler.encode_uchar4(SVM_STACK_INVALID, offset_out));
+ }
+}
+
+/* Convenience function for texture nodes, allocating stack space to output
+ * a modified vector and returning its offset */
+int TextureMapping::compile_begin(SVMCompiler &compiler, ShaderInput *vector_in)
+{
+ if (!skip()) {
+ int offset_in = compiler.stack_assign(vector_in);
+ int offset_out = compiler.stack_find_offset(SocketType::VECTOR);
+
+ compile(compiler, offset_in, offset_out);
+
+ return offset_out;
+ }
+
+ return compiler.stack_assign(vector_in);
+}
+
+void TextureMapping::compile_end(SVMCompiler &compiler, ShaderInput *vector_in, int vector_offset)
+{
+ if (!skip()) {
+ compiler.stack_clear_offset(vector_in->type(), vector_offset);
+ }
+}
+
+void TextureMapping::compile(OSLCompiler &compiler)
+{
+ if (!skip()) {
+ compiler.parameter("mapping", compute_transform());
+ compiler.parameter("use_mapping", 1);
+ }
+}
+
+/* Image Texture */
+
+NODE_DEFINE(ImageTextureNode)
+{
+ NodeType *type = NodeType::add("image_texture", create, NodeType::SHADER);
+
+ TEXTURE_MAPPING_DEFINE(ImageTextureNode);
+
+ SOCKET_STRING(filename, "Filename", ustring());
+ SOCKET_STRING(colorspace, "Colorspace", u_colorspace_auto);
+
+ static NodeEnum alpha_type_enum;
+ alpha_type_enum.insert("auto", IMAGE_ALPHA_AUTO);
+ alpha_type_enum.insert("unassociated", IMAGE_ALPHA_UNASSOCIATED);
+ alpha_type_enum.insert("associated", IMAGE_ALPHA_ASSOCIATED);
+ alpha_type_enum.insert("channel_packed", IMAGE_ALPHA_CHANNEL_PACKED);
+ alpha_type_enum.insert("ignore", IMAGE_ALPHA_IGNORE);
+ SOCKET_ENUM(alpha_type, "Alpha Type", alpha_type_enum, IMAGE_ALPHA_AUTO);
+
+ static NodeEnum interpolation_enum;
+ interpolation_enum.insert("closest", INTERPOLATION_CLOSEST);
+ interpolation_enum.insert("linear", INTERPOLATION_LINEAR);
+ interpolation_enum.insert("cubic", INTERPOLATION_CUBIC);
+ interpolation_enum.insert("smart", INTERPOLATION_SMART);
+ SOCKET_ENUM(interpolation, "Interpolation", interpolation_enum, INTERPOLATION_LINEAR);
+
+ static NodeEnum extension_enum;
+ extension_enum.insert("periodic", EXTENSION_REPEAT);
+ extension_enum.insert("clamp", EXTENSION_EXTEND);
+ extension_enum.insert("black", EXTENSION_CLIP);
+ SOCKET_ENUM(extension, "Extension", extension_enum, EXTENSION_REPEAT);
+
+ static NodeEnum projection_enum;
+ projection_enum.insert("flat", NODE_IMAGE_PROJ_FLAT);
+ projection_enum.insert("box", NODE_IMAGE_PROJ_BOX);
+ projection_enum.insert("sphere", NODE_IMAGE_PROJ_SPHERE);
+ projection_enum.insert("tube", NODE_IMAGE_PROJ_TUBE);
+ SOCKET_ENUM(projection, "Projection", projection_enum, NODE_IMAGE_PROJ_FLAT);
+
+ SOCKET_FLOAT(projection_blend, "Projection Blend", 0.0f);
+
+ SOCKET_INT_ARRAY(tiles, "Tiles", array<int>());
+ SOCKET_BOOLEAN(animated, "Animated", false);
+
+ SOCKET_IN_POINT(vector, "Vector", zero_float3(), SocketType::LINK_TEXTURE_UV);
+
+ SOCKET_OUT_COLOR(color, "Color");
+ SOCKET_OUT_FLOAT(alpha, "Alpha");
+
+ return type;
+}
+
+ImageTextureNode::ImageTextureNode() : ImageSlotTextureNode(get_node_type())
+{
+ colorspace = u_colorspace_raw;
+ animated = false;
+ tiles.push_back_slow(1001);
+}
+
+ShaderNode *ImageTextureNode::clone(ShaderGraph *graph) const
+{
+ ImageTextureNode *node = graph->create_node<ImageTextureNode>(*this);
+ node->handle = handle;
+ return node;
+}
+
+ImageParams ImageTextureNode::image_params() const
+{
+ ImageParams params;
+ params.animated = animated;
+ params.interpolation = interpolation;
+ params.extension = extension;
+ params.alpha_type = alpha_type;
+ params.colorspace = colorspace;
+ return params;
+}
+
+void ImageTextureNode::cull_tiles(Scene *scene, ShaderGraph *graph)
+{
+ /* Box projection computes its own UVs that always lie in the
+ * 1001 tile, so there's no point in loading any others. */
+ if (projection == NODE_IMAGE_PROJ_BOX) {
+ tiles.clear();
+ tiles.push_back_slow(1001);
+ return;
+ }
+
+ if (!scene->params.background) {
+ /* During interactive renders, all tiles are loaded.
+ * While we could support updating this when UVs change, that could lead
+ * to annoying interruptions when loading images while editing UVs. */
+ return;
+ }
+
+ /* Only check UVs for tile culling if there are multiple tiles. */
+ if (tiles.size() < 2) {
+ return;
+ }
+
+ ShaderInput *vector_in = input("Vector");
+ ustring attribute;
+ if (vector_in->link) {
+ ShaderNode *node = vector_in->link->parent;
+ if (node->type == UVMapNode::get_node_type()) {
+ UVMapNode *uvmap = (UVMapNode *)node;
+ attribute = uvmap->get_attribute();
+ }
+ else if (node->type == TextureCoordinateNode::get_node_type()) {
+ if (vector_in->link != node->output("UV")) {
+ return;
+ }
+ }
+ else {
+ return;
+ }
+ }
+
+ unordered_set<int> used_tiles;
+ /* TODO(lukas): This is quite inefficient. A fairly simple improvement would
+ * be to have a cache in each mesh that is indexed by attribute.
+ * Additionally, building a graph-to-meshes list once could help. */
+ foreach (Geometry *geom, scene->geometry) {
+ foreach (Node *node, geom->get_used_shaders()) {
+ Shader *shader = static_cast<Shader *>(node);
+ if (shader->graph == graph) {
+ geom->get_uv_tiles(attribute, used_tiles);
+ }
+ }
+ }
+
+ array<int> new_tiles;
+ foreach (int tile, tiles) {
+ if (used_tiles.count(tile)) {
+ new_tiles.push_back_slow(tile);
+ }
+ }
+ tiles.steal_data(new_tiles);
+}
+
+void ImageTextureNode::attributes(Shader *shader, AttributeRequestSet *attributes)
+{
+#ifdef WITH_PTEX
+ /* todo: avoid loading other texture coordinates when using ptex,
+ * and hide texture coordinate socket in the UI */
+ if (shader->has_surface_link() && string_endswith(filename, ".ptx")) {
+ /* ptex */
+ attributes->add(ATTR_STD_PTEX_FACE_ID);
+ attributes->add(ATTR_STD_PTEX_UV);
+ }
+#endif
+
+ ShaderNode::attributes(shader, attributes);
+}
+
+void ImageTextureNode::compile(SVMCompiler &compiler)
+{
+ ShaderInput *vector_in = input("Vector");
+ ShaderOutput *color_out = output("Color");
+ ShaderOutput *alpha_out = output("Alpha");
+
+ if (handle.empty()) {
+ cull_tiles(compiler.scene, compiler.current_graph);
+ ImageManager *image_manager = compiler.scene->image_manager;
+ handle = image_manager->add_image(filename.string(), image_params(), tiles);
+ }
+
+ /* All tiles have the same metadata. */
+ const ImageMetaData metadata = handle.metadata();
+ const bool compress_as_srgb = metadata.compress_as_srgb;
+ const ustring known_colorspace = metadata.colorspace;
+
+ int vector_offset = tex_mapping.compile_begin(compiler, vector_in);
+ uint flags = 0;
+
+ if (compress_as_srgb) {
+ flags |= NODE_IMAGE_COMPRESS_AS_SRGB;
+ }
+ if (!alpha_out->links.empty()) {
+ const bool unassociate_alpha = !(ColorSpaceManager::colorspace_is_data(colorspace) ||
+ alpha_type == IMAGE_ALPHA_CHANNEL_PACKED ||
+ alpha_type == IMAGE_ALPHA_IGNORE);
+
+ if (unassociate_alpha) {
+ flags |= NODE_IMAGE_ALPHA_UNASSOCIATE;
+ }
+ }
+
+ if (projection != NODE_IMAGE_PROJ_BOX) {
+ /* If there only is one image (a very common case), we encode it as a negative value. */
+ int num_nodes;
+ if (handle.num_tiles() == 1) {
+ num_nodes = -handle.svm_slot();
+ }
+ else {
+ num_nodes = divide_up(handle.num_tiles(), 2);
+ }
+
+ compiler.add_node(NODE_TEX_IMAGE,
+ num_nodes,
+ compiler.encode_uchar4(vector_offset,
+ compiler.stack_assign_if_linked(color_out),
+ compiler.stack_assign_if_linked(alpha_out),
+ flags),
+ projection);
+
+ if (num_nodes > 0) {
+ for (int i = 0; i < num_nodes; i++) {
+ int4 node;
+ node.x = tiles[2 * i];
+ node.y = handle.svm_slot(2 * i);
+ if (2 * i + 1 < tiles.size()) {
+ node.z = tiles[2 * i + 1];
+ node.w = handle.svm_slot(2 * i + 1);
+ }
+ else {
+ node.z = -1;
+ node.w = -1;
+ }
+ compiler.add_node(node.x, node.y, node.z, node.w);
+ }
+ }
+ }
+ else {
+ assert(handle.num_tiles() == 1);
+ compiler.add_node(NODE_TEX_IMAGE_BOX,
+ handle.svm_slot(),
+ compiler.encode_uchar4(vector_offset,
+ compiler.stack_assign_if_linked(color_out),
+ compiler.stack_assign_if_linked(alpha_out),
+ flags),
+ __float_as_int(projection_blend));
+ }
+
+ tex_mapping.compile_end(compiler, vector_in, vector_offset);
+}
+
+void ImageTextureNode::compile(OSLCompiler &compiler)
+{
+ ShaderOutput *alpha_out = output("Alpha");
+
+ tex_mapping.compile(compiler);
+
+ if (handle.empty()) {
+ ImageManager *image_manager = compiler.scene->image_manager;
+ handle = image_manager->add_image(filename.string(), image_params());
+ }
+
+ const ImageMetaData metadata = handle.metadata();
+ const bool is_float = metadata.is_float();
+ const bool compress_as_srgb = metadata.compress_as_srgb;
+ const ustring known_colorspace = metadata.colorspace;
+
+ if (handle.svm_slot() == -1) {
+ compiler.parameter_texture(
+ "filename", filename, compress_as_srgb ? u_colorspace_raw : known_colorspace);
+ }
+ else {
+ compiler.parameter_texture("filename", handle.svm_slot());
+ }
+
+ const bool unassociate_alpha = !(ColorSpaceManager::colorspace_is_data(colorspace) ||
+ alpha_type == IMAGE_ALPHA_CHANNEL_PACKED ||
+ alpha_type == IMAGE_ALPHA_IGNORE);
+ const bool is_tiled = (filename.find("<UDIM>") != string::npos);
+
+ compiler.parameter(this, "projection");
+ compiler.parameter(this, "projection_blend");
+ compiler.parameter("compress_as_srgb", compress_as_srgb);
+ compiler.parameter("ignore_alpha", alpha_type == IMAGE_ALPHA_IGNORE);
+ compiler.parameter("unassociate_alpha", !alpha_out->links.empty() && unassociate_alpha);
+ compiler.parameter("is_float", is_float);
+ compiler.parameter("is_tiled", is_tiled);
+ compiler.parameter(this, "interpolation");
+ compiler.parameter(this, "extension");
+
+ compiler.add(this, "node_image_texture");
+}
+
+/* Environment Texture */
+
+NODE_DEFINE(EnvironmentTextureNode)
+{
+ NodeType *type = NodeType::add("environment_texture", create, NodeType::SHADER);
+
+ TEXTURE_MAPPING_DEFINE(EnvironmentTextureNode);
+
+ SOCKET_STRING(filename, "Filename", ustring());
+ SOCKET_STRING(colorspace, "Colorspace", u_colorspace_auto);
+
+ static NodeEnum alpha_type_enum;
+ alpha_type_enum.insert("auto", IMAGE_ALPHA_AUTO);
+ alpha_type_enum.insert("unassociated", IMAGE_ALPHA_UNASSOCIATED);
+ alpha_type_enum.insert("associated", IMAGE_ALPHA_ASSOCIATED);
+ alpha_type_enum.insert("channel_packed", IMAGE_ALPHA_CHANNEL_PACKED);
+ alpha_type_enum.insert("ignore", IMAGE_ALPHA_IGNORE);
+ SOCKET_ENUM(alpha_type, "Alpha Type", alpha_type_enum, IMAGE_ALPHA_AUTO);
+
+ static NodeEnum interpolation_enum;
+ interpolation_enum.insert("closest", INTERPOLATION_CLOSEST);
+ interpolation_enum.insert("linear", INTERPOLATION_LINEAR);
+ interpolation_enum.insert("cubic", INTERPOLATION_CUBIC);
+ interpolation_enum.insert("smart", INTERPOLATION_SMART);
+ SOCKET_ENUM(interpolation, "Interpolation", interpolation_enum, INTERPOLATION_LINEAR);
+
+ static NodeEnum projection_enum;
+ projection_enum.insert("equirectangular", NODE_ENVIRONMENT_EQUIRECTANGULAR);
+ projection_enum.insert("mirror_ball", NODE_ENVIRONMENT_MIRROR_BALL);
+ SOCKET_ENUM(projection, "Projection", projection_enum, NODE_ENVIRONMENT_EQUIRECTANGULAR);
+
+ SOCKET_BOOLEAN(animated, "Animated", false);
+
+ SOCKET_IN_POINT(vector, "Vector", zero_float3(), SocketType::LINK_POSITION);
+
+ SOCKET_OUT_COLOR(color, "Color");
+ SOCKET_OUT_FLOAT(alpha, "Alpha");
+
+ return type;
+}
+
+EnvironmentTextureNode::EnvironmentTextureNode() : ImageSlotTextureNode(get_node_type())
+{
+ colorspace = u_colorspace_raw;
+ animated = false;
+}
+
+ShaderNode *EnvironmentTextureNode::clone(ShaderGraph *graph) const
+{
+ EnvironmentTextureNode *node = graph->create_node<EnvironmentTextureNode>(*this);
+ node->handle = handle;
+ return node;
+}
+
+ImageParams EnvironmentTextureNode::image_params() const
+{
+ ImageParams params;
+ params.animated = animated;
+ params.interpolation = interpolation;
+ params.extension = EXTENSION_REPEAT;
+ params.alpha_type = alpha_type;
+ params.colorspace = colorspace;
+ return params;
+}
+
+void EnvironmentTextureNode::attributes(Shader *shader, AttributeRequestSet *attributes)
+{
+#ifdef WITH_PTEX
+ if (shader->has_surface_link() && string_endswith(filename, ".ptx")) {
+ /* ptex */
+ attributes->add(ATTR_STD_PTEX_FACE_ID);
+ attributes->add(ATTR_STD_PTEX_UV);
+ }
+#endif
+
+ ShaderNode::attributes(shader, attributes);
+}
+
+void EnvironmentTextureNode::compile(SVMCompiler &compiler)
+{
+ ShaderInput *vector_in = input("Vector");
+ ShaderOutput *color_out = output("Color");
+ ShaderOutput *alpha_out = output("Alpha");
+
+ if (handle.empty()) {
+ ImageManager *image_manager = compiler.scene->image_manager;
+ handle = image_manager->add_image(filename.string(), image_params());
+ }
+
+ const ImageMetaData metadata = handle.metadata();
+ const bool compress_as_srgb = metadata.compress_as_srgb;
+ const ustring known_colorspace = metadata.colorspace;
+
+ int vector_offset = tex_mapping.compile_begin(compiler, vector_in);
+ uint flags = 0;
+
+ if (compress_as_srgb) {
+ flags |= NODE_IMAGE_COMPRESS_AS_SRGB;
+ }
+
+ compiler.add_node(NODE_TEX_ENVIRONMENT,
+ handle.svm_slot(),
+ compiler.encode_uchar4(vector_offset,
+ compiler.stack_assign_if_linked(color_out),
+ compiler.stack_assign_if_linked(alpha_out),
+ flags),
+ projection);
+
+ tex_mapping.compile_end(compiler, vector_in, vector_offset);
+}
+
+void EnvironmentTextureNode::compile(OSLCompiler &compiler)
+{
+ if (handle.empty()) {
+ ImageManager *image_manager = compiler.scene->image_manager;
+ handle = image_manager->add_image(filename.string(), image_params());
+ }
+
+ tex_mapping.compile(compiler);
+
+ const ImageMetaData metadata = handle.metadata();
+ const bool is_float = metadata.is_float();
+ const bool compress_as_srgb = metadata.compress_as_srgb;
+ const ustring known_colorspace = metadata.colorspace;
+
+ if (handle.svm_slot() == -1) {
+ compiler.parameter_texture(
+ "filename", filename, compress_as_srgb ? u_colorspace_raw : known_colorspace);
+ }
+ else {
+ compiler.parameter_texture("filename", handle.svm_slot());
+ }
+
+ compiler.parameter(this, "projection");
+ compiler.parameter(this, "interpolation");
+ compiler.parameter("compress_as_srgb", compress_as_srgb);
+ compiler.parameter("ignore_alpha", alpha_type == IMAGE_ALPHA_IGNORE);
+ compiler.parameter("is_float", is_float);
+ compiler.add(this, "node_environment_texture");
+}
+
+/* Sky Texture */
+
+static float2 sky_spherical_coordinates(float3 dir)
+{
+ return make_float2(acosf(dir.z), atan2f(dir.x, dir.y));
+}
+
+typedef struct SunSky {
+ /* sun direction in spherical and cartesian */
+ float theta, phi;
+
+ /* Parameter */
+ float radiance_x, radiance_y, radiance_z;
+ float config_x[9], config_y[9], config_z[9], nishita_data[10];
+} SunSky;
+
+/* Preetham model */
+static float sky_perez_function(float lam[6], float theta, float gamma)
+{
+ return (1.0f + lam[0] * expf(lam[1] / cosf(theta))) *
+ (1.0f + lam[2] * expf(lam[3] * gamma) + lam[4] * cosf(gamma) * cosf(gamma));
+}
+
+static void sky_texture_precompute_preetham(SunSky *sunsky, float3 dir, float turbidity)
+{
+ /*
+ * We re-use the SunSky struct of the new model, to avoid extra variables
+ * zenith_Y/x/y is now radiance_x/y/z
+ * perez_Y/x/y is now config_x/y/z
+ */
+
+ float2 spherical = sky_spherical_coordinates(dir);
+ float theta = spherical.x;
+ float phi = spherical.y;
+
+ sunsky->theta = theta;
+ sunsky->phi = phi;
+
+ float theta2 = theta * theta;
+ float theta3 = theta2 * theta;
+ float T = turbidity;
+ float T2 = T * T;
+
+ float chi = (4.0f / 9.0f - T / 120.0f) * (M_PI_F - 2.0f * theta);
+ sunsky->radiance_x = (4.0453f * T - 4.9710f) * tanf(chi) - 0.2155f * T + 2.4192f;
+ sunsky->radiance_x *= 0.06f;
+
+ sunsky->radiance_y = (0.00166f * theta3 - 0.00375f * theta2 + 0.00209f * theta) * T2 +
+ (-0.02903f * theta3 + 0.06377f * theta2 - 0.03202f * theta + 0.00394f) * T +
+ (0.11693f * theta3 - 0.21196f * theta2 + 0.06052f * theta + 0.25886f);
+
+ sunsky->radiance_z = (0.00275f * theta3 - 0.00610f * theta2 + 0.00317f * theta) * T2 +
+ (-0.04214f * theta3 + 0.08970f * theta2 - 0.04153f * theta + 0.00516f) * T +
+ (0.15346f * theta3 - 0.26756f * theta2 + 0.06670f * theta + 0.26688f);
+
+ sunsky->config_x[0] = (0.1787f * T - 1.4630f);
+ sunsky->config_x[1] = (-0.3554f * T + 0.4275f);
+ sunsky->config_x[2] = (-0.0227f * T + 5.3251f);
+ sunsky->config_x[3] = (0.1206f * T - 2.5771f);
+ sunsky->config_x[4] = (-0.0670f * T + 0.3703f);
+
+ sunsky->config_y[0] = (-0.0193f * T - 0.2592f);
+ sunsky->config_y[1] = (-0.0665f * T + 0.0008f);
+ sunsky->config_y[2] = (-0.0004f * T + 0.2125f);
+ sunsky->config_y[3] = (-0.0641f * T - 0.8989f);
+ sunsky->config_y[4] = (-0.0033f * T + 0.0452f);
+
+ sunsky->config_z[0] = (-0.0167f * T - 0.2608f);
+ sunsky->config_z[1] = (-0.0950f * T + 0.0092f);
+ sunsky->config_z[2] = (-0.0079f * T + 0.2102f);
+ sunsky->config_z[3] = (-0.0441f * T - 1.6537f);
+ sunsky->config_z[4] = (-0.0109f * T + 0.0529f);
+
+ /* unused for old sky model */
+ for (int i = 5; i < 9; i++) {
+ sunsky->config_x[i] = 0.0f;
+ sunsky->config_y[i] = 0.0f;
+ sunsky->config_z[i] = 0.0f;
+ }
+
+ sunsky->radiance_x /= sky_perez_function(sunsky->config_x, 0, theta);
+ sunsky->radiance_y /= sky_perez_function(sunsky->config_y, 0, theta);
+ sunsky->radiance_z /= sky_perez_function(sunsky->config_z, 0, theta);
+}
+
+/* Hosek / Wilkie */
+static void sky_texture_precompute_hosek(SunSky *sunsky,
+ float3 dir,
+ float turbidity,
+ float ground_albedo)
+{
+ /* Calculate Sun Direction and save coordinates */
+ float2 spherical = sky_spherical_coordinates(dir);
+ float theta = spherical.x;
+ float phi = spherical.y;
+
+ /* Clamp Turbidity */
+ turbidity = clamp(turbidity, 0.0f, 10.0f);
+
+ /* Clamp to Horizon */
+ theta = clamp(theta, 0.0f, M_PI_2_F);
+
+ sunsky->theta = theta;
+ sunsky->phi = phi;
+
+ float solarElevation = M_PI_2_F - theta;
+
+ /* Initialize Sky Model */
+ SKY_ArHosekSkyModelState *sky_state;
+ sky_state = SKY_arhosek_xyz_skymodelstate_alloc_init(
+ (double)turbidity, (double)ground_albedo, (double)solarElevation);
+
+ /* Copy values from sky_state to SunSky */
+ for (int i = 0; i < 9; ++i) {
+ sunsky->config_x[i] = (float)sky_state->configs[0][i];
+ sunsky->config_y[i] = (float)sky_state->configs[1][i];
+ sunsky->config_z[i] = (float)sky_state->configs[2][i];
+ }
+ sunsky->radiance_x = (float)sky_state->radiances[0];
+ sunsky->radiance_y = (float)sky_state->radiances[1];
+ sunsky->radiance_z = (float)sky_state->radiances[2];
+
+ /* Free sky_state */
+ SKY_arhosekskymodelstate_free(sky_state);
+}
+
+/* Nishita improved */
+static void sky_texture_precompute_nishita(SunSky *sunsky,
+ bool sun_disc,
+ float sun_size,
+ float sun_intensity,
+ float sun_elevation,
+ float sun_rotation,
+ float altitude,
+ float air_density,
+ float dust_density)
+{
+ /* sample 2 sun pixels */
+ float pixel_bottom[3];
+ float pixel_top[3];
+ SKY_nishita_skymodel_precompute_sun(
+ sun_elevation, sun_size, altitude, air_density, dust_density, pixel_bottom, pixel_top);
+ /* limit sun rotation between 0 and 360 degrees */
+ sun_rotation = fmodf(sun_rotation, M_2PI_F);
+ if (sun_rotation < 0.0f) {
+ sun_rotation += M_2PI_F;
+ }
+ sun_rotation = M_2PI_F - sun_rotation;
+ /* send data to svm_sky */
+ sunsky->nishita_data[0] = pixel_bottom[0];
+ sunsky->nishita_data[1] = pixel_bottom[1];
+ sunsky->nishita_data[2] = pixel_bottom[2];
+ sunsky->nishita_data[3] = pixel_top[0];
+ sunsky->nishita_data[4] = pixel_top[1];
+ sunsky->nishita_data[5] = pixel_top[2];
+ sunsky->nishita_data[6] = sun_elevation;
+ sunsky->nishita_data[7] = sun_rotation;
+ sunsky->nishita_data[8] = sun_disc ? sun_size : -1.0f;
+ sunsky->nishita_data[9] = sun_intensity;
+}
+
+NODE_DEFINE(SkyTextureNode)
+{
+ NodeType *type = NodeType::add("sky_texture", create, NodeType::SHADER);
+
+ TEXTURE_MAPPING_DEFINE(SkyTextureNode);
+
+ static NodeEnum type_enum;
+ type_enum.insert("preetham", NODE_SKY_PREETHAM);
+ type_enum.insert("hosek_wilkie", NODE_SKY_HOSEK);
+ type_enum.insert("nishita_improved", NODE_SKY_NISHITA);
+ SOCKET_ENUM(sky_type, "Type", type_enum, NODE_SKY_NISHITA);
+
+ SOCKET_VECTOR(sun_direction, "Sun Direction", make_float3(0.0f, 0.0f, 1.0f));
+ SOCKET_FLOAT(turbidity, "Turbidity", 2.2f);
+ SOCKET_FLOAT(ground_albedo, "Ground Albedo", 0.3f);
+ SOCKET_BOOLEAN(sun_disc, "Sun Disc", true);
+ SOCKET_FLOAT(sun_size, "Sun Size", 0.009512f);
+ SOCKET_FLOAT(sun_intensity, "Sun Intensity", 1.0f);
+ SOCKET_FLOAT(sun_elevation, "Sun Elevation", 15.0f * M_PI_F / 180.0f);
+ SOCKET_FLOAT(sun_rotation, "Sun Rotation", 0.0f);
+ SOCKET_FLOAT(altitude, "Altitude", 1.0f);
+ SOCKET_FLOAT(air_density, "Air", 1.0f);
+ SOCKET_FLOAT(dust_density, "Dust", 1.0f);
+ SOCKET_FLOAT(ozone_density, "Ozone", 1.0f);
+
+ SOCKET_IN_POINT(vector, "Vector", zero_float3(), SocketType::LINK_TEXTURE_GENERATED);
+
+ SOCKET_OUT_COLOR(color, "Color");
+
+ return type;
+}
+
+SkyTextureNode::SkyTextureNode() : TextureNode(get_node_type())
+{
+}
+
+void SkyTextureNode::compile(SVMCompiler &compiler)
+{
+ ShaderInput *vector_in = input("Vector");
+ ShaderOutput *color_out = output("Color");
+
+ SunSky sunsky;
+ if (sky_type == NODE_SKY_PREETHAM)
+ sky_texture_precompute_preetham(&sunsky, sun_direction, turbidity);
+ else if (sky_type == NODE_SKY_HOSEK)
+ sky_texture_precompute_hosek(&sunsky, sun_direction, turbidity, ground_albedo);
+ else if (sky_type == NODE_SKY_NISHITA) {
+ /* Clamp altitude to reasonable values.
+ * Below 1m causes numerical issues and above 60km is space. */
+ float clamped_altitude = clamp(altitude, 1.0f, 59999.0f);
+
+ sky_texture_precompute_nishita(&sunsky,
+ sun_disc,
+ get_sun_size(),
+ sun_intensity,
+ sun_elevation,
+ sun_rotation,
+ clamped_altitude,
+ air_density,
+ dust_density);
+ /* precomputed texture image parameters */
+ ImageManager *image_manager = compiler.scene->image_manager;
+ ImageParams impar;
+ impar.interpolation = INTERPOLATION_LINEAR;
+ impar.extension = EXTENSION_EXTEND;
+
+ /* precompute sky texture */
+ if (handle.empty()) {
+ SkyLoader *loader = new SkyLoader(
+ sun_elevation, clamped_altitude, air_density, dust_density, ozone_density);
+ handle = image_manager->add_image(loader, impar);
+ }
+ }
+ else
+ assert(false);
+
+ int vector_offset = tex_mapping.compile_begin(compiler, vector_in);
+
+ compiler.stack_assign(color_out);
+ compiler.add_node(NODE_TEX_SKY, vector_offset, compiler.stack_assign(color_out), sky_type);
+ /* nishita doesn't need this data */
+ if (sky_type != NODE_SKY_NISHITA) {
+ compiler.add_node(__float_as_uint(sunsky.phi),
+ __float_as_uint(sunsky.theta),
+ __float_as_uint(sunsky.radiance_x),
+ __float_as_uint(sunsky.radiance_y));
+ compiler.add_node(__float_as_uint(sunsky.radiance_z),
+ __float_as_uint(sunsky.config_x[0]),
+ __float_as_uint(sunsky.config_x[1]),
+ __float_as_uint(sunsky.config_x[2]));
+ compiler.add_node(__float_as_uint(sunsky.config_x[3]),
+ __float_as_uint(sunsky.config_x[4]),
+ __float_as_uint(sunsky.config_x[5]),
+ __float_as_uint(sunsky.config_x[6]));
+ compiler.add_node(__float_as_uint(sunsky.config_x[7]),
+ __float_as_uint(sunsky.config_x[8]),
+ __float_as_uint(sunsky.config_y[0]),
+ __float_as_uint(sunsky.config_y[1]));
+ compiler.add_node(__float_as_uint(sunsky.config_y[2]),
+ __float_as_uint(sunsky.config_y[3]),
+ __float_as_uint(sunsky.config_y[4]),
+ __float_as_uint(sunsky.config_y[5]));
+ compiler.add_node(__float_as_uint(sunsky.config_y[6]),
+ __float_as_uint(sunsky.config_y[7]),
+ __float_as_uint(sunsky.config_y[8]),
+ __float_as_uint(sunsky.config_z[0]));
+ compiler.add_node(__float_as_uint(sunsky.config_z[1]),
+ __float_as_uint(sunsky.config_z[2]),
+ __float_as_uint(sunsky.config_z[3]),
+ __float_as_uint(sunsky.config_z[4]));
+ compiler.add_node(__float_as_uint(sunsky.config_z[5]),
+ __float_as_uint(sunsky.config_z[6]),
+ __float_as_uint(sunsky.config_z[7]),
+ __float_as_uint(sunsky.config_z[8]));
+ }
+ else {
+ compiler.add_node(__float_as_uint(sunsky.nishita_data[0]),
+ __float_as_uint(sunsky.nishita_data[1]),
+ __float_as_uint(sunsky.nishita_data[2]),
+ __float_as_uint(sunsky.nishita_data[3]));
+ compiler.add_node(__float_as_uint(sunsky.nishita_data[4]),
+ __float_as_uint(sunsky.nishita_data[5]),
+ __float_as_uint(sunsky.nishita_data[6]),
+ __float_as_uint(sunsky.nishita_data[7]));
+ compiler.add_node(__float_as_uint(sunsky.nishita_data[8]),
+ __float_as_uint(sunsky.nishita_data[9]),
+ handle.svm_slot(),
+ 0);
+ }
+
+ tex_mapping.compile_end(compiler, vector_in, vector_offset);
+}
+
+void SkyTextureNode::compile(OSLCompiler &compiler)
+{
+ tex_mapping.compile(compiler);
+
+ SunSky sunsky;
+ if (sky_type == NODE_SKY_PREETHAM)
+ sky_texture_precompute_preetham(&sunsky, sun_direction, turbidity);
+ else if (sky_type == NODE_SKY_HOSEK)
+ sky_texture_precompute_hosek(&sunsky, sun_direction, turbidity, ground_albedo);
+ else if (sky_type == NODE_SKY_NISHITA) {
+ /* Clamp altitude to reasonable values.
+ * Below 1m causes numerical issues and above 60km is space. */
+ float clamped_altitude = clamp(altitude, 1.0f, 59999.0f);
+
+ sky_texture_precompute_nishita(&sunsky,
+ sun_disc,
+ get_sun_size(),
+ sun_intensity,
+ sun_elevation,
+ sun_rotation,
+ clamped_altitude,
+ air_density,
+ dust_density);
+ /* precomputed texture image parameters */
+ ImageManager *image_manager = compiler.scene->image_manager;
+ ImageParams impar;
+ impar.interpolation = INTERPOLATION_LINEAR;
+ impar.extension = EXTENSION_EXTEND;
+
+ /* precompute sky texture */
+ if (handle.empty()) {
+ SkyLoader *loader = new SkyLoader(
+ sun_elevation, clamped_altitude, air_density, dust_density, ozone_density);
+ handle = image_manager->add_image(loader, impar);
+ }
+ }
+ else
+ assert(false);
+
+ compiler.parameter(this, "sky_type");
+ compiler.parameter("theta", sunsky.theta);
+ compiler.parameter("phi", sunsky.phi);
+ compiler.parameter_color("radiance",
+ make_float3(sunsky.radiance_x, sunsky.radiance_y, sunsky.radiance_z));
+ compiler.parameter_array("config_x", sunsky.config_x, 9);
+ compiler.parameter_array("config_y", sunsky.config_y, 9);
+ compiler.parameter_array("config_z", sunsky.config_z, 9);
+ compiler.parameter_array("nishita_data", sunsky.nishita_data, 10);
+ /* nishita texture */
+ if (sky_type == NODE_SKY_NISHITA) {
+ compiler.parameter_texture("filename", handle.svm_slot());
+ }
+ compiler.add(this, "node_sky_texture");
+}
+
+/* Gradient Texture */
+
+NODE_DEFINE(GradientTextureNode)
+{
+ NodeType *type = NodeType::add("gradient_texture", create, NodeType::SHADER);
+
+ TEXTURE_MAPPING_DEFINE(GradientTextureNode);
+
+ static NodeEnum type_enum;
+ type_enum.insert("linear", NODE_BLEND_LINEAR);
+ type_enum.insert("quadratic", NODE_BLEND_QUADRATIC);
+ type_enum.insert("easing", NODE_BLEND_EASING);
+ type_enum.insert("diagonal", NODE_BLEND_DIAGONAL);
+ type_enum.insert("radial", NODE_BLEND_RADIAL);
+ type_enum.insert("quadratic_sphere", NODE_BLEND_QUADRATIC_SPHERE);
+ type_enum.insert("spherical", NODE_BLEND_SPHERICAL);
+ SOCKET_ENUM(gradient_type, "Type", type_enum, NODE_BLEND_LINEAR);
+
+ SOCKET_IN_POINT(vector, "Vector", zero_float3(), SocketType::LINK_TEXTURE_GENERATED);
+
+ SOCKET_OUT_COLOR(color, "Color");
+ SOCKET_OUT_FLOAT(fac, "Fac");
+
+ return type;
+}
+
+GradientTextureNode::GradientTextureNode() : TextureNode(get_node_type())
+{
+}
+
+void GradientTextureNode::compile(SVMCompiler &compiler)
+{
+ ShaderInput *vector_in = input("Vector");
+ ShaderOutput *color_out = output("Color");
+ ShaderOutput *fac_out = output("Fac");
+
+ int vector_offset = tex_mapping.compile_begin(compiler, vector_in);
+
+ compiler.add_node(NODE_TEX_GRADIENT,
+ compiler.encode_uchar4(gradient_type,
+ vector_offset,
+ compiler.stack_assign_if_linked(fac_out),
+ compiler.stack_assign_if_linked(color_out)));
+
+ tex_mapping.compile_end(compiler, vector_in, vector_offset);
+}
+
+void GradientTextureNode::compile(OSLCompiler &compiler)
+{
+ tex_mapping.compile(compiler);
+
+ compiler.parameter(this, "gradient_type");
+ compiler.add(this, "node_gradient_texture");
+}
+
+/* Noise Texture */
+
+NODE_DEFINE(NoiseTextureNode)
+{
+ NodeType *type = NodeType::add("noise_texture", create, NodeType::SHADER);
+
+ TEXTURE_MAPPING_DEFINE(NoiseTextureNode);
+
+ static NodeEnum dimensions_enum;
+ dimensions_enum.insert("1D", 1);
+ dimensions_enum.insert("2D", 2);
+ dimensions_enum.insert("3D", 3);
+ dimensions_enum.insert("4D", 4);
+ SOCKET_ENUM(dimensions, "Dimensions", dimensions_enum, 3);
+
+ SOCKET_IN_POINT(vector, "Vector", zero_float3(), SocketType::LINK_TEXTURE_GENERATED);
+ SOCKET_IN_FLOAT(w, "W", 0.0f);
+ SOCKET_IN_FLOAT(scale, "Scale", 1.0f);
+ SOCKET_IN_FLOAT(detail, "Detail", 2.0f);
+ SOCKET_IN_FLOAT(roughness, "Roughness", 0.5f);
+ SOCKET_IN_FLOAT(distortion, "Distortion", 0.0f);
+
+ SOCKET_OUT_FLOAT(fac, "Fac");
+ SOCKET_OUT_COLOR(color, "Color");
+
+ return type;
+}
+
+NoiseTextureNode::NoiseTextureNode() : TextureNode(get_node_type())
+{
+}
+
+void NoiseTextureNode::compile(SVMCompiler &compiler)
+{
+ ShaderInput *vector_in = input("Vector");
+ ShaderInput *w_in = input("W");
+ ShaderInput *scale_in = input("Scale");
+ ShaderInput *detail_in = input("Detail");
+ ShaderInput *roughness_in = input("Roughness");
+ ShaderInput *distortion_in = input("Distortion");
+ ShaderOutput *fac_out = output("Fac");
+ ShaderOutput *color_out = output("Color");
+
+ int vector_stack_offset = tex_mapping.compile_begin(compiler, vector_in);
+ int w_stack_offset = compiler.stack_assign_if_linked(w_in);
+ int scale_stack_offset = compiler.stack_assign_if_linked(scale_in);
+ int detail_stack_offset = compiler.stack_assign_if_linked(detail_in);
+ int roughness_stack_offset = compiler.stack_assign_if_linked(roughness_in);
+ int distortion_stack_offset = compiler.stack_assign_if_linked(distortion_in);
+ int fac_stack_offset = compiler.stack_assign_if_linked(fac_out);
+ int color_stack_offset = compiler.stack_assign_if_linked(color_out);
+
+ compiler.add_node(
+ NODE_TEX_NOISE,
+ dimensions,
+ compiler.encode_uchar4(
+ vector_stack_offset, w_stack_offset, scale_stack_offset, detail_stack_offset),
+ compiler.encode_uchar4(
+ roughness_stack_offset, distortion_stack_offset, fac_stack_offset, color_stack_offset));
+ compiler.add_node(
+ __float_as_int(w), __float_as_int(scale), __float_as_int(detail), __float_as_int(roughness));
+
+ compiler.add_node(
+ __float_as_int(distortion), SVM_STACK_INVALID, SVM_STACK_INVALID, SVM_STACK_INVALID);
+
+ tex_mapping.compile_end(compiler, vector_in, vector_stack_offset);
+}
+
+void NoiseTextureNode::compile(OSLCompiler &compiler)
+{
+ tex_mapping.compile(compiler);
+ compiler.parameter(this, "dimensions");
+ compiler.add(this, "node_noise_texture");
+}
+
+/* Voronoi Texture */
+
+NODE_DEFINE(VoronoiTextureNode)
+{
+ NodeType *type = NodeType::add("voronoi_texture", create, NodeType::SHADER);
+
+ TEXTURE_MAPPING_DEFINE(VoronoiTextureNode);
+
+ static NodeEnum dimensions_enum;
+ dimensions_enum.insert("1D", 1);
+ dimensions_enum.insert("2D", 2);
+ dimensions_enum.insert("3D", 3);
+ dimensions_enum.insert("4D", 4);
+ SOCKET_ENUM(dimensions, "Dimensions", dimensions_enum, 3);
+
+ static NodeEnum metric_enum;
+ metric_enum.insert("euclidean", NODE_VORONOI_EUCLIDEAN);
+ metric_enum.insert("manhattan", NODE_VORONOI_MANHATTAN);
+ metric_enum.insert("chebychev", NODE_VORONOI_CHEBYCHEV);
+ metric_enum.insert("minkowski", NODE_VORONOI_MINKOWSKI);
+ SOCKET_ENUM(metric, "Distance Metric", metric_enum, NODE_VORONOI_EUCLIDEAN);
+
+ static NodeEnum feature_enum;
+ feature_enum.insert("f1", NODE_VORONOI_F1);
+ feature_enum.insert("f2", NODE_VORONOI_F2);
+ feature_enum.insert("smooth_f1", NODE_VORONOI_SMOOTH_F1);
+ feature_enum.insert("distance_to_edge", NODE_VORONOI_DISTANCE_TO_EDGE);
+ feature_enum.insert("n_sphere_radius", NODE_VORONOI_N_SPHERE_RADIUS);
+ SOCKET_ENUM(feature, "Feature", feature_enum, NODE_VORONOI_F1);
+
+ SOCKET_IN_POINT(vector, "Vector", zero_float3(), SocketType::LINK_TEXTURE_GENERATED);
+ SOCKET_IN_FLOAT(w, "W", 0.0f);
+ SOCKET_IN_FLOAT(scale, "Scale", 5.0f);
+ SOCKET_IN_FLOAT(smoothness, "Smoothness", 5.0f);
+ SOCKET_IN_FLOAT(exponent, "Exponent", 0.5f);
+ SOCKET_IN_FLOAT(randomness, "Randomness", 1.0f);
+
+ SOCKET_OUT_FLOAT(distance, "Distance");
+ SOCKET_OUT_COLOR(color, "Color");
+ SOCKET_OUT_POINT(position, "Position");
+ SOCKET_OUT_FLOAT(w, "W");
+ SOCKET_OUT_FLOAT(radius, "Radius");
+
+ return type;
+}
+
+VoronoiTextureNode::VoronoiTextureNode() : TextureNode(get_node_type())
+{
+}
+
+void VoronoiTextureNode::compile(SVMCompiler &compiler)
+{
+ ShaderInput *vector_in = input("Vector");
+ ShaderInput *w_in = input("W");
+ ShaderInput *scale_in = input("Scale");
+ ShaderInput *smoothness_in = input("Smoothness");
+ ShaderInput *exponent_in = input("Exponent");
+ ShaderInput *randomness_in = input("Randomness");
+
+ ShaderOutput *distance_out = output("Distance");
+ ShaderOutput *color_out = output("Color");
+ ShaderOutput *position_out = output("Position");
+ ShaderOutput *w_out = output("W");
+ ShaderOutput *radius_out = output("Radius");
+
+ int vector_stack_offset = tex_mapping.compile_begin(compiler, vector_in);
+ int w_in_stack_offset = compiler.stack_assign_if_linked(w_in);
+ int scale_stack_offset = compiler.stack_assign_if_linked(scale_in);
+ int smoothness_stack_offset = compiler.stack_assign_if_linked(smoothness_in);
+ int exponent_stack_offset = compiler.stack_assign_if_linked(exponent_in);
+ int randomness_stack_offset = compiler.stack_assign_if_linked(randomness_in);
+ int distance_stack_offset = compiler.stack_assign_if_linked(distance_out);
+ int color_stack_offset = compiler.stack_assign_if_linked(color_out);
+ int position_stack_offset = compiler.stack_assign_if_linked(position_out);
+ int w_out_stack_offset = compiler.stack_assign_if_linked(w_out);
+ int radius_stack_offset = compiler.stack_assign_if_linked(radius_out);
+
+ compiler.add_node(NODE_TEX_VORONOI, dimensions, feature, metric);
+ compiler.add_node(
+ compiler.encode_uchar4(
+ vector_stack_offset, w_in_stack_offset, scale_stack_offset, smoothness_stack_offset),
+ compiler.encode_uchar4(exponent_stack_offset,
+ randomness_stack_offset,
+ distance_stack_offset,
+ color_stack_offset),
+ compiler.encode_uchar4(position_stack_offset, w_out_stack_offset, radius_stack_offset),
+ __float_as_int(w));
+
+ compiler.add_node(__float_as_int(scale),
+ __float_as_int(smoothness),
+ __float_as_int(exponent),
+ __float_as_int(randomness));
+
+ tex_mapping.compile_end(compiler, vector_in, vector_stack_offset);
+}
+
+void VoronoiTextureNode::compile(OSLCompiler &compiler)
+{
+ tex_mapping.compile(compiler);
+
+ compiler.parameter(this, "dimensions");
+ compiler.parameter(this, "feature");
+ compiler.parameter(this, "metric");
+ compiler.add(this, "node_voronoi_texture");
+}
+
+/* IES Light */
+
+NODE_DEFINE(IESLightNode)
+{
+ NodeType *type = NodeType::add("ies_light", create, NodeType::SHADER);
+
+ TEXTURE_MAPPING_DEFINE(IESLightNode);
+
+ SOCKET_STRING(ies, "IES", ustring());
+ SOCKET_STRING(filename, "File Name", ustring());
+
+ SOCKET_IN_FLOAT(strength, "Strength", 1.0f);
+ SOCKET_IN_POINT(vector, "Vector", zero_float3(), SocketType::LINK_TEXTURE_NORMAL);
+
+ SOCKET_OUT_FLOAT(fac, "Fac");
+
+ return type;
+}
+
+IESLightNode::IESLightNode() : TextureNode(get_node_type())
+{
+ light_manager = NULL;
+ slot = -1;
+}
+
+ShaderNode *IESLightNode::clone(ShaderGraph *graph) const
+{
+ IESLightNode *node = graph->create_node<IESLightNode>(*this);
+
+ node->light_manager = NULL;
+ node->slot = -1;
+
+ return node;
+}
+
+IESLightNode::~IESLightNode()
+{
+ if (light_manager) {
+ light_manager->remove_ies(slot);
+ }
+}
+
+void IESLightNode::get_slot()
+{
+ assert(light_manager);
+
+ if (slot == -1) {
+ if (ies.empty()) {
+ slot = light_manager->add_ies_from_file(filename.string());
+ }
+ else {
+ slot = light_manager->add_ies(ies.string());
+ }
+ }
+}
+
+void IESLightNode::compile(SVMCompiler &compiler)
+{
+ light_manager = compiler.scene->light_manager;
+ get_slot();
+
+ ShaderInput *strength_in = input("Strength");
+ ShaderInput *vector_in = input("Vector");
+ ShaderOutput *fac_out = output("Fac");
+
+ int vector_offset = tex_mapping.compile_begin(compiler, vector_in);
+
+ compiler.add_node(NODE_IES,
+ compiler.encode_uchar4(compiler.stack_assign_if_linked(strength_in),
+ vector_offset,
+ compiler.stack_assign(fac_out),
+ 0),
+ slot,
+ __float_as_int(strength));
+
+ tex_mapping.compile_end(compiler, vector_in, vector_offset);
+}
+
+void IESLightNode::compile(OSLCompiler &compiler)
+{
+ light_manager = compiler.scene->light_manager;
+ get_slot();
+
+ tex_mapping.compile(compiler);
+
+ compiler.parameter_texture_ies("filename", slot);
+ compiler.add(this, "node_ies_light");
+}
+
+/* White Noise Texture */
+
+NODE_DEFINE(WhiteNoiseTextureNode)
+{
+ NodeType *type = NodeType::add("white_noise_texture", create, NodeType::SHADER);
+
+ static NodeEnum dimensions_enum;
+ dimensions_enum.insert("1D", 1);
+ dimensions_enum.insert("2D", 2);
+ dimensions_enum.insert("3D", 3);
+ dimensions_enum.insert("4D", 4);
+ SOCKET_ENUM(dimensions, "Dimensions", dimensions_enum, 3);
+
+ SOCKET_IN_POINT(vector, "Vector", zero_float3());
+ SOCKET_IN_FLOAT(w, "W", 0.0f);
+
+ SOCKET_OUT_FLOAT(value, "Value");
+ SOCKET_OUT_COLOR(color, "Color");
+
+ return type;
+}
+
+WhiteNoiseTextureNode::WhiteNoiseTextureNode() : ShaderNode(get_node_type())
+{
+}
+
+void WhiteNoiseTextureNode::compile(SVMCompiler &compiler)
+{
+ ShaderInput *vector_in = input("Vector");
+ ShaderInput *w_in = input("W");
+ ShaderOutput *value_out = output("Value");
+ ShaderOutput *color_out = output("Color");
+
+ int vector_stack_offset = compiler.stack_assign(vector_in);
+ int w_stack_offset = compiler.stack_assign(w_in);
+ int value_stack_offset = compiler.stack_assign(value_out);
+ int color_stack_offset = compiler.stack_assign(color_out);
+
+ compiler.add_node(NODE_TEX_WHITE_NOISE,
+ dimensions,
+ compiler.encode_uchar4(vector_stack_offset, w_stack_offset),
+ compiler.encode_uchar4(value_stack_offset, color_stack_offset));
+}
+
+void WhiteNoiseTextureNode::compile(OSLCompiler &compiler)
+{
+ compiler.parameter(this, "dimensions");
+ compiler.add(this, "node_white_noise_texture");
+}
+
+/* Musgrave Texture */
+
+NODE_DEFINE(MusgraveTextureNode)
+{
+ NodeType *type = NodeType::add("musgrave_texture", create, NodeType::SHADER);
+
+ TEXTURE_MAPPING_DEFINE(MusgraveTextureNode);
+
+ static NodeEnum dimensions_enum;
+ dimensions_enum.insert("1D", 1);
+ dimensions_enum.insert("2D", 2);
+ dimensions_enum.insert("3D", 3);
+ dimensions_enum.insert("4D", 4);
+ SOCKET_ENUM(dimensions, "Dimensions", dimensions_enum, 3);
+
+ static NodeEnum type_enum;
+ type_enum.insert("multifractal", NODE_MUSGRAVE_MULTIFRACTAL);
+ type_enum.insert("fBM", NODE_MUSGRAVE_FBM);
+ type_enum.insert("hybrid_multifractal", NODE_MUSGRAVE_HYBRID_MULTIFRACTAL);
+ type_enum.insert("ridged_multifractal", NODE_MUSGRAVE_RIDGED_MULTIFRACTAL);
+ type_enum.insert("hetero_terrain", NODE_MUSGRAVE_HETERO_TERRAIN);
+ SOCKET_ENUM(musgrave_type, "Type", type_enum, NODE_MUSGRAVE_FBM);
+
+ SOCKET_IN_POINT(vector, "Vector", zero_float3(), SocketType::LINK_TEXTURE_GENERATED);
+ SOCKET_IN_FLOAT(w, "W", 0.0f);
+ SOCKET_IN_FLOAT(scale, "Scale", 1.0f);
+ SOCKET_IN_FLOAT(detail, "Detail", 2.0f);
+ SOCKET_IN_FLOAT(dimension, "Dimension", 2.0f);
+ SOCKET_IN_FLOAT(lacunarity, "Lacunarity", 2.0f);
+ SOCKET_IN_FLOAT(offset, "Offset", 0.0f);
+ SOCKET_IN_FLOAT(gain, "Gain", 1.0f);
+
+ SOCKET_OUT_FLOAT(fac, "Fac");
+
+ return type;
+}
+
+MusgraveTextureNode::MusgraveTextureNode() : TextureNode(get_node_type())
+{
+}
+
+void MusgraveTextureNode::compile(SVMCompiler &compiler)
+{
+ ShaderInput *vector_in = input("Vector");
+ ShaderInput *w_in = input("W");
+ ShaderInput *scale_in = input("Scale");
+ ShaderInput *detail_in = input("Detail");
+ ShaderInput *dimension_in = input("Dimension");
+ ShaderInput *lacunarity_in = input("Lacunarity");
+ ShaderInput *offset_in = input("Offset");
+ ShaderInput *gain_in = input("Gain");
+ ShaderOutput *fac_out = output("Fac");
+
+ int vector_stack_offset = tex_mapping.compile_begin(compiler, vector_in);
+ int w_stack_offset = compiler.stack_assign_if_linked(w_in);
+ int scale_stack_offset = compiler.stack_assign_if_linked(scale_in);
+ int detail_stack_offset = compiler.stack_assign_if_linked(detail_in);
+ int dimension_stack_offset = compiler.stack_assign_if_linked(dimension_in);
+ int lacunarity_stack_offset = compiler.stack_assign_if_linked(lacunarity_in);
+ int offset_stack_offset = compiler.stack_assign_if_linked(offset_in);
+ int gain_stack_offset = compiler.stack_assign_if_linked(gain_in);
+ int fac_stack_offset = compiler.stack_assign(fac_out);
+
+ compiler.add_node(
+ NODE_TEX_MUSGRAVE,
+ compiler.encode_uchar4(musgrave_type, dimensions, vector_stack_offset, w_stack_offset),
+ compiler.encode_uchar4(scale_stack_offset,
+ detail_stack_offset,
+ dimension_stack_offset,
+ lacunarity_stack_offset),
+ compiler.encode_uchar4(offset_stack_offset, gain_stack_offset, fac_stack_offset));
+ compiler.add_node(
+ __float_as_int(w), __float_as_int(scale), __float_as_int(detail), __float_as_int(dimension));
+ compiler.add_node(__float_as_int(lacunarity), __float_as_int(offset), __float_as_int(gain));
+
+ tex_mapping.compile_end(compiler, vector_in, vector_stack_offset);
+}
+
+void MusgraveTextureNode::compile(OSLCompiler &compiler)
+{
+ tex_mapping.compile(compiler);
+
+ compiler.parameter(this, "musgrave_type");
+ compiler.parameter(this, "dimensions");
+ compiler.add(this, "node_musgrave_texture");
+}
+
+/* Wave Texture */
+
+NODE_DEFINE(WaveTextureNode)
+{
+ NodeType *type = NodeType::add("wave_texture", create, NodeType::SHADER);
+
+ TEXTURE_MAPPING_DEFINE(WaveTextureNode);
+
+ static NodeEnum type_enum;
+ type_enum.insert("bands", NODE_WAVE_BANDS);
+ type_enum.insert("rings", NODE_WAVE_RINGS);
+ SOCKET_ENUM(wave_type, "Type", type_enum, NODE_WAVE_BANDS);
+
+ static NodeEnum bands_direction_enum;
+ bands_direction_enum.insert("x", NODE_WAVE_BANDS_DIRECTION_X);
+ bands_direction_enum.insert("y", NODE_WAVE_BANDS_DIRECTION_Y);
+ bands_direction_enum.insert("z", NODE_WAVE_BANDS_DIRECTION_Z);
+ bands_direction_enum.insert("diagonal", NODE_WAVE_BANDS_DIRECTION_DIAGONAL);
+ SOCKET_ENUM(
+ bands_direction, "Bands Direction", bands_direction_enum, NODE_WAVE_BANDS_DIRECTION_X);
+
+ static NodeEnum rings_direction_enum;
+ rings_direction_enum.insert("x", NODE_WAVE_RINGS_DIRECTION_X);
+ rings_direction_enum.insert("y", NODE_WAVE_RINGS_DIRECTION_Y);
+ rings_direction_enum.insert("z", NODE_WAVE_RINGS_DIRECTION_Z);
+ rings_direction_enum.insert("spherical", NODE_WAVE_RINGS_DIRECTION_SPHERICAL);
+ SOCKET_ENUM(
+ rings_direction, "Rings Direction", rings_direction_enum, NODE_WAVE_BANDS_DIRECTION_X);
+
+ static NodeEnum profile_enum;
+ profile_enum.insert("sine", NODE_WAVE_PROFILE_SIN);
+ profile_enum.insert("saw", NODE_WAVE_PROFILE_SAW);
+ profile_enum.insert("tri", NODE_WAVE_PROFILE_TRI);
+ SOCKET_ENUM(profile, "Profile", profile_enum, NODE_WAVE_PROFILE_SIN);
+
+ SOCKET_IN_POINT(vector, "Vector", zero_float3(), SocketType::LINK_TEXTURE_GENERATED);
+ SOCKET_IN_FLOAT(scale, "Scale", 1.0f);
+ SOCKET_IN_FLOAT(distortion, "Distortion", 0.0f);
+ SOCKET_IN_FLOAT(detail, "Detail", 2.0f);
+ SOCKET_IN_FLOAT(detail_scale, "Detail Scale", 0.0f);
+ SOCKET_IN_FLOAT(detail_roughness, "Detail Roughness", 0.5f);
+ SOCKET_IN_FLOAT(phase, "Phase Offset", 0.0f);
+ SOCKET_OUT_COLOR(color, "Color");
+ SOCKET_OUT_FLOAT(fac, "Fac");
+
+ return type;
+}
+
+WaveTextureNode::WaveTextureNode() : TextureNode(get_node_type())
+{
+}
+
+void WaveTextureNode::compile(SVMCompiler &compiler)
+{
+ ShaderInput *vector_in = input("Vector");
+ ShaderInput *scale_in = input("Scale");
+ ShaderInput *distortion_in = input("Distortion");
+ ShaderInput *detail_in = input("Detail");
+ ShaderInput *dscale_in = input("Detail Scale");
+ ShaderInput *droughness_in = input("Detail Roughness");
+ ShaderInput *phase_in = input("Phase Offset");
+ ShaderOutput *color_out = output("Color");
+ ShaderOutput *fac_out = output("Fac");
+
+ int vector_offset = tex_mapping.compile_begin(compiler, vector_in);
+
+ compiler.add_node(NODE_TEX_WAVE,
+ compiler.encode_uchar4(wave_type, bands_direction, rings_direction, profile),
+ compiler.encode_uchar4(vector_offset,
+ compiler.stack_assign_if_linked(scale_in),
+ compiler.stack_assign_if_linked(distortion_in)),
+ compiler.encode_uchar4(compiler.stack_assign_if_linked(detail_in),
+ compiler.stack_assign_if_linked(dscale_in),
+ compiler.stack_assign_if_linked(droughness_in),
+ compiler.stack_assign_if_linked(phase_in)));
+
+ compiler.add_node(compiler.encode_uchar4(compiler.stack_assign_if_linked(color_out),
+ compiler.stack_assign_if_linked(fac_out)),
+ __float_as_int(scale),
+ __float_as_int(distortion),
+ __float_as_int(detail));
+
+ compiler.add_node(__float_as_int(detail_scale),
+ __float_as_int(detail_roughness),
+ __float_as_int(phase),
+ SVM_STACK_INVALID);
+
+ tex_mapping.compile_end(compiler, vector_in, vector_offset);
+}
+
+void WaveTextureNode::compile(OSLCompiler &compiler)
+{
+ tex_mapping.compile(compiler);
+
+ compiler.parameter(this, "wave_type");
+ compiler.parameter(this, "bands_direction");
+ compiler.parameter(this, "rings_direction");
+ compiler.parameter(this, "profile");
+
+ compiler.add(this, "node_wave_texture");
+}
+
+/* Magic Texture */
+
+NODE_DEFINE(MagicTextureNode)
+{
+ NodeType *type = NodeType::add("magic_texture", create, NodeType::SHADER);
+
+ TEXTURE_MAPPING_DEFINE(MagicTextureNode);
+
+ SOCKET_INT(depth, "Depth", 2);
+
+ SOCKET_IN_POINT(vector, "Vector", zero_float3(), SocketType::LINK_TEXTURE_GENERATED);
+ SOCKET_IN_FLOAT(scale, "Scale", 5.0f);
+ SOCKET_IN_FLOAT(distortion, "Distortion", 1.0f);
+
+ SOCKET_OUT_COLOR(color, "Color");
+ SOCKET_OUT_FLOAT(fac, "Fac");
+
+ return type;
+}
+
+MagicTextureNode::MagicTextureNode() : TextureNode(get_node_type())
+{
+}
+
+void MagicTextureNode::compile(SVMCompiler &compiler)
+{
+ ShaderInput *vector_in = input("Vector");
+ ShaderInput *scale_in = input("Scale");
+ ShaderInput *distortion_in = input("Distortion");
+ ShaderOutput *color_out = output("Color");
+ ShaderOutput *fac_out = output("Fac");
+
+ int vector_offset = tex_mapping.compile_begin(compiler, vector_in);
+
+ compiler.add_node(NODE_TEX_MAGIC,
+ compiler.encode_uchar4(depth,
+ compiler.stack_assign_if_linked(color_out),
+ compiler.stack_assign_if_linked(fac_out)),
+ compiler.encode_uchar4(vector_offset,
+ compiler.stack_assign_if_linked(scale_in),
+ compiler.stack_assign_if_linked(distortion_in)));
+ compiler.add_node(__float_as_int(scale), __float_as_int(distortion));
+
+ tex_mapping.compile_end(compiler, vector_in, vector_offset);
+}
+
+void MagicTextureNode::compile(OSLCompiler &compiler)
+{
+ tex_mapping.compile(compiler);
+
+ compiler.parameter(this, "depth");
+ compiler.add(this, "node_magic_texture");
+}
+
+/* Checker Texture */
+
+NODE_DEFINE(CheckerTextureNode)
+{
+ NodeType *type = NodeType::add("checker_texture", create, NodeType::SHADER);
+
+ TEXTURE_MAPPING_DEFINE(CheckerTextureNode);
+
+ SOCKET_IN_POINT(vector, "Vector", zero_float3(), SocketType::LINK_TEXTURE_GENERATED);
+ SOCKET_IN_COLOR(color1, "Color1", zero_float3());
+ SOCKET_IN_COLOR(color2, "Color2", zero_float3());
+ SOCKET_IN_FLOAT(scale, "Scale", 1.0f);
+
+ SOCKET_OUT_COLOR(color, "Color");
+ SOCKET_OUT_FLOAT(fac, "Fac");
+
+ return type;
+}
+
+CheckerTextureNode::CheckerTextureNode() : TextureNode(get_node_type())
+{
+}
+
+void CheckerTextureNode::compile(SVMCompiler &compiler)
+{
+ ShaderInput *vector_in = input("Vector");
+ ShaderInput *color1_in = input("Color1");
+ ShaderInput *color2_in = input("Color2");
+ ShaderInput *scale_in = input("Scale");
+
+ ShaderOutput *color_out = output("Color");
+ ShaderOutput *fac_out = output("Fac");
+
+ int vector_offset = tex_mapping.compile_begin(compiler, vector_in);
+
+ compiler.add_node(NODE_TEX_CHECKER,
+ compiler.encode_uchar4(vector_offset,
+ compiler.stack_assign(color1_in),
+ compiler.stack_assign(color2_in),
+ compiler.stack_assign_if_linked(scale_in)),
+ compiler.encode_uchar4(compiler.stack_assign_if_linked(color_out),
+ compiler.stack_assign_if_linked(fac_out)),
+ __float_as_int(scale));
+
+ tex_mapping.compile_end(compiler, vector_in, vector_offset);
+}
+
+void CheckerTextureNode::compile(OSLCompiler &compiler)
+{
+ tex_mapping.compile(compiler);
+
+ compiler.add(this, "node_checker_texture");
+}
+
+/* Brick Texture */
+
+NODE_DEFINE(BrickTextureNode)
+{
+ NodeType *type = NodeType::add("brick_texture", create, NodeType::SHADER);
+
+ TEXTURE_MAPPING_DEFINE(BrickTextureNode);
+
+ SOCKET_FLOAT(offset, "Offset", 0.5f);
+ SOCKET_INT(offset_frequency, "Offset Frequency", 2);
+ SOCKET_FLOAT(squash, "Squash", 1.0f);
+ SOCKET_INT(squash_frequency, "Squash Frequency", 2);
+
+ SOCKET_IN_POINT(vector, "Vector", zero_float3(), SocketType::LINK_TEXTURE_GENERATED);
+
+ SOCKET_IN_COLOR(color1, "Color1", zero_float3());
+ SOCKET_IN_COLOR(color2, "Color2", zero_float3());
+ SOCKET_IN_COLOR(mortar, "Mortar", zero_float3());
+ SOCKET_IN_FLOAT(scale, "Scale", 5.0f);
+ SOCKET_IN_FLOAT(mortar_size, "Mortar Size", 0.02f);
+ SOCKET_IN_FLOAT(mortar_smooth, "Mortar Smooth", 0.0f);
+ SOCKET_IN_FLOAT(bias, "Bias", 0.0f);
+ SOCKET_IN_FLOAT(brick_width, "Brick Width", 0.5f);
+ SOCKET_IN_FLOAT(row_height, "Row Height", 0.25f);
+
+ SOCKET_OUT_COLOR(color, "Color");
+ SOCKET_OUT_FLOAT(fac, "Fac");
+
+ return type;
+}
+
+BrickTextureNode::BrickTextureNode() : TextureNode(get_node_type())
+{
+}
+
+void BrickTextureNode::compile(SVMCompiler &compiler)
+{
+ ShaderInput *vector_in = input("Vector");
+ ShaderInput *color1_in = input("Color1");
+ ShaderInput *color2_in = input("Color2");
+ ShaderInput *mortar_in = input("Mortar");
+ ShaderInput *scale_in = input("Scale");
+ ShaderInput *mortar_size_in = input("Mortar Size");
+ ShaderInput *mortar_smooth_in = input("Mortar Smooth");
+ ShaderInput *bias_in = input("Bias");
+ ShaderInput *brick_width_in = input("Brick Width");
+ ShaderInput *row_height_in = input("Row Height");
+
+ ShaderOutput *color_out = output("Color");
+ ShaderOutput *fac_out = output("Fac");
+
+ int vector_offset = tex_mapping.compile_begin(compiler, vector_in);
+
+ compiler.add_node(NODE_TEX_BRICK,
+ compiler.encode_uchar4(vector_offset,
+ compiler.stack_assign(color1_in),
+ compiler.stack_assign(color2_in),
+ compiler.stack_assign(mortar_in)),
+ compiler.encode_uchar4(compiler.stack_assign_if_linked(scale_in),
+ compiler.stack_assign_if_linked(mortar_size_in),
+ compiler.stack_assign_if_linked(bias_in),
+ compiler.stack_assign_if_linked(brick_width_in)),
+ compiler.encode_uchar4(compiler.stack_assign_if_linked(row_height_in),
+ compiler.stack_assign_if_linked(color_out),
+ compiler.stack_assign_if_linked(fac_out),
+ compiler.stack_assign_if_linked(mortar_smooth_in)));
+
+ compiler.add_node(compiler.encode_uchar4(offset_frequency, squash_frequency),
+ __float_as_int(scale),
+ __float_as_int(mortar_size),
+ __float_as_int(bias));
+
+ compiler.add_node(__float_as_int(brick_width),
+ __float_as_int(row_height),
+ __float_as_int(offset),
+ __float_as_int(squash));
+
+ compiler.add_node(
+ __float_as_int(mortar_smooth), SVM_STACK_INVALID, SVM_STACK_INVALID, SVM_STACK_INVALID);
+
+ tex_mapping.compile_end(compiler, vector_in, vector_offset);
+}
+
+void BrickTextureNode::compile(OSLCompiler &compiler)
+{
+ tex_mapping.compile(compiler);
+
+ compiler.parameter(this, "offset");
+ compiler.parameter(this, "offset_frequency");
+ compiler.parameter(this, "squash");
+ compiler.parameter(this, "squash_frequency");
+ compiler.add(this, "node_brick_texture");
+}
+
+/* Point Density Texture */
+
+NODE_DEFINE(PointDensityTextureNode)
+{
+ NodeType *type = NodeType::add("point_density_texture", create, NodeType::SHADER);
+
+ SOCKET_STRING(filename, "Filename", ustring());
+
+ static NodeEnum space_enum;
+ space_enum.insert("object", NODE_TEX_VOXEL_SPACE_OBJECT);
+ space_enum.insert("world", NODE_TEX_VOXEL_SPACE_WORLD);
+ SOCKET_ENUM(space, "Space", space_enum, NODE_TEX_VOXEL_SPACE_OBJECT);
+
+ static NodeEnum interpolation_enum;
+ interpolation_enum.insert("closest", INTERPOLATION_CLOSEST);
+ interpolation_enum.insert("linear", INTERPOLATION_LINEAR);
+ interpolation_enum.insert("cubic", INTERPOLATION_CUBIC);
+ interpolation_enum.insert("smart", INTERPOLATION_SMART);
+ SOCKET_ENUM(interpolation, "Interpolation", interpolation_enum, INTERPOLATION_LINEAR);
+
+ SOCKET_TRANSFORM(tfm, "Transform", transform_identity());
+
+ SOCKET_IN_POINT(vector, "Vector", zero_float3(), SocketType::LINK_POSITION);
+
+ SOCKET_OUT_FLOAT(density, "Density");
+ SOCKET_OUT_COLOR(color, "Color");
+
+ return type;
+}
+
+PointDensityTextureNode::PointDensityTextureNode() : ShaderNode(get_node_type())
+{
+}
+
+PointDensityTextureNode::~PointDensityTextureNode()
+{
+}
+
+ShaderNode *PointDensityTextureNode::clone(ShaderGraph *graph) const
+{
+ /* Increase image user count for new node. We need to ensure to not call
+ * add_image again, to work around access of freed data on the Blender
+ * side. A better solution should be found to avoid this. */
+ PointDensityTextureNode *node = graph->create_node<PointDensityTextureNode>(*this);
+ node->handle = handle; /* TODO: not needed? */
+ return node;
+}
+
+void PointDensityTextureNode::attributes(Shader *shader, AttributeRequestSet *attributes)
+{
+ if (shader->has_volume)
+ attributes->add(ATTR_STD_GENERATED_TRANSFORM);
+
+ ShaderNode::attributes(shader, attributes);
+}
+
+ImageParams PointDensityTextureNode::image_params() const
+{
+ ImageParams params;
+ params.interpolation = interpolation;
+ return params;
+}
+
+void PointDensityTextureNode::compile(SVMCompiler &compiler)
+{
+ ShaderInput *vector_in = input("Vector");
+ ShaderOutput *density_out = output("Density");
+ ShaderOutput *color_out = output("Color");
+
+ const bool use_density = !density_out->links.empty();
+ const bool use_color = !color_out->links.empty();
+
+ if (use_density || use_color) {
+ if (handle.empty()) {
+ ImageManager *image_manager = compiler.scene->image_manager;
+ handle = image_manager->add_image(filename.string(), image_params());
+ }
+
+ const int slot = handle.svm_slot();
+ if (slot != -1) {
+ compiler.stack_assign(vector_in);
+ compiler.add_node(NODE_TEX_VOXEL,
+ slot,
+ compiler.encode_uchar4(compiler.stack_assign(vector_in),
+ compiler.stack_assign_if_linked(density_out),
+ compiler.stack_assign_if_linked(color_out),
+ space));
+ if (space == NODE_TEX_VOXEL_SPACE_WORLD) {
+ compiler.add_node(tfm.x);
+ compiler.add_node(tfm.y);
+ compiler.add_node(tfm.z);
+ }
+ }
+ else {
+ if (use_density) {
+ compiler.add_node(NODE_VALUE_F, __float_as_int(0.0f), compiler.stack_assign(density_out));
+ }
+ if (use_color) {
+ compiler.add_node(NODE_VALUE_V, compiler.stack_assign(color_out));
+ compiler.add_node(
+ NODE_VALUE_V,
+ make_float3(TEX_IMAGE_MISSING_R, TEX_IMAGE_MISSING_G, TEX_IMAGE_MISSING_B));
+ }
+ }
+ }
+}
+
+void PointDensityTextureNode::compile(OSLCompiler &compiler)
+{
+ ShaderOutput *density_out = output("Density");
+ ShaderOutput *color_out = output("Color");
+
+ const bool use_density = !density_out->links.empty();
+ const bool use_color = !color_out->links.empty();
+
+ if (use_density || use_color) {
+ if (handle.empty()) {
+ ImageManager *image_manager = compiler.scene->image_manager;
+ handle = image_manager->add_image(filename.string(), image_params());
+ }
+
+ compiler.parameter_texture("filename", handle.svm_slot());
+ if (space == NODE_TEX_VOXEL_SPACE_WORLD) {
+ compiler.parameter("mapping", tfm);
+ compiler.parameter("use_mapping", 1);
+ }
+ compiler.parameter(this, "interpolation");
+ compiler.add(this, "node_voxel_texture");
+ }
+}
+
+/* Normal */
+
+NODE_DEFINE(NormalNode)
+{
+ NodeType *type = NodeType::add("normal", create, NodeType::SHADER);
+
+ SOCKET_VECTOR(direction, "direction", zero_float3());
+
+ SOCKET_IN_NORMAL(normal, "Normal", zero_float3());
+
+ SOCKET_OUT_NORMAL(normal, "Normal");
+ SOCKET_OUT_FLOAT(dot, "Dot");
+
+ return type;
+}
+
+NormalNode::NormalNode() : ShaderNode(get_node_type())
+{
+}
+
+void NormalNode::compile(SVMCompiler &compiler)
+{
+ ShaderInput *normal_in = input("Normal");
+ ShaderOutput *normal_out = output("Normal");
+ ShaderOutput *dot_out = output("Dot");
+
+ compiler.add_node(NODE_NORMAL,
+ compiler.stack_assign(normal_in),
+ compiler.stack_assign(normal_out),
+ compiler.stack_assign(dot_out));
+ compiler.add_node(
+ __float_as_int(direction.x), __float_as_int(direction.y), __float_as_int(direction.z));
+}
+
+void NormalNode::compile(OSLCompiler &compiler)
+{
+ compiler.parameter(this, "direction");
+ compiler.add(this, "node_normal");
+}
+
+/* Mapping */
+
+NODE_DEFINE(MappingNode)
+{
+ NodeType *type = NodeType::add("mapping", create, NodeType::SHADER);
+
+ static NodeEnum type_enum;
+ type_enum.insert("point", NODE_MAPPING_TYPE_POINT);
+ type_enum.insert("texture", NODE_MAPPING_TYPE_TEXTURE);
+ type_enum.insert("vector", NODE_MAPPING_TYPE_VECTOR);
+ type_enum.insert("normal", NODE_MAPPING_TYPE_NORMAL);
+ SOCKET_ENUM(mapping_type, "Type", type_enum, NODE_MAPPING_TYPE_POINT);
+
+ SOCKET_IN_POINT(vector, "Vector", zero_float3());
+ SOCKET_IN_POINT(location, "Location", zero_float3());
+ SOCKET_IN_POINT(rotation, "Rotation", zero_float3());
+ SOCKET_IN_POINT(scale, "Scale", one_float3());
+
+ SOCKET_OUT_POINT(vector, "Vector");
+
+ return type;
+}
+
+MappingNode::MappingNode() : ShaderNode(get_node_type())
+{
+}
+
+void MappingNode::constant_fold(const ConstantFolder &folder)
+{
+ if (folder.all_inputs_constant()) {
+ float3 result = svm_mapping((NodeMappingType)mapping_type, vector, location, rotation, scale);
+ folder.make_constant(result);
+ }
+ else {
+ folder.fold_mapping((NodeMappingType)mapping_type);
+ }
+}
+
+void MappingNode::compile(SVMCompiler &compiler)
+{
+ ShaderInput *vector_in = input("Vector");
+ ShaderInput *location_in = input("Location");
+ ShaderInput *rotation_in = input("Rotation");
+ ShaderInput *scale_in = input("Scale");
+ ShaderOutput *vector_out = output("Vector");
+
+ int vector_stack_offset = compiler.stack_assign(vector_in);
+ int location_stack_offset = compiler.stack_assign(location_in);
+ int rotation_stack_offset = compiler.stack_assign(rotation_in);
+ int scale_stack_offset = compiler.stack_assign(scale_in);
+ int result_stack_offset = compiler.stack_assign(vector_out);
+
+ compiler.add_node(
+ NODE_MAPPING,
+ mapping_type,
+ compiler.encode_uchar4(
+ vector_stack_offset, location_stack_offset, rotation_stack_offset, scale_stack_offset),
+ result_stack_offset);
+}
+
+void MappingNode::compile(OSLCompiler &compiler)
+{
+ compiler.parameter(this, "mapping_type");
+ compiler.add(this, "node_mapping");
+}
+
+/* RGBToBW */
+
+NODE_DEFINE(RGBToBWNode)
+{
+ NodeType *type = NodeType::add("rgb_to_bw", create, NodeType::SHADER);
+
+ SOCKET_IN_COLOR(color, "Color", zero_float3());
+ SOCKET_OUT_FLOAT(val, "Val");
+
+ return type;
+}
+
+RGBToBWNode::RGBToBWNode() : ShaderNode(get_node_type())
+{
+}
+
+void RGBToBWNode::constant_fold(const ConstantFolder &folder)
+{
+ if (folder.all_inputs_constant()) {
+ float val = folder.scene->shader_manager->linear_rgb_to_gray(color);
+ folder.make_constant(val);
+ }
+}
+
+void RGBToBWNode::compile(SVMCompiler &compiler)
+{
+ compiler.add_node(NODE_CONVERT,
+ NODE_CONVERT_CF,
+ compiler.stack_assign(inputs[0]),
+ compiler.stack_assign(outputs[0]));
+}
+
+void RGBToBWNode::compile(OSLCompiler &compiler)
+{
+ compiler.add(this, "node_rgb_to_bw");
+}
+
+/* Convert */
+
+const NodeType *ConvertNode::node_types[ConvertNode::MAX_TYPE][ConvertNode::MAX_TYPE];
+bool ConvertNode::initialized = ConvertNode::register_types();
+
+Node *ConvertNode::create(const NodeType *type)
+{
+ return new ConvertNode(type->inputs[0].type, type->outputs[0].type);
+}
+
+bool ConvertNode::register_types()
+{
+ const int num_types = 8;
+ SocketType::Type types[num_types] = {SocketType::FLOAT,
+ SocketType::INT,
+ SocketType::COLOR,
+ SocketType::VECTOR,
+ SocketType::POINT,
+ SocketType::NORMAL,
+ SocketType::STRING,
+ SocketType::CLOSURE};
+
+ for (size_t i = 0; i < num_types; i++) {
+ SocketType::Type from = types[i];
+ ustring from_name(SocketType::type_name(from));
+ ustring from_value_name("value_" + from_name.string());
+
+ for (size_t j = 0; j < num_types; j++) {
+ SocketType::Type to = types[j];
+ ustring to_name(SocketType::type_name(to));
+ ustring to_value_name("value_" + to_name.string());
+
+ string node_name = "convert_" + from_name.string() + "_to_" + to_name.string();
+ NodeType *type = NodeType::add(node_name.c_str(), create, NodeType::SHADER);
+
+ type->register_input(from_value_name,
+ from_value_name,
+ from,
+ SOCKET_OFFSETOF(ConvertNode, value_float),
+ SocketType::zero_default_value(),
+ NULL,
+ NULL,
+ SocketType::LINKABLE);
+ type->register_output(to_value_name, to_value_name, to);
+
+ assert(from < MAX_TYPE);
+ assert(to < MAX_TYPE);
+
+ node_types[from][to] = type;
+ }
+ }
+
+ return true;
+}
+
+ConvertNode::ConvertNode(SocketType::Type from_, SocketType::Type to_, bool autoconvert)
+ : ShaderNode(node_types[from_][to_])
+{
+ from = from_;
+ to = to_;
+
+ if (from == to)
+ special_type = SHADER_SPECIAL_TYPE_PROXY;
+ else if (autoconvert)
+ special_type = SHADER_SPECIAL_TYPE_AUTOCONVERT;
+}
+
+/* Union usage requires a manual copy constructor. */
+ConvertNode::ConvertNode(const ConvertNode &other)
+ : ShaderNode(other),
+ from(other.from),
+ to(other.to),
+ value_color(other.value_color),
+ value_string(other.value_string)
+{
+}
+
+void ConvertNode::constant_fold(const ConstantFolder &folder)
+{
+ /* proxy nodes should have been removed at this point */
+ assert(special_type != SHADER_SPECIAL_TYPE_PROXY);
+
+ /* TODO(DingTo): conversion from/to int is not supported yet, don't fold in that case */
+
+ if (folder.all_inputs_constant()) {
+ if (from == SocketType::FLOAT) {
+ if (SocketType::is_float3(to)) {
+ folder.make_constant(make_float3(value_float, value_float, value_float));
+ }
+ }
+ else if (SocketType::is_float3(from)) {
+ if (to == SocketType::FLOAT) {
+ if (from == SocketType::COLOR) {
+ /* color to float */
+ float val = folder.scene->shader_manager->linear_rgb_to_gray(value_color);
+ folder.make_constant(val);
+ }
+ else {
+ /* vector/point/normal to float */
+ folder.make_constant(average(value_vector));
+ }
+ }
+ else if (SocketType::is_float3(to)) {
+ folder.make_constant(value_color);
+ }
+ }
+ }
+ else {
+ ShaderInput *in = inputs[0];
+ ShaderNode *prev = in->link->parent;
+
+ /* no-op conversion of A to B to A */
+ if (prev->type == node_types[to][from]) {
+ ShaderInput *prev_in = prev->inputs[0];
+
+ if (SocketType::is_float3(from) && (to == SocketType::FLOAT || SocketType::is_float3(to)) &&
+ prev_in->link) {
+ folder.bypass(prev_in->link);
+ }
+ }
+ }
+}
+
+void ConvertNode::compile(SVMCompiler &compiler)
+{
+ /* proxy nodes should have been removed at this point */
+ assert(special_type != SHADER_SPECIAL_TYPE_PROXY);
+
+ ShaderInput *in = inputs[0];
+ ShaderOutput *out = outputs[0];
+
+ if (from == SocketType::FLOAT) {
+ if (to == SocketType::INT)
+ /* float to int */
+ compiler.add_node(
+ NODE_CONVERT, NODE_CONVERT_FI, compiler.stack_assign(in), compiler.stack_assign(out));
+ else
+ /* float to float3 */
+ compiler.add_node(
+ NODE_CONVERT, NODE_CONVERT_FV, compiler.stack_assign(in), compiler.stack_assign(out));
+ }
+ else if (from == SocketType::INT) {
+ if (to == SocketType::FLOAT)
+ /* int to float */
+ compiler.add_node(
+ NODE_CONVERT, NODE_CONVERT_IF, compiler.stack_assign(in), compiler.stack_assign(out));
+ else
+ /* int to vector/point/normal */
+ compiler.add_node(
+ NODE_CONVERT, NODE_CONVERT_IV, compiler.stack_assign(in), compiler.stack_assign(out));
+ }
+ else if (to == SocketType::FLOAT) {
+ if (from == SocketType::COLOR)
+ /* color to float */
+ compiler.add_node(
+ NODE_CONVERT, NODE_CONVERT_CF, compiler.stack_assign(in), compiler.stack_assign(out));
+ else
+ /* vector/point/normal to float */
+ compiler.add_node(
+ NODE_CONVERT, NODE_CONVERT_VF, compiler.stack_assign(in), compiler.stack_assign(out));
+ }
+ else if (to == SocketType::INT) {
+ if (from == SocketType::COLOR)
+ /* color to int */
+ compiler.add_node(
+ NODE_CONVERT, NODE_CONVERT_CI, compiler.stack_assign(in), compiler.stack_assign(out));
+ else
+ /* vector/point/normal to int */
+ compiler.add_node(
+ NODE_CONVERT, NODE_CONVERT_VI, compiler.stack_assign(in), compiler.stack_assign(out));
+ }
+ else {
+ /* float3 to float3 */
+ if (in->link) {
+ /* no op in SVM */
+ compiler.stack_link(in, out);
+ }
+ else {
+ /* set 0,0,0 value */
+ compiler.add_node(NODE_VALUE_V, compiler.stack_assign(out));
+ compiler.add_node(NODE_VALUE_V, value_color);
+ }
+ }
+}
+
+void ConvertNode::compile(OSLCompiler &compiler)
+{
+ /* proxy nodes should have been removed at this point */
+ assert(special_type != SHADER_SPECIAL_TYPE_PROXY);
+
+ if (from == SocketType::FLOAT)
+ compiler.add(this, "node_convert_from_float");
+ else if (from == SocketType::INT)
+ compiler.add(this, "node_convert_from_int");
+ else if (from == SocketType::COLOR)
+ compiler.add(this, "node_convert_from_color");
+ else if (from == SocketType::VECTOR)
+ compiler.add(this, "node_convert_from_vector");
+ else if (from == SocketType::POINT)
+ compiler.add(this, "node_convert_from_point");
+ else if (from == SocketType::NORMAL)
+ compiler.add(this, "node_convert_from_normal");
+ else
+ assert(0);
+}
+
+/* Base type for all closure-type nodes */
+
+BsdfBaseNode::BsdfBaseNode(const NodeType *node_type) : ShaderNode(node_type)
+{
+ special_type = SHADER_SPECIAL_TYPE_CLOSURE;
+}
+
+bool BsdfBaseNode::has_bump()
+{
+ /* detect if anything is plugged into the normal input besides the default */
+ ShaderInput *normal_in = input("Normal");
+ return (normal_in && normal_in->link &&
+ normal_in->link->parent->special_type != SHADER_SPECIAL_TYPE_GEOMETRY);
+}
+
+/* BSDF Closure */
+
+BsdfNode::BsdfNode(const NodeType *node_type) : BsdfBaseNode(node_type)
+{
+}
+
+void BsdfNode::compile(SVMCompiler &compiler,
+ ShaderInput *param1,
+ ShaderInput *param2,
+ ShaderInput *param3,
+ ShaderInput *param4)
+{
+ ShaderInput *color_in = input("Color");
+ ShaderInput *normal_in = input("Normal");
+ ShaderInput *tangent_in = input("Tangent");
+
+ if (color_in->link)
+ compiler.add_node(NODE_CLOSURE_WEIGHT, compiler.stack_assign(color_in));
+ else
+ compiler.add_node(NODE_CLOSURE_SET_WEIGHT, color);
+
+ int normal_offset = (normal_in) ? compiler.stack_assign_if_linked(normal_in) : SVM_STACK_INVALID;
+ int tangent_offset = (tangent_in) ? compiler.stack_assign_if_linked(tangent_in) :
+ SVM_STACK_INVALID;
+ int param3_offset = (param3) ? compiler.stack_assign(param3) : SVM_STACK_INVALID;
+ int param4_offset = (param4) ? compiler.stack_assign(param4) : SVM_STACK_INVALID;
+
+ compiler.add_node(
+ NODE_CLOSURE_BSDF,
+ compiler.encode_uchar4(closure,
+ (param1) ? compiler.stack_assign(param1) : SVM_STACK_INVALID,
+ (param2) ? compiler.stack_assign(param2) : SVM_STACK_INVALID,
+ compiler.closure_mix_weight_offset()),
+ __float_as_int((param1) ? get_float(param1->socket_type) : 0.0f),
+ __float_as_int((param2) ? get_float(param2->socket_type) : 0.0f));
+
+ compiler.add_node(normal_offset, tangent_offset, param3_offset, param4_offset);
+}
+
+void BsdfNode::compile(SVMCompiler &compiler)
+{
+ compile(compiler, NULL, NULL);
+}
+
+void BsdfNode::compile(OSLCompiler & /*compiler*/)
+{
+ assert(0);
+}
+
+/* Anisotropic BSDF Closure */
+
+NODE_DEFINE(AnisotropicBsdfNode)
+{
+ NodeType *type = NodeType::add("anisotropic_bsdf", create, NodeType::SHADER);
+
+ SOCKET_IN_COLOR(color, "Color", make_float3(0.8f, 0.8f, 0.8f));
+ SOCKET_IN_NORMAL(normal, "Normal", zero_float3(), SocketType::LINK_NORMAL);
+ SOCKET_IN_FLOAT(surface_mix_weight, "SurfaceMixWeight", 0.0f, SocketType::SVM_INTERNAL);
+
+ static NodeEnum distribution_enum;
+ distribution_enum.insert("beckmann", CLOSURE_BSDF_MICROFACET_BECKMANN_ID);
+ distribution_enum.insert("GGX", CLOSURE_BSDF_MICROFACET_GGX_ID);
+ distribution_enum.insert("Multiscatter GGX", CLOSURE_BSDF_MICROFACET_MULTI_GGX_ID);
+ distribution_enum.insert("ashikhmin_shirley", CLOSURE_BSDF_ASHIKHMIN_SHIRLEY_ID);
+ SOCKET_ENUM(distribution, "Distribution", distribution_enum, CLOSURE_BSDF_MICROFACET_GGX_ID);
+
+ SOCKET_IN_VECTOR(tangent, "Tangent", zero_float3(), SocketType::LINK_TANGENT);
+
+ SOCKET_IN_FLOAT(roughness, "Roughness", 0.5f);
+ SOCKET_IN_FLOAT(anisotropy, "Anisotropy", 0.5f);
+ SOCKET_IN_FLOAT(rotation, "Rotation", 0.0f);
+
+ SOCKET_OUT_CLOSURE(BSDF, "BSDF");
+
+ return type;
+}
+
+AnisotropicBsdfNode::AnisotropicBsdfNode() : BsdfNode(get_node_type())
+{
+ closure = CLOSURE_BSDF_MICROFACET_GGX_ID;
+}
+
+void AnisotropicBsdfNode::attributes(Shader *shader, AttributeRequestSet *attributes)
+{
+ if (shader->has_surface_link()) {
+ ShaderInput *tangent_in = input("Tangent");
+
+ if (!tangent_in->link)
+ attributes->add(ATTR_STD_GENERATED);
+ }
+
+ ShaderNode::attributes(shader, attributes);
+}
+
+void AnisotropicBsdfNode::compile(SVMCompiler &compiler)
+{
+ closure = distribution;
+
+ if (closure == CLOSURE_BSDF_MICROFACET_MULTI_GGX_ID)
+ BsdfNode::compile(
+ compiler, input("Roughness"), input("Anisotropy"), input("Rotation"), input("Color"));
+ else
+ BsdfNode::compile(compiler, input("Roughness"), input("Anisotropy"), input("Rotation"));
+}
+
+void AnisotropicBsdfNode::compile(OSLCompiler &compiler)
+{
+ compiler.parameter(this, "distribution");
+ compiler.add(this, "node_anisotropic_bsdf");
+}
+
+/* Glossy BSDF Closure */
+
+NODE_DEFINE(GlossyBsdfNode)
+{
+ NodeType *type = NodeType::add("glossy_bsdf", create, NodeType::SHADER);
+
+ SOCKET_IN_COLOR(color, "Color", make_float3(0.8f, 0.8f, 0.8f));
+ SOCKET_IN_NORMAL(normal, "Normal", zero_float3(), SocketType::LINK_NORMAL);
+ SOCKET_IN_FLOAT(surface_mix_weight, "SurfaceMixWeight", 0.0f, SocketType::SVM_INTERNAL);
+
+ static NodeEnum distribution_enum;
+ distribution_enum.insert("sharp", CLOSURE_BSDF_REFLECTION_ID);
+ distribution_enum.insert("beckmann", CLOSURE_BSDF_MICROFACET_BECKMANN_ID);
+ distribution_enum.insert("GGX", CLOSURE_BSDF_MICROFACET_GGX_ID);
+ distribution_enum.insert("ashikhmin_shirley", CLOSURE_BSDF_ASHIKHMIN_SHIRLEY_ID);
+ distribution_enum.insert("Multiscatter GGX", CLOSURE_BSDF_MICROFACET_MULTI_GGX_ID);
+ SOCKET_ENUM(distribution, "Distribution", distribution_enum, CLOSURE_BSDF_MICROFACET_GGX_ID);
+ SOCKET_IN_FLOAT(roughness, "Roughness", 0.5f);
+
+ SOCKET_OUT_CLOSURE(BSDF, "BSDF");
+
+ return type;
+}
+
+GlossyBsdfNode::GlossyBsdfNode() : BsdfNode(get_node_type())
+{
+ closure = CLOSURE_BSDF_MICROFACET_GGX_ID;
+ distribution_orig = NBUILTIN_CLOSURES;
+}
+
+void GlossyBsdfNode::simplify_settings(Scene *scene)
+{
+ if (distribution_orig == NBUILTIN_CLOSURES) {
+ roughness_orig = roughness;
+ distribution_orig = distribution;
+ }
+ else {
+ /* By default we use original values, so we don't worry about restoring
+ * defaults later one and can only do override when needed.
+ */
+ roughness = roughness_orig;
+ distribution = distribution_orig;
+ }
+ Integrator *integrator = scene->integrator;
+ ShaderInput *roughness_input = input("Roughness");
+ if (integrator->get_filter_glossy() == 0.0f) {
+ /* Fallback to Sharp closure for Roughness close to 0.
+ * Note: Keep the epsilon in sync with kernel!
+ */
+ if (!roughness_input->link && roughness <= 1e-4f) {
+ VLOG(1) << "Using sharp glossy BSDF.";
+ distribution = CLOSURE_BSDF_REFLECTION_ID;
+ }
+ }
+ else {
+ /* If filter glossy is used we replace Sharp glossy with GGX so we can
+ * benefit from closure blur to remove unwanted noise.
+ */
+ if (roughness_input->link == NULL && distribution == CLOSURE_BSDF_REFLECTION_ID) {
+ VLOG(1) << "Using GGX glossy with filter glossy.";
+ distribution = CLOSURE_BSDF_MICROFACET_GGX_ID;
+ roughness = 0.0f;
+ }
+ }
+ closure = distribution;
+}
+
+bool GlossyBsdfNode::has_integrator_dependency()
+{
+ ShaderInput *roughness_input = input("Roughness");
+ return !roughness_input->link &&
+ (distribution == CLOSURE_BSDF_REFLECTION_ID || roughness <= 1e-4f);
+}
+
+void GlossyBsdfNode::compile(SVMCompiler &compiler)
+{
+ closure = distribution;
+
+ if (closure == CLOSURE_BSDF_REFLECTION_ID)
+ BsdfNode::compile(compiler, NULL, NULL);
+ else if (closure == CLOSURE_BSDF_MICROFACET_MULTI_GGX_ID)
+ BsdfNode::compile(compiler, input("Roughness"), NULL, NULL, input("Color"));
+ else
+ BsdfNode::compile(compiler, input("Roughness"), NULL);
+}
+
+void GlossyBsdfNode::compile(OSLCompiler &compiler)
+{
+ compiler.parameter(this, "distribution");
+ compiler.add(this, "node_glossy_bsdf");
+}
+
+/* Glass BSDF Closure */
+
+NODE_DEFINE(GlassBsdfNode)
+{
+ NodeType *type = NodeType::add("glass_bsdf", create, NodeType::SHADER);
+
+ SOCKET_IN_COLOR(color, "Color", make_float3(0.8f, 0.8f, 0.8f));
+ SOCKET_IN_NORMAL(normal, "Normal", zero_float3(), SocketType::LINK_NORMAL);
+ SOCKET_IN_FLOAT(surface_mix_weight, "SurfaceMixWeight", 0.0f, SocketType::SVM_INTERNAL);
+
+ static NodeEnum distribution_enum;
+ distribution_enum.insert("sharp", CLOSURE_BSDF_SHARP_GLASS_ID);
+ distribution_enum.insert("beckmann", CLOSURE_BSDF_MICROFACET_BECKMANN_GLASS_ID);
+ distribution_enum.insert("GGX", CLOSURE_BSDF_MICROFACET_GGX_GLASS_ID);
+ distribution_enum.insert("Multiscatter GGX", CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_ID);
+ SOCKET_ENUM(
+ distribution, "Distribution", distribution_enum, CLOSURE_BSDF_MICROFACET_GGX_GLASS_ID);
+ SOCKET_IN_FLOAT(roughness, "Roughness", 0.0f);
+ SOCKET_IN_FLOAT(IOR, "IOR", 0.3f);
+
+ SOCKET_OUT_CLOSURE(BSDF, "BSDF");
+
+ return type;
+}
+
+GlassBsdfNode::GlassBsdfNode() : BsdfNode(get_node_type())
+{
+ closure = CLOSURE_BSDF_SHARP_GLASS_ID;
+ distribution_orig = NBUILTIN_CLOSURES;
+}
+
+void GlassBsdfNode::simplify_settings(Scene *scene)
+{
+ if (distribution_orig == NBUILTIN_CLOSURES) {
+ roughness_orig = roughness;
+ distribution_orig = distribution;
+ }
+ else {
+ /* By default we use original values, so we don't worry about restoring
+ * defaults later one and can only do override when needed.
+ */
+ roughness = roughness_orig;
+ distribution = distribution_orig;
+ }
+ Integrator *integrator = scene->integrator;
+ ShaderInput *roughness_input = input("Roughness");
+ if (integrator->get_filter_glossy() == 0.0f) {
+ /* Fallback to Sharp closure for Roughness close to 0.
+ * Note: Keep the epsilon in sync with kernel!
+ */
+ if (!roughness_input->link && roughness <= 1e-4f) {
+ VLOG(1) << "Using sharp glass BSDF.";
+ distribution = CLOSURE_BSDF_SHARP_GLASS_ID;
+ }
+ }
+ else {
+ /* If filter glossy is used we replace Sharp glossy with GGX so we can
+ * benefit from closure blur to remove unwanted noise.
+ */
+ if (roughness_input->link == NULL && distribution == CLOSURE_BSDF_SHARP_GLASS_ID) {
+ VLOG(1) << "Using GGX glass with filter glossy.";
+ distribution = CLOSURE_BSDF_MICROFACET_GGX_GLASS_ID;
+ roughness = 0.0f;
+ }
+ }
+ closure = distribution;
+}
+
+bool GlassBsdfNode::has_integrator_dependency()
+{
+ ShaderInput *roughness_input = input("Roughness");
+ return !roughness_input->link &&
+ (distribution == CLOSURE_BSDF_SHARP_GLASS_ID || roughness <= 1e-4f);
+}
+
+void GlassBsdfNode::compile(SVMCompiler &compiler)
+{
+ closure = distribution;
+
+ if (closure == CLOSURE_BSDF_SHARP_GLASS_ID)
+ BsdfNode::compile(compiler, NULL, input("IOR"));
+ else if (closure == CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_ID)
+ BsdfNode::compile(compiler, input("Roughness"), input("IOR"), input("Color"));
+ else
+ BsdfNode::compile(compiler, input("Roughness"), input("IOR"));
+}
+
+void GlassBsdfNode::compile(OSLCompiler &compiler)
+{
+ compiler.parameter(this, "distribution");
+ compiler.add(this, "node_glass_bsdf");
+}
+
+/* Refraction BSDF Closure */
+
+NODE_DEFINE(RefractionBsdfNode)
+{
+ NodeType *type = NodeType::add("refraction_bsdf", create, NodeType::SHADER);
+
+ SOCKET_IN_COLOR(color, "Color", make_float3(0.8f, 0.8f, 0.8f));
+ SOCKET_IN_NORMAL(normal, "Normal", zero_float3(), SocketType::LINK_NORMAL);
+ SOCKET_IN_FLOAT(surface_mix_weight, "SurfaceMixWeight", 0.0f, SocketType::SVM_INTERNAL);
+
+ static NodeEnum distribution_enum;
+ distribution_enum.insert("sharp", CLOSURE_BSDF_REFRACTION_ID);
+ distribution_enum.insert("beckmann", CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID);
+ distribution_enum.insert("GGX", CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID);
+ SOCKET_ENUM(
+ distribution, "Distribution", distribution_enum, CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID);
+
+ SOCKET_IN_FLOAT(roughness, "Roughness", 0.0f);
+ SOCKET_IN_FLOAT(IOR, "IOR", 0.3f);
+
+ SOCKET_OUT_CLOSURE(BSDF, "BSDF");
+
+ return type;
+}
+
+RefractionBsdfNode::RefractionBsdfNode() : BsdfNode(get_node_type())
+{
+ closure = CLOSURE_BSDF_REFRACTION_ID;
+ distribution_orig = NBUILTIN_CLOSURES;
+}
+
+void RefractionBsdfNode::simplify_settings(Scene *scene)
+{
+ if (distribution_orig == NBUILTIN_CLOSURES) {
+ roughness_orig = roughness;
+ distribution_orig = distribution;
+ }
+ else {
+ /* By default we use original values, so we don't worry about restoring
+ * defaults later one and can only do override when needed.
+ */
+ roughness = roughness_orig;
+ distribution = distribution_orig;
+ }
+ Integrator *integrator = scene->integrator;
+ ShaderInput *roughness_input = input("Roughness");
+ if (integrator->get_filter_glossy() == 0.0f) {
+ /* Fallback to Sharp closure for Roughness close to 0.
+ * Note: Keep the epsilon in sync with kernel!
+ */
+ if (!roughness_input->link && roughness <= 1e-4f) {
+ VLOG(1) << "Using sharp refraction BSDF.";
+ distribution = CLOSURE_BSDF_REFRACTION_ID;
+ }
+ }
+ else {
+ /* If filter glossy is used we replace Sharp glossy with GGX so we can
+ * benefit from closure blur to remove unwanted noise.
+ */
+ if (roughness_input->link == NULL && distribution == CLOSURE_BSDF_REFRACTION_ID) {
+ VLOG(1) << "Using GGX refraction with filter glossy.";
+ distribution = CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID;
+ roughness = 0.0f;
+ }
+ }
+ closure = distribution;
+}
+
+bool RefractionBsdfNode::has_integrator_dependency()
+{
+ ShaderInput *roughness_input = input("Roughness");
+ return !roughness_input->link &&
+ (distribution == CLOSURE_BSDF_REFRACTION_ID || roughness <= 1e-4f);
+}
+
+void RefractionBsdfNode::compile(SVMCompiler &compiler)
+{
+ closure = distribution;
+
+ if (closure == CLOSURE_BSDF_REFRACTION_ID)
+ BsdfNode::compile(compiler, NULL, input("IOR"));
+ else
+ BsdfNode::compile(compiler, input("Roughness"), input("IOR"));
+}
+
+void RefractionBsdfNode::compile(OSLCompiler &compiler)
+{
+ compiler.parameter(this, "distribution");
+ compiler.add(this, "node_refraction_bsdf");
+}
+
+/* Toon BSDF Closure */
+
+NODE_DEFINE(ToonBsdfNode)
+{
+ NodeType *type = NodeType::add("toon_bsdf", create, NodeType::SHADER);
+
+ SOCKET_IN_COLOR(color, "Color", make_float3(0.8f, 0.8f, 0.8f));
+ SOCKET_IN_NORMAL(normal, "Normal", zero_float3(), SocketType::LINK_NORMAL);
+ SOCKET_IN_FLOAT(surface_mix_weight, "SurfaceMixWeight", 0.0f, SocketType::SVM_INTERNAL);
+
+ static NodeEnum component_enum;
+ component_enum.insert("diffuse", CLOSURE_BSDF_DIFFUSE_TOON_ID);
+ component_enum.insert("glossy", CLOSURE_BSDF_GLOSSY_TOON_ID);
+ SOCKET_ENUM(component, "Component", component_enum, CLOSURE_BSDF_DIFFUSE_TOON_ID);
+ SOCKET_IN_FLOAT(size, "Size", 0.5f);
+ SOCKET_IN_FLOAT(smooth, "Smooth", 0.0f);
+
+ SOCKET_OUT_CLOSURE(BSDF, "BSDF");
+
+ return type;
+}
+
+ToonBsdfNode::ToonBsdfNode() : BsdfNode(get_node_type())
+{
+ closure = CLOSURE_BSDF_DIFFUSE_TOON_ID;
+}
+
+void ToonBsdfNode::compile(SVMCompiler &compiler)
+{
+ closure = component;
+
+ BsdfNode::compile(compiler, input("Size"), input("Smooth"));
+}
+
+void ToonBsdfNode::compile(OSLCompiler &compiler)
+{
+ compiler.parameter(this, "component");
+ compiler.add(this, "node_toon_bsdf");
+}
+
+/* Velvet BSDF Closure */
+
+NODE_DEFINE(VelvetBsdfNode)
+{
+ NodeType *type = NodeType::add("velvet_bsdf", create, NodeType::SHADER);
+
+ SOCKET_IN_COLOR(color, "Color", make_float3(0.8f, 0.8f, 0.8f));
+ SOCKET_IN_NORMAL(normal, "Normal", zero_float3(), SocketType::LINK_NORMAL);
+ SOCKET_IN_FLOAT(surface_mix_weight, "SurfaceMixWeight", 0.0f, SocketType::SVM_INTERNAL);
+ SOCKET_IN_FLOAT(sigma, "Sigma", 1.0f);
+
+ SOCKET_OUT_CLOSURE(BSDF, "BSDF");
+
+ return type;
+}
+
+VelvetBsdfNode::VelvetBsdfNode() : BsdfNode(get_node_type())
+{
+ closure = CLOSURE_BSDF_ASHIKHMIN_VELVET_ID;
+}
+
+void VelvetBsdfNode::compile(SVMCompiler &compiler)
+{
+ BsdfNode::compile(compiler, input("Sigma"), NULL);
+}
+
+void VelvetBsdfNode::compile(OSLCompiler &compiler)
+{
+ compiler.add(this, "node_velvet_bsdf");
+}
+
+/* Diffuse BSDF Closure */
+
+NODE_DEFINE(DiffuseBsdfNode)
+{
+ NodeType *type = NodeType::add("diffuse_bsdf", create, NodeType::SHADER);
+
+ SOCKET_IN_COLOR(color, "Color", make_float3(0.8f, 0.8f, 0.8f));
+ SOCKET_IN_NORMAL(normal, "Normal", zero_float3(), SocketType::LINK_NORMAL);
+ SOCKET_IN_FLOAT(surface_mix_weight, "SurfaceMixWeight", 0.0f, SocketType::SVM_INTERNAL);
+ SOCKET_IN_FLOAT(roughness, "Roughness", 0.0f);
+
+ SOCKET_OUT_CLOSURE(BSDF, "BSDF");
+
+ return type;
+}
+
+DiffuseBsdfNode::DiffuseBsdfNode() : BsdfNode(get_node_type())
+{
+ closure = CLOSURE_BSDF_DIFFUSE_ID;
+}
+
+void DiffuseBsdfNode::compile(SVMCompiler &compiler)
+{
+ BsdfNode::compile(compiler, input("Roughness"), NULL);
+}
+
+void DiffuseBsdfNode::compile(OSLCompiler &compiler)
+{
+ compiler.add(this, "node_diffuse_bsdf");
+}
+
+/* Disney principled BSDF Closure */
+NODE_DEFINE(PrincipledBsdfNode)
+{
+ NodeType *type = NodeType::add("principled_bsdf", create, NodeType::SHADER);
+
+ static NodeEnum distribution_enum;
+ distribution_enum.insert("GGX", CLOSURE_BSDF_MICROFACET_GGX_GLASS_ID);
+ distribution_enum.insert("Multiscatter GGX", CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_ID);
+ SOCKET_ENUM(
+ distribution, "Distribution", distribution_enum, CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_ID);
+
+ static NodeEnum subsurface_method_enum;
+ subsurface_method_enum.insert("burley", CLOSURE_BSSRDF_BURLEY_ID);
+ subsurface_method_enum.insert("random_walk_fixed_radius",
+ CLOSURE_BSSRDF_RANDOM_WALK_FIXED_RADIUS_ID);
+ subsurface_method_enum.insert("random_walk", CLOSURE_BSSRDF_RANDOM_WALK_ID);
+ SOCKET_ENUM(subsurface_method,
+ "Subsurface Method",
+ subsurface_method_enum,
+ CLOSURE_BSSRDF_RANDOM_WALK_ID);
+
+ SOCKET_IN_COLOR(base_color, "Base Color", make_float3(0.8f, 0.8f, 0.8f));
+ SOCKET_IN_COLOR(subsurface_color, "Subsurface Color", make_float3(0.8f, 0.8f, 0.8f));
+ SOCKET_IN_FLOAT(metallic, "Metallic", 0.0f);
+ SOCKET_IN_FLOAT(subsurface, "Subsurface", 0.0f);
+ SOCKET_IN_VECTOR(subsurface_radius, "Subsurface Radius", make_float3(0.1f, 0.1f, 0.1f));
+ SOCKET_IN_FLOAT(subsurface_ior, "Subsurface IOR", 1.4f);
+ SOCKET_IN_FLOAT(subsurface_anisotropy, "Subsurface Anisotropy", 0.0f);
+ SOCKET_IN_FLOAT(specular, "Specular", 0.0f);
+ SOCKET_IN_FLOAT(roughness, "Roughness", 0.5f);
+ SOCKET_IN_FLOAT(specular_tint, "Specular Tint", 0.0f);
+ SOCKET_IN_FLOAT(anisotropic, "Anisotropic", 0.0f);
+ SOCKET_IN_FLOAT(sheen, "Sheen", 0.0f);
+ SOCKET_IN_FLOAT(sheen_tint, "Sheen Tint", 0.0f);
+ SOCKET_IN_FLOAT(clearcoat, "Clearcoat", 0.0f);
+ SOCKET_IN_FLOAT(clearcoat_roughness, "Clearcoat Roughness", 0.03f);
+ SOCKET_IN_FLOAT(ior, "IOR", 0.0f);
+ SOCKET_IN_FLOAT(transmission, "Transmission", 0.0f);
+ SOCKET_IN_FLOAT(transmission_roughness, "Transmission Roughness", 0.0f);
+ SOCKET_IN_FLOAT(anisotropic_rotation, "Anisotropic Rotation", 0.0f);
+ SOCKET_IN_COLOR(emission, "Emission", zero_float3());
+ SOCKET_IN_FLOAT(emission_strength, "Emission Strength", 1.0f);
+ SOCKET_IN_FLOAT(alpha, "Alpha", 1.0f);
+ SOCKET_IN_NORMAL(normal, "Normal", zero_float3(), SocketType::LINK_NORMAL);
+ SOCKET_IN_NORMAL(clearcoat_normal, "Clearcoat Normal", zero_float3(), SocketType::LINK_NORMAL);
+ SOCKET_IN_NORMAL(tangent, "Tangent", zero_float3(), SocketType::LINK_TANGENT);
+ SOCKET_IN_FLOAT(surface_mix_weight, "SurfaceMixWeight", 0.0f, SocketType::SVM_INTERNAL);
+
+ SOCKET_OUT_CLOSURE(BSDF, "BSDF");
+
+ return type;
+}
+
+PrincipledBsdfNode::PrincipledBsdfNode() : BsdfBaseNode(get_node_type())
+{
+ closure = CLOSURE_BSDF_PRINCIPLED_ID;
+ distribution = CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_ID;
+ distribution_orig = NBUILTIN_CLOSURES;
+}
+
+void PrincipledBsdfNode::expand(ShaderGraph *graph)
+{
+ ShaderOutput *principled_out = output("BSDF");
+
+ ShaderInput *emission_in = input("Emission");
+ ShaderInput *emission_strength_in = input("Emission Strength");
+ if ((emission_in->link || emission != zero_float3()) &&
+ (emission_strength_in->link || emission_strength != 0.0f)) {
+ /* Create add closure and emission, and relink inputs. */
+ AddClosureNode *add = graph->create_node<AddClosureNode>();
+ EmissionNode *emission_node = graph->create_node<EmissionNode>();
+ ShaderOutput *new_out = add->output("Closure");
+
+ graph->add(add);
+ graph->add(emission_node);
+
+ graph->relink(emission_strength_in, emission_node->input("Strength"));
+ graph->relink(emission_in, emission_node->input("Color"));
+ graph->relink(principled_out, new_out);
+ graph->connect(emission_node->output("Emission"), add->input("Closure1"));
+ graph->connect(principled_out, add->input("Closure2"));
+
+ principled_out = new_out;
+ }
+ else {
+ /* Disconnect unused links if the other value is zero, required before
+ * we remove the input from the node entirely. */
+ if (emission_in->link) {
+ emission_in->disconnect();
+ }
+ if (emission_strength_in->link) {
+ emission_strength_in->disconnect();
+ }
+ }
+
+ ShaderInput *alpha_in = input("Alpha");
+ if (alpha_in->link || alpha != 1.0f) {
+ /* Create mix and transparent BSDF for alpha transparency. */
+ MixClosureNode *mix = graph->create_node<MixClosureNode>();
+ TransparentBsdfNode *transparent = graph->create_node<TransparentBsdfNode>();
+
+ graph->add(mix);
+ graph->add(transparent);
+
+ graph->relink(alpha_in, mix->input("Fac"));
+ graph->relink(principled_out, mix->output("Closure"));
+ graph->connect(transparent->output("BSDF"), mix->input("Closure1"));
+ graph->connect(principled_out, mix->input("Closure2"));
+ }
+
+ remove_input(emission_in);
+ remove_input(emission_strength_in);
+ remove_input(alpha_in);
+}
+
+bool PrincipledBsdfNode::has_surface_bssrdf()
+{
+ ShaderInput *subsurface_in = input("Subsurface");
+ return (subsurface_in->link != NULL || subsurface > CLOSURE_WEIGHT_CUTOFF);
+}
+
+void PrincipledBsdfNode::attributes(Shader *shader, AttributeRequestSet *attributes)
+{
+ if (shader->has_surface_link()) {
+ ShaderInput *tangent_in = input("Tangent");
+
+ if (!tangent_in->link)
+ attributes->add(ATTR_STD_GENERATED);
+ }
+
+ ShaderNode::attributes(shader, attributes);
+}
+
+void PrincipledBsdfNode::compile(SVMCompiler &compiler,
+ ShaderInput *p_metallic,
+ ShaderInput *p_subsurface,
+ ShaderInput *p_subsurface_radius,
+ ShaderInput *p_subsurface_ior,
+ ShaderInput *p_subsurface_anisotropy,
+ ShaderInput *p_specular,
+ ShaderInput *p_roughness,
+ ShaderInput *p_specular_tint,
+ ShaderInput *p_anisotropic,
+ ShaderInput *p_sheen,
+ ShaderInput *p_sheen_tint,
+ ShaderInput *p_clearcoat,
+ ShaderInput *p_clearcoat_roughness,
+ ShaderInput *p_ior,
+ ShaderInput *p_transmission,
+ ShaderInput *p_anisotropic_rotation,
+ ShaderInput *p_transmission_roughness)
+{
+ ShaderInput *base_color_in = input("Base Color");
+ ShaderInput *subsurface_color_in = input("Subsurface Color");
+ ShaderInput *normal_in = input("Normal");
+ ShaderInput *clearcoat_normal_in = input("Clearcoat Normal");
+ ShaderInput *tangent_in = input("Tangent");
+
+ float3 weight = one_float3();
+
+ compiler.add_node(NODE_CLOSURE_SET_WEIGHT, weight);
+
+ int normal_offset = compiler.stack_assign_if_linked(normal_in);
+ int clearcoat_normal_offset = compiler.stack_assign_if_linked(clearcoat_normal_in);
+ int tangent_offset = compiler.stack_assign_if_linked(tangent_in);
+ int specular_offset = compiler.stack_assign(p_specular);
+ int roughness_offset = compiler.stack_assign(p_roughness);
+ int specular_tint_offset = compiler.stack_assign(p_specular_tint);
+ int anisotropic_offset = compiler.stack_assign(p_anisotropic);
+ int sheen_offset = compiler.stack_assign(p_sheen);
+ int sheen_tint_offset = compiler.stack_assign(p_sheen_tint);
+ int clearcoat_offset = compiler.stack_assign(p_clearcoat);
+ int clearcoat_roughness_offset = compiler.stack_assign(p_clearcoat_roughness);
+ int ior_offset = compiler.stack_assign(p_ior);
+ int transmission_offset = compiler.stack_assign(p_transmission);
+ int transmission_roughness_offset = compiler.stack_assign(p_transmission_roughness);
+ int anisotropic_rotation_offset = compiler.stack_assign(p_anisotropic_rotation);
+ int subsurface_radius_offset = compiler.stack_assign(p_subsurface_radius);
+ int subsurface_ior_offset = compiler.stack_assign(p_subsurface_ior);
+ int subsurface_anisotropy_offset = compiler.stack_assign(p_subsurface_anisotropy);
+
+ compiler.add_node(NODE_CLOSURE_BSDF,
+ compiler.encode_uchar4(closure,
+ compiler.stack_assign(p_metallic),
+ compiler.stack_assign(p_subsurface),
+ compiler.closure_mix_weight_offset()),
+ __float_as_int((p_metallic) ? get_float(p_metallic->socket_type) : 0.0f),
+ __float_as_int((p_subsurface) ? get_float(p_subsurface->socket_type) : 0.0f));
+
+ compiler.add_node(
+ normal_offset,
+ tangent_offset,
+ compiler.encode_uchar4(
+ specular_offset, roughness_offset, specular_tint_offset, anisotropic_offset),
+ compiler.encode_uchar4(
+ sheen_offset, sheen_tint_offset, clearcoat_offset, clearcoat_roughness_offset));
+
+ compiler.add_node(compiler.encode_uchar4(ior_offset,
+ transmission_offset,
+ anisotropic_rotation_offset,
+ transmission_roughness_offset),
+ distribution,
+ subsurface_method,
+ SVM_STACK_INVALID);
+
+ float3 bc_default = get_float3(base_color_in->socket_type);
+
+ compiler.add_node(
+ ((base_color_in->link) ? compiler.stack_assign(base_color_in) : SVM_STACK_INVALID),
+ __float_as_int(bc_default.x),
+ __float_as_int(bc_default.y),
+ __float_as_int(bc_default.z));
+
+ compiler.add_node(clearcoat_normal_offset,
+ subsurface_radius_offset,
+ subsurface_ior_offset,
+ subsurface_anisotropy_offset);
+
+ float3 ss_default = get_float3(subsurface_color_in->socket_type);
+
+ compiler.add_node(((subsurface_color_in->link) ? compiler.stack_assign(subsurface_color_in) :
+ SVM_STACK_INVALID),
+ __float_as_int(ss_default.x),
+ __float_as_int(ss_default.y),
+ __float_as_int(ss_default.z));
+}
+
+bool PrincipledBsdfNode::has_integrator_dependency()
+{
+ ShaderInput *roughness_input = input("Roughness");
+ return !roughness_input->link && roughness <= 1e-4f;
+}
+
+void PrincipledBsdfNode::compile(SVMCompiler &compiler)
+{
+ compile(compiler,
+ input("Metallic"),
+ input("Subsurface"),
+ input("Subsurface Radius"),
+ input("Subsurface IOR"),
+ input("Subsurface Anisotropy"),
+ input("Specular"),
+ input("Roughness"),
+ input("Specular Tint"),
+ input("Anisotropic"),
+ input("Sheen"),
+ input("Sheen Tint"),
+ input("Clearcoat"),
+ input("Clearcoat Roughness"),
+ input("IOR"),
+ input("Transmission"),
+ input("Anisotropic Rotation"),
+ input("Transmission Roughness"));
+}
+
+void PrincipledBsdfNode::compile(OSLCompiler &compiler)
+{
+ compiler.parameter(this, "distribution");
+ compiler.parameter(this, "subsurface_method");
+ compiler.add(this, "node_principled_bsdf");
+}
+
+bool PrincipledBsdfNode::has_bssrdf_bump()
+{
+ return has_surface_bssrdf() && has_bump();
+}
+
+/* Translucent BSDF Closure */
+
+NODE_DEFINE(TranslucentBsdfNode)
+{
+ NodeType *type = NodeType::add("translucent_bsdf", create, NodeType::SHADER);
+
+ SOCKET_IN_COLOR(color, "Color", make_float3(0.8f, 0.8f, 0.8f));
+ SOCKET_IN_NORMAL(normal, "Normal", zero_float3(), SocketType::LINK_NORMAL);
+ SOCKET_IN_FLOAT(surface_mix_weight, "SurfaceMixWeight", 0.0f, SocketType::SVM_INTERNAL);
+
+ SOCKET_OUT_CLOSURE(BSDF, "BSDF");
+
+ return type;
+}
+
+TranslucentBsdfNode::TranslucentBsdfNode() : BsdfNode(get_node_type())
+{
+ closure = CLOSURE_BSDF_TRANSLUCENT_ID;
+}
+
+void TranslucentBsdfNode::compile(SVMCompiler &compiler)
+{
+ BsdfNode::compile(compiler, NULL, NULL);
+}
+
+void TranslucentBsdfNode::compile(OSLCompiler &compiler)
+{
+ compiler.add(this, "node_translucent_bsdf");
+}
+
+/* Transparent BSDF Closure */
+
+NODE_DEFINE(TransparentBsdfNode)
+{
+ NodeType *type = NodeType::add("transparent_bsdf", create, NodeType::SHADER);
+
+ SOCKET_IN_COLOR(color, "Color", one_float3());
+ SOCKET_IN_FLOAT(surface_mix_weight, "SurfaceMixWeight", 0.0f, SocketType::SVM_INTERNAL);
+
+ SOCKET_OUT_CLOSURE(BSDF, "BSDF");
+
+ return type;
+}
+
+TransparentBsdfNode::TransparentBsdfNode() : BsdfNode(get_node_type())
+{
+ closure = CLOSURE_BSDF_TRANSPARENT_ID;
+}
+
+void TransparentBsdfNode::compile(SVMCompiler &compiler)
+{
+ BsdfNode::compile(compiler, NULL, NULL);
+}
+
+void TransparentBsdfNode::compile(OSLCompiler &compiler)
+{
+ compiler.add(this, "node_transparent_bsdf");
+}
+
+/* Subsurface Scattering Closure */
+
+NODE_DEFINE(SubsurfaceScatteringNode)
+{
+ NodeType *type = NodeType::add("subsurface_scattering", create, NodeType::SHADER);
+
+ SOCKET_IN_COLOR(color, "Color", make_float3(0.8f, 0.8f, 0.8f));
+ SOCKET_IN_NORMAL(normal, "Normal", zero_float3(), SocketType::LINK_NORMAL);
+ SOCKET_IN_FLOAT(surface_mix_weight, "SurfaceMixWeight", 0.0f, SocketType::SVM_INTERNAL);
+
+ static NodeEnum method_enum;
+ method_enum.insert("burley", CLOSURE_BSSRDF_BURLEY_ID);
+ method_enum.insert("random_walk_fixed_radius", CLOSURE_BSSRDF_RANDOM_WALK_FIXED_RADIUS_ID);
+ method_enum.insert("random_walk", CLOSURE_BSSRDF_RANDOM_WALK_ID);
+ SOCKET_ENUM(method, "Method", method_enum, CLOSURE_BSSRDF_RANDOM_WALK_ID);
+
+ SOCKET_IN_FLOAT(scale, "Scale", 0.01f);
+ SOCKET_IN_VECTOR(radius, "Radius", make_float3(0.1f, 0.1f, 0.1f));
+
+ SOCKET_IN_FLOAT(subsurface_ior, "IOR", 1.4f);
+ SOCKET_IN_FLOAT(subsurface_anisotropy, "Anisotropy", 0.0f);
+
+ SOCKET_OUT_CLOSURE(BSSRDF, "BSSRDF");
+
+ return type;
+}
+
+SubsurfaceScatteringNode::SubsurfaceScatteringNode() : BsdfNode(get_node_type())
+{
+ closure = method;
+}
+
+void SubsurfaceScatteringNode::compile(SVMCompiler &compiler)
+{
+ closure = method;
+ BsdfNode::compile(compiler, input("Scale"), input("IOR"), input("Radius"), input("Anisotropy"));
+}
+
+void SubsurfaceScatteringNode::compile(OSLCompiler &compiler)
+{
+ closure = method;
+ compiler.parameter(this, "method");
+ compiler.add(this, "node_subsurface_scattering");
+}
+
+bool SubsurfaceScatteringNode::has_bssrdf_bump()
+{
+ /* detect if anything is plugged into the normal input besides the default */
+ ShaderInput *normal_in = input("Normal");
+ return (normal_in->link &&
+ normal_in->link->parent->special_type != SHADER_SPECIAL_TYPE_GEOMETRY);
+}
+
+/* Emissive Closure */
+
+NODE_DEFINE(EmissionNode)
+{
+ NodeType *type = NodeType::add("emission", create, NodeType::SHADER);
+
+ SOCKET_IN_COLOR(color, "Color", make_float3(0.8f, 0.8f, 0.8f));
+ SOCKET_IN_FLOAT(strength, "Strength", 10.0f);
+ SOCKET_IN_FLOAT(surface_mix_weight, "SurfaceMixWeight", 0.0f, SocketType::SVM_INTERNAL);
+
+ SOCKET_OUT_CLOSURE(emission, "Emission");
+
+ return type;
+}
+
+EmissionNode::EmissionNode() : ShaderNode(get_node_type())
+{
+}
+
+void EmissionNode::compile(SVMCompiler &compiler)
+{
+ ShaderInput *color_in = input("Color");
+ ShaderInput *strength_in = input("Strength");
+
+ if (color_in->link || strength_in->link) {
+ compiler.add_node(
+ NODE_EMISSION_WEIGHT, compiler.stack_assign(color_in), compiler.stack_assign(strength_in));
+ }
+ else
+ compiler.add_node(NODE_CLOSURE_SET_WEIGHT, color * strength);
+
+ compiler.add_node(NODE_CLOSURE_EMISSION, compiler.closure_mix_weight_offset());
+}
+
+void EmissionNode::compile(OSLCompiler &compiler)
+{
+ compiler.add(this, "node_emission");
+}
+
+void EmissionNode::constant_fold(const ConstantFolder &folder)
+{
+ ShaderInput *color_in = input("Color");
+ ShaderInput *strength_in = input("Strength");
+
+ if ((!color_in->link && color == zero_float3()) || (!strength_in->link && strength == 0.0f)) {
+ folder.discard();
+ }
+}
+
+/* Background Closure */
+
+NODE_DEFINE(BackgroundNode)
+{
+ NodeType *type = NodeType::add("background_shader", create, NodeType::SHADER);
+
+ SOCKET_IN_COLOR(color, "Color", make_float3(0.8f, 0.8f, 0.8f));
+ SOCKET_IN_FLOAT(strength, "Strength", 1.0f);
+ SOCKET_IN_FLOAT(surface_mix_weight, "SurfaceMixWeight", 0.0f, SocketType::SVM_INTERNAL);
+
+ SOCKET_OUT_CLOSURE(background, "Background");
+
+ return type;
+}
+
+BackgroundNode::BackgroundNode() : ShaderNode(get_node_type())
+{
+}
+
+void BackgroundNode::compile(SVMCompiler &compiler)
+{
+ ShaderInput *color_in = input("Color");
+ ShaderInput *strength_in = input("Strength");
+
+ if (color_in->link || strength_in->link) {
+ compiler.add_node(
+ NODE_EMISSION_WEIGHT, compiler.stack_assign(color_in), compiler.stack_assign(strength_in));
+ }
+ else
+ compiler.add_node(NODE_CLOSURE_SET_WEIGHT, color * strength);
+
+ compiler.add_node(NODE_CLOSURE_BACKGROUND, compiler.closure_mix_weight_offset());
+}
+
+void BackgroundNode::compile(OSLCompiler &compiler)
+{
+ compiler.add(this, "node_background");
+}
+
+void BackgroundNode::constant_fold(const ConstantFolder &folder)
+{
+ ShaderInput *color_in = input("Color");
+ ShaderInput *strength_in = input("Strength");
+
+ if ((!color_in->link && color == zero_float3()) || (!strength_in->link && strength == 0.0f)) {
+ folder.discard();
+ }
+}
+
+/* Holdout Closure */
+
+NODE_DEFINE(HoldoutNode)
+{
+ NodeType *type = NodeType::add("holdout", create, NodeType::SHADER);
+
+ SOCKET_IN_FLOAT(surface_mix_weight, "SurfaceMixWeight", 0.0f, SocketType::SVM_INTERNAL);
+ SOCKET_IN_FLOAT(volume_mix_weight, "VolumeMixWeight", 0.0f, SocketType::SVM_INTERNAL);
+
+ SOCKET_OUT_CLOSURE(holdout, "Holdout");
+
+ return type;
+}
+
+HoldoutNode::HoldoutNode() : ShaderNode(get_node_type())
+{
+}
+
+void HoldoutNode::compile(SVMCompiler &compiler)
+{
+ float3 value = one_float3();
+
+ compiler.add_node(NODE_CLOSURE_SET_WEIGHT, value);
+ compiler.add_node(NODE_CLOSURE_HOLDOUT, compiler.closure_mix_weight_offset());
+}
+
+void HoldoutNode::compile(OSLCompiler &compiler)
+{
+ compiler.add(this, "node_holdout");
+}
+
+/* Ambient Occlusion */
+
+NODE_DEFINE(AmbientOcclusionNode)
+{
+ NodeType *type = NodeType::add("ambient_occlusion", create, NodeType::SHADER);
+
+ SOCKET_INT(samples, "Samples", 16);
+
+ SOCKET_IN_COLOR(color, "Color", one_float3());
+ SOCKET_IN_FLOAT(distance, "Distance", 1.0f);
+ SOCKET_IN_NORMAL(normal, "Normal", zero_float3(), SocketType::LINK_NORMAL);
+
+ SOCKET_BOOLEAN(inside, "Inside", false);
+ SOCKET_BOOLEAN(only_local, "Only Local", false);
+
+ SOCKET_OUT_COLOR(color, "Color");
+ SOCKET_OUT_FLOAT(ao, "AO");
+
+ return type;
+}
+
+AmbientOcclusionNode::AmbientOcclusionNode() : ShaderNode(get_node_type())
+{
+}
+
+void AmbientOcclusionNode::compile(SVMCompiler &compiler)
+{
+ ShaderInput *color_in = input("Color");
+ ShaderInput *distance_in = input("Distance");
+ ShaderInput *normal_in = input("Normal");
+ ShaderOutput *color_out = output("Color");
+ ShaderOutput *ao_out = output("AO");
+
+ int flags = (inside ? NODE_AO_INSIDE : 0) | (only_local ? NODE_AO_ONLY_LOCAL : 0);
+
+ if (!distance_in->link && distance == 0.0f) {
+ flags |= NODE_AO_GLOBAL_RADIUS;
+ }
+
+ compiler.add_node(NODE_AMBIENT_OCCLUSION,
+ compiler.encode_uchar4(flags,
+ compiler.stack_assign_if_linked(distance_in),
+ compiler.stack_assign_if_linked(normal_in),
+ compiler.stack_assign(ao_out)),
+ compiler.encode_uchar4(compiler.stack_assign(color_in),
+ compiler.stack_assign(color_out),
+ samples),
+ __float_as_uint(distance));
+}
+
+void AmbientOcclusionNode::compile(OSLCompiler &compiler)
+{
+ compiler.parameter(this, "samples");
+ compiler.parameter(this, "inside");
+ compiler.parameter(this, "only_local");
+ compiler.add(this, "node_ambient_occlusion");
+}
+
+/* Volume Closure */
+
+VolumeNode::VolumeNode(const NodeType *node_type) : ShaderNode(node_type)
+{
+ closure = CLOSURE_VOLUME_HENYEY_GREENSTEIN_ID;
+}
+
+void VolumeNode::compile(SVMCompiler &compiler, ShaderInput *param1, ShaderInput *param2)
+{
+ ShaderInput *color_in = input("Color");
+
+ if (color_in->link)
+ compiler.add_node(NODE_CLOSURE_WEIGHT, compiler.stack_assign(color_in));
+ else
+ compiler.add_node(NODE_CLOSURE_SET_WEIGHT, color);
+
+ compiler.add_node(
+ NODE_CLOSURE_VOLUME,
+ compiler.encode_uchar4(closure,
+ (param1) ? compiler.stack_assign(param1) : SVM_STACK_INVALID,
+ (param2) ? compiler.stack_assign(param2) : SVM_STACK_INVALID,
+ compiler.closure_mix_weight_offset()),
+ __float_as_int((param1) ? get_float(param1->socket_type) : 0.0f),
+ __float_as_int((param2) ? get_float(param2->socket_type) : 0.0f));
+}
+
+void VolumeNode::compile(SVMCompiler &compiler)
+{
+ compile(compiler, NULL, NULL);
+}
+
+void VolumeNode::compile(OSLCompiler & /*compiler*/)
+{
+ assert(0);
+}
+
+/* Absorption Volume Closure */
+
+NODE_DEFINE(AbsorptionVolumeNode)
+{
+ NodeType *type = NodeType::add("absorption_volume", create, NodeType::SHADER);
+
+ SOCKET_IN_COLOR(color, "Color", make_float3(0.8f, 0.8f, 0.8f));
+ SOCKET_IN_FLOAT(density, "Density", 1.0f);
+ SOCKET_IN_FLOAT(volume_mix_weight, "VolumeMixWeight", 0.0f, SocketType::SVM_INTERNAL);
+
+ SOCKET_OUT_CLOSURE(volume, "Volume");
+
+ return type;
+}
+
+AbsorptionVolumeNode::AbsorptionVolumeNode() : VolumeNode(get_node_type())
+{
+ closure = CLOSURE_VOLUME_ABSORPTION_ID;
+}
+
+void AbsorptionVolumeNode::compile(SVMCompiler &compiler)
+{
+ VolumeNode::compile(compiler, input("Density"), NULL);
+}
+
+void AbsorptionVolumeNode::compile(OSLCompiler &compiler)
+{
+ compiler.add(this, "node_absorption_volume");
+}
+
+/* Scatter Volume Closure */
+
+NODE_DEFINE(ScatterVolumeNode)
+{
+ NodeType *type = NodeType::add("scatter_volume", create, NodeType::SHADER);
+
+ SOCKET_IN_COLOR(color, "Color", make_float3(0.8f, 0.8f, 0.8f));
+ SOCKET_IN_FLOAT(density, "Density", 1.0f);
+ SOCKET_IN_FLOAT(anisotropy, "Anisotropy", 0.0f);
+ SOCKET_IN_FLOAT(volume_mix_weight, "VolumeMixWeight", 0.0f, SocketType::SVM_INTERNAL);
+
+ SOCKET_OUT_CLOSURE(volume, "Volume");
+
+ return type;
+}
+
+ScatterVolumeNode::ScatterVolumeNode() : VolumeNode(get_node_type())
+{
+ closure = CLOSURE_VOLUME_HENYEY_GREENSTEIN_ID;
+}
+
+void ScatterVolumeNode::compile(SVMCompiler &compiler)
+{
+ VolumeNode::compile(compiler, input("Density"), input("Anisotropy"));
+}
+
+void ScatterVolumeNode::compile(OSLCompiler &compiler)
+{
+ compiler.add(this, "node_scatter_volume");
+}
+
+/* Principled Volume Closure */
+
+NODE_DEFINE(PrincipledVolumeNode)
+{
+ NodeType *type = NodeType::add("principled_volume", create, NodeType::SHADER);
+
+ SOCKET_IN_STRING(density_attribute, "Density Attribute", ustring());
+ SOCKET_IN_STRING(color_attribute, "Color Attribute", ustring());
+ SOCKET_IN_STRING(temperature_attribute, "Temperature Attribute", ustring());
+
+ SOCKET_IN_COLOR(color, "Color", make_float3(0.5f, 0.5f, 0.5f));
+ SOCKET_IN_FLOAT(density, "Density", 1.0f);
+ SOCKET_IN_FLOAT(anisotropy, "Anisotropy", 0.0f);
+ SOCKET_IN_COLOR(absorption_color, "Absorption Color", zero_float3());
+ SOCKET_IN_FLOAT(emission_strength, "Emission Strength", 0.0f);
+ SOCKET_IN_COLOR(emission_color, "Emission Color", one_float3());
+ SOCKET_IN_FLOAT(blackbody_intensity, "Blackbody Intensity", 0.0f);
+ SOCKET_IN_COLOR(blackbody_tint, "Blackbody Tint", one_float3());
+ SOCKET_IN_FLOAT(temperature, "Temperature", 1000.0f);
+ SOCKET_IN_FLOAT(volume_mix_weight, "VolumeMixWeight", 0.0f, SocketType::SVM_INTERNAL);
+
+ SOCKET_OUT_CLOSURE(volume, "Volume");
+
+ return type;
+}
+
+PrincipledVolumeNode::PrincipledVolumeNode() : VolumeNode(get_node_type())
+{
+ closure = CLOSURE_VOLUME_HENYEY_GREENSTEIN_ID;
+ density_attribute = ustring("density");
+ temperature_attribute = ustring("temperature");
+}
+
+void PrincipledVolumeNode::attributes(Shader *shader, AttributeRequestSet *attributes)
+{
+ if (shader->has_volume) {
+ ShaderInput *density_in = input("Density");
+ ShaderInput *blackbody_in = input("Blackbody Intensity");
+
+ if (density_in->link || density > 0.0f) {
+ attributes->add_standard(density_attribute);
+ attributes->add_standard(color_attribute);
+ }
+
+ if (blackbody_in->link || blackbody_intensity > 0.0f) {
+ attributes->add_standard(temperature_attribute);
+ }
+
+ attributes->add(ATTR_STD_GENERATED_TRANSFORM);
+ }
+
+ ShaderNode::attributes(shader, attributes);
+}
+
+void PrincipledVolumeNode::compile(SVMCompiler &compiler)
+{
+ ShaderInput *color_in = input("Color");
+ ShaderInput *density_in = input("Density");
+ ShaderInput *anisotropy_in = input("Anisotropy");
+ ShaderInput *absorption_color_in = input("Absorption Color");
+ ShaderInput *emission_in = input("Emission Strength");
+ ShaderInput *emission_color_in = input("Emission Color");
+ ShaderInput *blackbody_in = input("Blackbody Intensity");
+ ShaderInput *blackbody_tint_in = input("Blackbody Tint");
+ ShaderInput *temperature_in = input("Temperature");
+
+ if (color_in->link)
+ compiler.add_node(NODE_CLOSURE_WEIGHT, compiler.stack_assign(color_in));
+ else
+ compiler.add_node(NODE_CLOSURE_SET_WEIGHT, color);
+
+ compiler.add_node(NODE_PRINCIPLED_VOLUME,
+ compiler.encode_uchar4(compiler.stack_assign_if_linked(density_in),
+ compiler.stack_assign_if_linked(anisotropy_in),
+ compiler.stack_assign(absorption_color_in),
+ compiler.closure_mix_weight_offset()),
+ compiler.encode_uchar4(compiler.stack_assign_if_linked(emission_in),
+ compiler.stack_assign(emission_color_in),
+ compiler.stack_assign_if_linked(blackbody_in),
+ compiler.stack_assign(temperature_in)),
+ compiler.stack_assign(blackbody_tint_in));
+
+ int attr_density = compiler.attribute_standard(density_attribute);
+ int attr_color = compiler.attribute_standard(color_attribute);
+ int attr_temperature = compiler.attribute_standard(temperature_attribute);
+
+ compiler.add_node(__float_as_int(density),
+ __float_as_int(anisotropy),
+ __float_as_int(emission_strength),
+ __float_as_int(blackbody_intensity));
+
+ compiler.add_node(attr_density, attr_color, attr_temperature);
+}
+
+void PrincipledVolumeNode::compile(OSLCompiler &compiler)
+{
+ if (Attribute::name_standard(density_attribute.c_str())) {
+ density_attribute = ustring("geom:" + density_attribute.string());
+ }
+ if (Attribute::name_standard(color_attribute.c_str())) {
+ color_attribute = ustring("geom:" + color_attribute.string());
+ }
+ if (Attribute::name_standard(temperature_attribute.c_str())) {
+ temperature_attribute = ustring("geom:" + temperature_attribute.string());
+ }
+
+ compiler.add(this, "node_principled_volume");
+}
+
+/* Principled Hair BSDF Closure */
+
+NODE_DEFINE(PrincipledHairBsdfNode)
+{
+ NodeType *type = NodeType::add("principled_hair_bsdf", create, NodeType::SHADER);
+
+ /* Color parametrization specified as enum. */
+ static NodeEnum parametrization_enum;
+ parametrization_enum.insert("Direct coloring", NODE_PRINCIPLED_HAIR_REFLECTANCE);
+ parametrization_enum.insert("Melanin concentration", NODE_PRINCIPLED_HAIR_PIGMENT_CONCENTRATION);
+ parametrization_enum.insert("Absorption coefficient", NODE_PRINCIPLED_HAIR_DIRECT_ABSORPTION);
+ SOCKET_ENUM(
+ parametrization, "Parametrization", parametrization_enum, NODE_PRINCIPLED_HAIR_REFLECTANCE);
+
+ /* Initialize sockets to their default values. */
+ SOCKET_IN_COLOR(color, "Color", make_float3(0.017513f, 0.005763f, 0.002059f));
+ SOCKET_IN_FLOAT(melanin, "Melanin", 0.8f);
+ SOCKET_IN_FLOAT(melanin_redness, "Melanin Redness", 1.0f);
+ SOCKET_IN_COLOR(tint, "Tint", make_float3(1.f, 1.f, 1.f));
+ SOCKET_IN_VECTOR(absorption_coefficient,
+ "Absorption Coefficient",
+ make_float3(0.245531f, 0.52f, 1.365f),
+ SocketType::VECTOR);
+
+ SOCKET_IN_FLOAT(offset, "Offset", 2.f * M_PI_F / 180.f);
+ SOCKET_IN_FLOAT(roughness, "Roughness", 0.3f);
+ SOCKET_IN_FLOAT(radial_roughness, "Radial Roughness", 0.3f);
+ SOCKET_IN_FLOAT(coat, "Coat", 0.0f);
+ SOCKET_IN_FLOAT(ior, "IOR", 1.55f);
+
+ SOCKET_IN_FLOAT(random_roughness, "Random Roughness", 0.0f);
+ SOCKET_IN_FLOAT(random_color, "Random Color", 0.0f);
+ SOCKET_IN_FLOAT(random, "Random", 0.0f);
+
+ SOCKET_IN_NORMAL(normal, "Normal", zero_float3(), SocketType::LINK_NORMAL);
+ SOCKET_IN_FLOAT(surface_mix_weight, "SurfaceMixWeight", 0.0f, SocketType::SVM_INTERNAL);
+
+ SOCKET_OUT_CLOSURE(BSDF, "BSDF");
+
+ return type;
+}
+
+PrincipledHairBsdfNode::PrincipledHairBsdfNode() : BsdfBaseNode(get_node_type())
+{
+ closure = CLOSURE_BSDF_HAIR_PRINCIPLED_ID;
+}
+
+/* Enable retrieving Hair Info -> Random if Random isn't linked. */
+void PrincipledHairBsdfNode::attributes(Shader *shader, AttributeRequestSet *attributes)
+{
+ if (!input("Random")->link) {
+ attributes->add(ATTR_STD_CURVE_RANDOM);
+ }
+ ShaderNode::attributes(shader, attributes);
+}
+
+/* Prepares the input data for the SVM shader. */
+void PrincipledHairBsdfNode::compile(SVMCompiler &compiler)
+{
+ compiler.add_node(NODE_CLOSURE_SET_WEIGHT, one_float3());
+
+ ShaderInput *roughness_in = input("Roughness");
+ ShaderInput *radial_roughness_in = input("Radial Roughness");
+ ShaderInput *random_roughness_in = input("Random Roughness");
+ ShaderInput *offset_in = input("Offset");
+ ShaderInput *coat_in = input("Coat");
+ ShaderInput *ior_in = input("IOR");
+ ShaderInput *melanin_in = input("Melanin");
+ ShaderInput *melanin_redness_in = input("Melanin Redness");
+ ShaderInput *random_color_in = input("Random Color");
+
+ int color_ofs = compiler.stack_assign(input("Color"));
+ int tint_ofs = compiler.stack_assign(input("Tint"));
+ int absorption_coefficient_ofs = compiler.stack_assign(input("Absorption Coefficient"));
+
+ ShaderInput *random_in = input("Random");
+ int attr_random = random_in->link ? SVM_STACK_INVALID :
+ compiler.attribute(ATTR_STD_CURVE_RANDOM);
+
+ /* Encode all parameters into data nodes. */
+ compiler.add_node(NODE_CLOSURE_BSDF,
+ /* Socket IDs can be packed 4 at a time into a single data packet */
+ compiler.encode_uchar4(closure,
+ compiler.stack_assign_if_linked(roughness_in),
+ compiler.stack_assign_if_linked(radial_roughness_in),
+ compiler.closure_mix_weight_offset()),
+ /* The rest are stored as unsigned integers */
+ __float_as_uint(roughness),
+ __float_as_uint(radial_roughness));
+
+ compiler.add_node(compiler.stack_assign_if_linked(input("Normal")),
+ compiler.encode_uchar4(compiler.stack_assign_if_linked(offset_in),
+ compiler.stack_assign_if_linked(ior_in),
+ color_ofs,
+ parametrization),
+ __float_as_uint(offset),
+ __float_as_uint(ior));
+
+ compiler.add_node(compiler.encode_uchar4(compiler.stack_assign_if_linked(coat_in),
+ compiler.stack_assign_if_linked(melanin_in),
+ compiler.stack_assign_if_linked(melanin_redness_in),
+ absorption_coefficient_ofs),
+ __float_as_uint(coat),
+ __float_as_uint(melanin),
+ __float_as_uint(melanin_redness));
+
+ compiler.add_node(compiler.encode_uchar4(tint_ofs,
+ compiler.stack_assign_if_linked(random_in),
+ compiler.stack_assign_if_linked(random_color_in),
+ compiler.stack_assign_if_linked(random_roughness_in)),
+ __float_as_uint(random),
+ __float_as_uint(random_color),
+ __float_as_uint(random_roughness));
+
+ compiler.add_node(
+ compiler.encode_uchar4(
+ SVM_STACK_INVALID, SVM_STACK_INVALID, SVM_STACK_INVALID, SVM_STACK_INVALID),
+ attr_random,
+ SVM_STACK_INVALID,
+ SVM_STACK_INVALID);
+}
+
+/* Prepares the input data for the OSL shader. */
+void PrincipledHairBsdfNode::compile(OSLCompiler &compiler)
+{
+ compiler.parameter(this, "parametrization");
+ compiler.add(this, "node_principled_hair_bsdf");
+}
+
+/* Hair BSDF Closure */
+
+NODE_DEFINE(HairBsdfNode)
+{
+ NodeType *type = NodeType::add("hair_bsdf", create, NodeType::SHADER);
+
+ SOCKET_IN_COLOR(color, "Color", make_float3(0.8f, 0.8f, 0.8f));
+ SOCKET_IN_NORMAL(normal, "Normal", zero_float3(), SocketType::LINK_NORMAL);
+ SOCKET_IN_FLOAT(surface_mix_weight, "SurfaceMixWeight", 0.0f, SocketType::SVM_INTERNAL);
+
+ static NodeEnum component_enum;
+ component_enum.insert("reflection", CLOSURE_BSDF_HAIR_REFLECTION_ID);
+ component_enum.insert("transmission", CLOSURE_BSDF_HAIR_TRANSMISSION_ID);
+ SOCKET_ENUM(component, "Component", component_enum, CLOSURE_BSDF_HAIR_REFLECTION_ID);
+ SOCKET_IN_FLOAT(offset, "Offset", 0.0f);
+ SOCKET_IN_FLOAT(roughness_u, "RoughnessU", 0.2f);
+ SOCKET_IN_FLOAT(roughness_v, "RoughnessV", 0.2f);
+ SOCKET_IN_VECTOR(tangent, "Tangent", zero_float3());
+
+ SOCKET_OUT_CLOSURE(BSDF, "BSDF");
+
+ return type;
+}
+
+HairBsdfNode::HairBsdfNode() : BsdfNode(get_node_type())
+{
+ closure = CLOSURE_BSDF_HAIR_REFLECTION_ID;
+}
+
+void HairBsdfNode::compile(SVMCompiler &compiler)
+{
+ closure = component;
+
+ BsdfNode::compile(compiler, input("RoughnessU"), input("RoughnessV"), input("Offset"));
+}
+
+void HairBsdfNode::compile(OSLCompiler &compiler)
+{
+ compiler.parameter(this, "component");
+ compiler.add(this, "node_hair_bsdf");
+}
+
+/* Geometry */
+
+NODE_DEFINE(GeometryNode)
+{
+ NodeType *type = NodeType::add("geometry", create, NodeType::SHADER);
+
+ SOCKET_IN_NORMAL(
+ normal_osl, "NormalIn", zero_float3(), SocketType::LINK_NORMAL | SocketType::OSL_INTERNAL);
+
+ SOCKET_OUT_POINT(position, "Position");
+ SOCKET_OUT_NORMAL(normal, "Normal");
+ SOCKET_OUT_NORMAL(tangent, "Tangent");
+ SOCKET_OUT_NORMAL(true_normal, "True Normal");
+ SOCKET_OUT_VECTOR(incoming, "Incoming");
+ SOCKET_OUT_POINT(parametric, "Parametric");
+ SOCKET_OUT_FLOAT(backfacing, "Backfacing");
+ SOCKET_OUT_FLOAT(pointiness, "Pointiness");
+ SOCKET_OUT_FLOAT(random_per_island, "Random Per Island");
+
+ return type;
+}
+
+GeometryNode::GeometryNode() : ShaderNode(get_node_type())
+{
+ special_type = SHADER_SPECIAL_TYPE_GEOMETRY;
+}
+
+void GeometryNode::attributes(Shader *shader, AttributeRequestSet *attributes)
+{
+ if (shader->has_surface_link()) {
+ if (!output("Tangent")->links.empty()) {
+ attributes->add(ATTR_STD_GENERATED);
+ }
+ if (!output("Pointiness")->links.empty()) {
+ attributes->add(ATTR_STD_POINTINESS);
+ }
+ if (!output("Random Per Island")->links.empty()) {
+ attributes->add(ATTR_STD_RANDOM_PER_ISLAND);
+ }
+ }
+
+ ShaderNode::attributes(shader, attributes);
+}
+
+void GeometryNode::compile(SVMCompiler &compiler)
+{
+ ShaderOutput *out;
+ ShaderNodeType geom_node = NODE_GEOMETRY;
+ ShaderNodeType attr_node = NODE_ATTR;
+
+ if (bump == SHADER_BUMP_DX) {
+ geom_node = NODE_GEOMETRY_BUMP_DX;
+ attr_node = NODE_ATTR_BUMP_DX;
+ }
+ else if (bump == SHADER_BUMP_DY) {
+ geom_node = NODE_GEOMETRY_BUMP_DY;
+ attr_node = NODE_ATTR_BUMP_DY;
+ }
+
+ out = output("Position");
+ if (!out->links.empty()) {
+ compiler.add_node(geom_node, NODE_GEOM_P, compiler.stack_assign(out));
+ }
+
+ out = output("Normal");
+ if (!out->links.empty()) {
+ compiler.add_node(geom_node, NODE_GEOM_N, compiler.stack_assign(out));
+ }
+
+ out = output("Tangent");
+ if (!out->links.empty()) {
+ compiler.add_node(geom_node, NODE_GEOM_T, compiler.stack_assign(out));
+ }
+
+ out = output("True Normal");
+ if (!out->links.empty()) {
+ compiler.add_node(geom_node, NODE_GEOM_Ng, compiler.stack_assign(out));
+ }
+
+ out = output("Incoming");
+ if (!out->links.empty()) {
+ compiler.add_node(geom_node, NODE_GEOM_I, compiler.stack_assign(out));
+ }
+
+ out = output("Parametric");
+ if (!out->links.empty()) {
+ compiler.add_node(geom_node, NODE_GEOM_uv, compiler.stack_assign(out));
+ }
+
+ out = output("Backfacing");
+ if (!out->links.empty()) {
+ compiler.add_node(NODE_LIGHT_PATH, NODE_LP_backfacing, compiler.stack_assign(out));
+ }
+
+ out = output("Pointiness");
+ if (!out->links.empty()) {
+ if (compiler.output_type() != SHADER_TYPE_VOLUME) {
+ compiler.add_node(
+ attr_node, ATTR_STD_POINTINESS, compiler.stack_assign(out), NODE_ATTR_OUTPUT_FLOAT);
+ }
+ else {
+ compiler.add_node(NODE_VALUE_F, __float_as_int(0.0f), compiler.stack_assign(out));
+ }
+ }
+
+ out = output("Random Per Island");
+ if (!out->links.empty()) {
+ if (compiler.output_type() != SHADER_TYPE_VOLUME) {
+ compiler.add_node(attr_node,
+ ATTR_STD_RANDOM_PER_ISLAND,
+ compiler.stack_assign(out),
+ NODE_ATTR_OUTPUT_FLOAT);
+ }
+ else {
+ compiler.add_node(NODE_VALUE_F, __float_as_int(0.0f), compiler.stack_assign(out));
+ }
+ }
+}
+
+void GeometryNode::compile(OSLCompiler &compiler)
+{
+ if (bump == SHADER_BUMP_DX)
+ compiler.parameter("bump_offset", "dx");
+ else if (bump == SHADER_BUMP_DY)
+ compiler.parameter("bump_offset", "dy");
+ else
+ compiler.parameter("bump_offset", "center");
+
+ compiler.add(this, "node_geometry");
+}
+
+/* TextureCoordinate */
+
+NODE_DEFINE(TextureCoordinateNode)
+{
+ NodeType *type = NodeType::add("texture_coordinate", create, NodeType::SHADER);
+
+ SOCKET_BOOLEAN(from_dupli, "From Dupli", false);
+ SOCKET_BOOLEAN(use_transform, "Use Transform", false);
+ SOCKET_TRANSFORM(ob_tfm, "Object Transform", transform_identity());
+
+ SOCKET_IN_NORMAL(
+ normal_osl, "NormalIn", zero_float3(), SocketType::LINK_NORMAL | SocketType::OSL_INTERNAL);
+
+ SOCKET_OUT_POINT(generated, "Generated");
+ SOCKET_OUT_NORMAL(normal, "Normal");
+ SOCKET_OUT_POINT(UV, "UV");
+ SOCKET_OUT_POINT(object, "Object");
+ SOCKET_OUT_POINT(camera, "Camera");
+ SOCKET_OUT_POINT(window, "Window");
+ SOCKET_OUT_NORMAL(reflection, "Reflection");
+
+ return type;
+}
+
+TextureCoordinateNode::TextureCoordinateNode() : ShaderNode(get_node_type())
+{
+}
+
+void TextureCoordinateNode::attributes(Shader *shader, AttributeRequestSet *attributes)
+{
+ if (shader->has_surface_link()) {
+ if (!from_dupli) {
+ if (!output("Generated")->links.empty())
+ attributes->add(ATTR_STD_GENERATED);
+ if (!output("UV")->links.empty())
+ attributes->add(ATTR_STD_UV);
+ }
+ }
+
+ if (shader->has_volume) {
+ if (!from_dupli) {
+ if (!output("Generated")->links.empty()) {
+ attributes->add(ATTR_STD_GENERATED_TRANSFORM);
+ }
+ }
+ }
+
+ ShaderNode::attributes(shader, attributes);
+}
+
+void TextureCoordinateNode::compile(SVMCompiler &compiler)
+{
+ ShaderOutput *out;
+ ShaderNodeType texco_node = NODE_TEX_COORD;
+ ShaderNodeType attr_node = NODE_ATTR;
+ ShaderNodeType geom_node = NODE_GEOMETRY;
+
+ if (bump == SHADER_BUMP_DX) {
+ texco_node = NODE_TEX_COORD_BUMP_DX;
+ attr_node = NODE_ATTR_BUMP_DX;
+ geom_node = NODE_GEOMETRY_BUMP_DX;
+ }
+ else if (bump == SHADER_BUMP_DY) {
+ texco_node = NODE_TEX_COORD_BUMP_DY;
+ attr_node = NODE_ATTR_BUMP_DY;
+ geom_node = NODE_GEOMETRY_BUMP_DY;
+ }
+
+ out = output("Generated");
+ if (!out->links.empty()) {
+ if (compiler.background) {
+ compiler.add_node(geom_node, NODE_GEOM_P, compiler.stack_assign(out));
+ }
+ else {
+ if (from_dupli) {
+ compiler.add_node(texco_node, NODE_TEXCO_DUPLI_GENERATED, compiler.stack_assign(out));
+ }
+ else if (compiler.output_type() == SHADER_TYPE_VOLUME) {
+ compiler.add_node(texco_node, NODE_TEXCO_VOLUME_GENERATED, compiler.stack_assign(out));
+ }
+ else {
+ int attr = compiler.attribute(ATTR_STD_GENERATED);
+ compiler.add_node(attr_node, attr, compiler.stack_assign(out), NODE_ATTR_OUTPUT_FLOAT3);
+ }
+ }
+ }
+
+ out = output("Normal");
+ if (!out->links.empty()) {
+ compiler.add_node(texco_node, NODE_TEXCO_NORMAL, compiler.stack_assign(out));
+ }
+
+ out = output("UV");
+ if (!out->links.empty()) {
+ if (from_dupli) {
+ compiler.add_node(texco_node, NODE_TEXCO_DUPLI_UV, compiler.stack_assign(out));
+ }
+ else {
+ int attr = compiler.attribute(ATTR_STD_UV);
+ compiler.add_node(attr_node, attr, compiler.stack_assign(out), NODE_ATTR_OUTPUT_FLOAT3);
+ }
+ }
+
+ out = output("Object");
+ if (!out->links.empty()) {
+ compiler.add_node(texco_node, NODE_TEXCO_OBJECT, compiler.stack_assign(out), use_transform);
+ if (use_transform) {
+ Transform ob_itfm = transform_inverse(ob_tfm);
+ compiler.add_node(ob_itfm.x);
+ compiler.add_node(ob_itfm.y);
+ compiler.add_node(ob_itfm.z);
+ }
+ }
+
+ out = output("Camera");
+ if (!out->links.empty()) {
+ compiler.add_node(texco_node, NODE_TEXCO_CAMERA, compiler.stack_assign(out));
+ }
+
+ out = output("Window");
+ if (!out->links.empty()) {
+ compiler.add_node(texco_node, NODE_TEXCO_WINDOW, compiler.stack_assign(out));
+ }
+
+ out = output("Reflection");
+ if (!out->links.empty()) {
+ if (compiler.background) {
+ compiler.add_node(geom_node, NODE_GEOM_I, compiler.stack_assign(out));
+ }
+ else {
+ compiler.add_node(texco_node, NODE_TEXCO_REFLECTION, compiler.stack_assign(out));
+ }
+ }
+}
+
+void TextureCoordinateNode::compile(OSLCompiler &compiler)
+{
+ if (bump == SHADER_BUMP_DX)
+ compiler.parameter("bump_offset", "dx");
+ else if (bump == SHADER_BUMP_DY)
+ compiler.parameter("bump_offset", "dy");
+ else
+ compiler.parameter("bump_offset", "center");
+
+ if (compiler.background)
+ compiler.parameter("is_background", true);
+ if (compiler.output_type() == SHADER_TYPE_VOLUME)
+ compiler.parameter("is_volume", true);
+ compiler.parameter(this, "use_transform");
+ Transform ob_itfm = transform_inverse(ob_tfm);
+ compiler.parameter("object_itfm", ob_itfm);
+
+ compiler.parameter(this, "from_dupli");
+
+ compiler.add(this, "node_texture_coordinate");
+}
+
+/* UV Map */
+
+NODE_DEFINE(UVMapNode)
+{
+ NodeType *type = NodeType::add("uvmap", create, NodeType::SHADER);
+
+ SOCKET_STRING(attribute, "attribute", ustring());
+ SOCKET_IN_BOOLEAN(from_dupli, "from dupli", false);
+
+ SOCKET_OUT_POINT(UV, "UV");
+
+ return type;
+}
+
+UVMapNode::UVMapNode() : ShaderNode(get_node_type())
+{
+}
+
+void UVMapNode::attributes(Shader *shader, AttributeRequestSet *attributes)
+{
+ if (shader->has_surface) {
+ if (!from_dupli) {
+ if (!output("UV")->links.empty()) {
+ if (attribute != "")
+ attributes->add(attribute);
+ else
+ attributes->add(ATTR_STD_UV);
+ }
+ }
+ }
+
+ ShaderNode::attributes(shader, attributes);
+}
+
+void UVMapNode::compile(SVMCompiler &compiler)
+{
+ ShaderOutput *out = output("UV");
+ ShaderNodeType texco_node = NODE_TEX_COORD;
+ ShaderNodeType attr_node = NODE_ATTR;
+ int attr;
+
+ if (bump == SHADER_BUMP_DX) {
+ texco_node = NODE_TEX_COORD_BUMP_DX;
+ attr_node = NODE_ATTR_BUMP_DX;
+ }
+ else if (bump == SHADER_BUMP_DY) {
+ texco_node = NODE_TEX_COORD_BUMP_DY;
+ attr_node = NODE_ATTR_BUMP_DY;
+ }
+
+ if (!out->links.empty()) {
+ if (from_dupli) {
+ compiler.add_node(texco_node, NODE_TEXCO_DUPLI_UV, compiler.stack_assign(out));
+ }
+ else {
+ if (attribute != "")
+ attr = compiler.attribute(attribute);
+ else
+ attr = compiler.attribute(ATTR_STD_UV);
+
+ compiler.add_node(attr_node, attr, compiler.stack_assign(out), NODE_ATTR_OUTPUT_FLOAT3);
+ }
+ }
+}
+
+void UVMapNode::compile(OSLCompiler &compiler)
+{
+ if (bump == SHADER_BUMP_DX)
+ compiler.parameter("bump_offset", "dx");
+ else if (bump == SHADER_BUMP_DY)
+ compiler.parameter("bump_offset", "dy");
+ else
+ compiler.parameter("bump_offset", "center");
+
+ compiler.parameter(this, "from_dupli");
+ compiler.parameter(this, "attribute");
+ compiler.add(this, "node_uv_map");
+}
+
+/* Light Path */
+
+NODE_DEFINE(LightPathNode)
+{
+ NodeType *type = NodeType::add("light_path", create, NodeType::SHADER);
+
+ SOCKET_OUT_FLOAT(is_camera_ray, "Is Camera Ray");
+ SOCKET_OUT_FLOAT(is_shadow_ray, "Is Shadow Ray");
+ SOCKET_OUT_FLOAT(is_diffuse_ray, "Is Diffuse Ray");
+ SOCKET_OUT_FLOAT(is_glossy_ray, "Is Glossy Ray");
+ SOCKET_OUT_FLOAT(is_singular_ray, "Is Singular Ray");
+ SOCKET_OUT_FLOAT(is_reflection_ray, "Is Reflection Ray");
+ SOCKET_OUT_FLOAT(is_transmission_ray, "Is Transmission Ray");
+ SOCKET_OUT_FLOAT(is_volume_scatter_ray, "Is Volume Scatter Ray");
+ SOCKET_OUT_FLOAT(ray_length, "Ray Length");
+ SOCKET_OUT_FLOAT(ray_depth, "Ray Depth");
+ SOCKET_OUT_FLOAT(diffuse_depth, "Diffuse Depth");
+ SOCKET_OUT_FLOAT(glossy_depth, "Glossy Depth");
+ SOCKET_OUT_FLOAT(transparent_depth, "Transparent Depth");
+ SOCKET_OUT_FLOAT(transmission_depth, "Transmission Depth");
+
+ return type;
+}
+
+LightPathNode::LightPathNode() : ShaderNode(get_node_type())
+{
+}
+
+void LightPathNode::compile(SVMCompiler &compiler)
+{
+ ShaderOutput *out;
+
+ out = output("Is Camera Ray");
+ if (!out->links.empty()) {
+ compiler.add_node(NODE_LIGHT_PATH, NODE_LP_camera, compiler.stack_assign(out));
+ }
+
+ out = output("Is Shadow Ray");
+ if (!out->links.empty()) {
+ compiler.add_node(NODE_LIGHT_PATH, NODE_LP_shadow, compiler.stack_assign(out));
+ }
+
+ out = output("Is Diffuse Ray");
+ if (!out->links.empty()) {
+ compiler.add_node(NODE_LIGHT_PATH, NODE_LP_diffuse, compiler.stack_assign(out));
+ }
+
+ out = output("Is Glossy Ray");
+ if (!out->links.empty()) {
+ compiler.add_node(NODE_LIGHT_PATH, NODE_LP_glossy, compiler.stack_assign(out));
+ }
+
+ out = output("Is Singular Ray");
+ if (!out->links.empty()) {
+ compiler.add_node(NODE_LIGHT_PATH, NODE_LP_singular, compiler.stack_assign(out));
+ }
+
+ out = output("Is Reflection Ray");
+ if (!out->links.empty()) {
+ compiler.add_node(NODE_LIGHT_PATH, NODE_LP_reflection, compiler.stack_assign(out));
+ }
+
+ out = output("Is Transmission Ray");
+ if (!out->links.empty()) {
+ compiler.add_node(NODE_LIGHT_PATH, NODE_LP_transmission, compiler.stack_assign(out));
+ }
+
+ out = output("Is Volume Scatter Ray");
+ if (!out->links.empty()) {
+ compiler.add_node(NODE_LIGHT_PATH, NODE_LP_volume_scatter, compiler.stack_assign(out));
+ }
+
+ out = output("Ray Length");
+ if (!out->links.empty()) {
+ compiler.add_node(NODE_LIGHT_PATH, NODE_LP_ray_length, compiler.stack_assign(out));
+ }
+
+ out = output("Ray Depth");
+ if (!out->links.empty()) {
+ compiler.add_node(NODE_LIGHT_PATH, NODE_LP_ray_depth, compiler.stack_assign(out));
+ }
+
+ out = output("Diffuse Depth");
+ if (!out->links.empty()) {
+ compiler.add_node(NODE_LIGHT_PATH, NODE_LP_ray_diffuse, compiler.stack_assign(out));
+ }
+
+ out = output("Glossy Depth");
+ if (!out->links.empty()) {
+ compiler.add_node(NODE_LIGHT_PATH, NODE_LP_ray_glossy, compiler.stack_assign(out));
+ }
+
+ out = output("Transparent Depth");
+ if (!out->links.empty()) {
+ compiler.add_node(NODE_LIGHT_PATH, NODE_LP_ray_transparent, compiler.stack_assign(out));
+ }
+
+ out = output("Transmission Depth");
+ if (!out->links.empty()) {
+ compiler.add_node(NODE_LIGHT_PATH, NODE_LP_ray_transmission, compiler.stack_assign(out));
+ }
+}
+
+void LightPathNode::compile(OSLCompiler &compiler)
+{
+ compiler.add(this, "node_light_path");
+}
+
+/* Light Falloff */
+
+NODE_DEFINE(LightFalloffNode)
+{
+ NodeType *type = NodeType::add("light_falloff", create, NodeType::SHADER);
+
+ SOCKET_IN_FLOAT(strength, "Strength", 100.0f);
+ SOCKET_IN_FLOAT(smooth, "Smooth", 0.0f);
+
+ SOCKET_OUT_FLOAT(quadratic, "Quadratic");
+ SOCKET_OUT_FLOAT(linear, "Linear");
+ SOCKET_OUT_FLOAT(constant, "Constant");
+
+ return type;
+}
+
+LightFalloffNode::LightFalloffNode() : ShaderNode(get_node_type())
+{
+}
+
+void LightFalloffNode::compile(SVMCompiler &compiler)
+{
+ ShaderInput *strength_in = input("Strength");
+ ShaderInput *smooth_in = input("Smooth");
+
+ ShaderOutput *out = output("Quadratic");
+ if (!out->links.empty()) {
+ compiler.add_node(NODE_LIGHT_FALLOFF,
+ NODE_LIGHT_FALLOFF_QUADRATIC,
+ compiler.encode_uchar4(compiler.stack_assign(strength_in),
+ compiler.stack_assign(smooth_in),
+ compiler.stack_assign(out)));
+ }
+
+ out = output("Linear");
+ if (!out->links.empty()) {
+ compiler.add_node(NODE_LIGHT_FALLOFF,
+ NODE_LIGHT_FALLOFF_LINEAR,
+ compiler.encode_uchar4(compiler.stack_assign(strength_in),
+ compiler.stack_assign(smooth_in),
+ compiler.stack_assign(out)));
+ }
+
+ out = output("Constant");
+ if (!out->links.empty()) {
+ compiler.add_node(NODE_LIGHT_FALLOFF,
+ NODE_LIGHT_FALLOFF_CONSTANT,
+ compiler.encode_uchar4(compiler.stack_assign(strength_in),
+ compiler.stack_assign(smooth_in),
+ compiler.stack_assign(out)));
+ }
+}
+
+void LightFalloffNode::compile(OSLCompiler &compiler)
+{
+ compiler.add(this, "node_light_falloff");
+}
+
+/* Object Info */
+
+NODE_DEFINE(ObjectInfoNode)
+{
+ NodeType *type = NodeType::add("object_info", create, NodeType::SHADER);
+
+ SOCKET_OUT_VECTOR(location, "Location");
+ SOCKET_OUT_COLOR(color, "Color");
+ SOCKET_OUT_FLOAT(object_index, "Object Index");
+ SOCKET_OUT_FLOAT(material_index, "Material Index");
+ SOCKET_OUT_FLOAT(random, "Random");
+
+ return type;
+}
+
+ObjectInfoNode::ObjectInfoNode() : ShaderNode(get_node_type())
+{
+}
+
+void ObjectInfoNode::compile(SVMCompiler &compiler)
+{
+ ShaderOutput *out = output("Location");
+ if (!out->links.empty()) {
+ compiler.add_node(NODE_OBJECT_INFO, NODE_INFO_OB_LOCATION, compiler.stack_assign(out));
+ }
+
+ out = output("Color");
+ if (!out->links.empty()) {
+ compiler.add_node(NODE_OBJECT_INFO, NODE_INFO_OB_COLOR, compiler.stack_assign(out));
+ }
+
+ out = output("Object Index");
+ if (!out->links.empty()) {
+ compiler.add_node(NODE_OBJECT_INFO, NODE_INFO_OB_INDEX, compiler.stack_assign(out));
+ }
+
+ out = output("Material Index");
+ if (!out->links.empty()) {
+ compiler.add_node(NODE_OBJECT_INFO, NODE_INFO_MAT_INDEX, compiler.stack_assign(out));
+ }
+
+ out = output("Random");
+ if (!out->links.empty()) {
+ compiler.add_node(NODE_OBJECT_INFO, NODE_INFO_OB_RANDOM, compiler.stack_assign(out));
+ }
+}
+
+void ObjectInfoNode::compile(OSLCompiler &compiler)
+{
+ compiler.add(this, "node_object_info");
+}
+
+/* Particle Info */
+
+NODE_DEFINE(ParticleInfoNode)
+{
+ NodeType *type = NodeType::add("particle_info", create, NodeType::SHADER);
+
+ SOCKET_OUT_FLOAT(index, "Index");
+ SOCKET_OUT_FLOAT(random, "Random");
+ SOCKET_OUT_FLOAT(age, "Age");
+ SOCKET_OUT_FLOAT(lifetime, "Lifetime");
+ SOCKET_OUT_POINT(location, "Location");
+#if 0 /* not yet supported */
+ SOCKET_OUT_QUATERNION(rotation, "Rotation");
+#endif
+ SOCKET_OUT_FLOAT(size, "Size");
+ SOCKET_OUT_VECTOR(velocity, "Velocity");
+ SOCKET_OUT_VECTOR(angular_velocity, "Angular Velocity");
+
+ return type;
+}
+
+ParticleInfoNode::ParticleInfoNode() : ShaderNode(get_node_type())
+{
+}
+
+void ParticleInfoNode::attributes(Shader *shader, AttributeRequestSet *attributes)
+{
+ if (!output("Index")->links.empty())
+ attributes->add(ATTR_STD_PARTICLE);
+ if (!output("Random")->links.empty())
+ attributes->add(ATTR_STD_PARTICLE);
+ if (!output("Age")->links.empty())
+ attributes->add(ATTR_STD_PARTICLE);
+ if (!output("Lifetime")->links.empty())
+ attributes->add(ATTR_STD_PARTICLE);
+ if (!output("Location")->links.empty())
+ attributes->add(ATTR_STD_PARTICLE);
+#if 0 /* not yet supported */
+ if (!output("Rotation")->links.empty())
+ attributes->add(ATTR_STD_PARTICLE);
+#endif
+ if (!output("Size")->links.empty())
+ attributes->add(ATTR_STD_PARTICLE);
+ if (!output("Velocity")->links.empty())
+ attributes->add(ATTR_STD_PARTICLE);
+ if (!output("Angular Velocity")->links.empty())
+ attributes->add(ATTR_STD_PARTICLE);
+
+ ShaderNode::attributes(shader, attributes);
+}
+
+void ParticleInfoNode::compile(SVMCompiler &compiler)
+{
+ ShaderOutput *out;
+
+ out = output("Index");
+ if (!out->links.empty()) {
+ compiler.add_node(NODE_PARTICLE_INFO, NODE_INFO_PAR_INDEX, compiler.stack_assign(out));
+ }
+
+ out = output("Random");
+ if (!out->links.empty()) {
+ compiler.add_node(NODE_PARTICLE_INFO, NODE_INFO_PAR_RANDOM, compiler.stack_assign(out));
+ }
+
+ out = output("Age");
+ if (!out->links.empty()) {
+ compiler.add_node(NODE_PARTICLE_INFO, NODE_INFO_PAR_AGE, compiler.stack_assign(out));
+ }
+
+ out = output("Lifetime");
+ if (!out->links.empty()) {
+ compiler.add_node(NODE_PARTICLE_INFO, NODE_INFO_PAR_LIFETIME, compiler.stack_assign(out));
+ }
+
+ out = output("Location");
+ if (!out->links.empty()) {
+ compiler.add_node(NODE_PARTICLE_INFO, NODE_INFO_PAR_LOCATION, compiler.stack_assign(out));
+ }
+
+ /* quaternion data is not yet supported by Cycles */
+#if 0
+ out = output("Rotation");
+ if (!out->links.empty()) {
+ compiler.add_node(NODE_PARTICLE_INFO, NODE_INFO_PAR_ROTATION, compiler.stack_assign(out));
+ }
+#endif
+
+ out = output("Size");
+ if (!out->links.empty()) {
+ compiler.add_node(NODE_PARTICLE_INFO, NODE_INFO_PAR_SIZE, compiler.stack_assign(out));
+ }
+
+ out = output("Velocity");
+ if (!out->links.empty()) {
+ compiler.add_node(NODE_PARTICLE_INFO, NODE_INFO_PAR_VELOCITY, compiler.stack_assign(out));
+ }
+
+ out = output("Angular Velocity");
+ if (!out->links.empty()) {
+ compiler.add_node(
+ NODE_PARTICLE_INFO, NODE_INFO_PAR_ANGULAR_VELOCITY, compiler.stack_assign(out));
+ }
+}
+
+void ParticleInfoNode::compile(OSLCompiler &compiler)
+{
+ compiler.add(this, "node_particle_info");
+}
+
+/* Hair Info */
+
+NODE_DEFINE(HairInfoNode)
+{
+ NodeType *type = NodeType::add("hair_info", create, NodeType::SHADER);
+
+ SOCKET_OUT_FLOAT(is_strand, "Is Strand");
+ SOCKET_OUT_FLOAT(intercept, "Intercept");
+ SOCKET_OUT_FLOAT(size, "Length");
+ SOCKET_OUT_FLOAT(thickness, "Thickness");
+ SOCKET_OUT_NORMAL(tangent_normal, "Tangent Normal");
+#if 0 /* Output for minimum hair width transparency - deactivated. */
+ SOCKET_OUT_FLOAT(fade, "Fade");
+#endif
+ SOCKET_OUT_FLOAT(index, "Random");
+
+ return type;
+}
+
+HairInfoNode::HairInfoNode() : ShaderNode(get_node_type())
+{
+}
+
+void HairInfoNode::attributes(Shader *shader, AttributeRequestSet *attributes)
+{
+ if (shader->has_surface_link()) {
+ ShaderOutput *intercept_out = output("Intercept");
+
+ if (!intercept_out->links.empty())
+ attributes->add(ATTR_STD_CURVE_INTERCEPT);
+
+ if (!output("Length")->links.empty())
+ attributes->add(ATTR_STD_CURVE_LENGTH);
+
+ if (!output("Random")->links.empty())
+ attributes->add(ATTR_STD_CURVE_RANDOM);
+ }
+
+ ShaderNode::attributes(shader, attributes);
+}
+
+void HairInfoNode::compile(SVMCompiler &compiler)
+{
+ ShaderOutput *out;
+
+ out = output("Is Strand");
+ if (!out->links.empty()) {
+ compiler.add_node(NODE_HAIR_INFO, NODE_INFO_CURVE_IS_STRAND, compiler.stack_assign(out));
+ }
+
+ out = output("Intercept");
+ if (!out->links.empty()) {
+ int attr = compiler.attribute(ATTR_STD_CURVE_INTERCEPT);
+ compiler.add_node(NODE_ATTR, attr, compiler.stack_assign(out), NODE_ATTR_OUTPUT_FLOAT);
+ }
+
+ out = output("Length");
+ if (!out->links.empty()) {
+ int attr = compiler.attribute(ATTR_STD_CURVE_LENGTH);
+ compiler.add_node(NODE_ATTR, attr, compiler.stack_assign(out), NODE_ATTR_OUTPUT_FLOAT);
+ }
+
+ out = output("Thickness");
+ if (!out->links.empty()) {
+ compiler.add_node(NODE_HAIR_INFO, NODE_INFO_CURVE_THICKNESS, compiler.stack_assign(out));
+ }
+
+ out = output("Tangent Normal");
+ if (!out->links.empty()) {
+ compiler.add_node(NODE_HAIR_INFO, NODE_INFO_CURVE_TANGENT_NORMAL, compiler.stack_assign(out));
+ }
+#if 0
+ out = output("Fade");
+ if(!out->links.empty()) {
+ compiler.add_node(NODE_HAIR_INFO, NODE_INFO_CURVE_FADE, compiler.stack_assign(out));
+ }
+#endif
+ out = output("Random");
+ if (!out->links.empty()) {
+ int attr = compiler.attribute(ATTR_STD_CURVE_RANDOM);
+ compiler.add_node(NODE_ATTR, attr, compiler.stack_assign(out), NODE_ATTR_OUTPUT_FLOAT);
+ }
+}
+
+void HairInfoNode::compile(OSLCompiler &compiler)
+{
+ compiler.add(this, "node_hair_info");
+}
+
+/* Volume Info */
+
+NODE_DEFINE(VolumeInfoNode)
+{
+ NodeType *type = NodeType::add("volume_info", create, NodeType::SHADER);
+
+ SOCKET_OUT_COLOR(color, "Color");
+ SOCKET_OUT_FLOAT(density, "Density");
+ SOCKET_OUT_FLOAT(flame, "Flame");
+ SOCKET_OUT_FLOAT(temperature, "Temperature");
+
+ return type;
+}
+
+VolumeInfoNode::VolumeInfoNode() : ShaderNode(get_node_type())
+{
+}
+
+/* The requested attributes are not updated after node expansion.
+ * So we explicitly request the required attributes.
+ */
+void VolumeInfoNode::attributes(Shader *shader, AttributeRequestSet *attributes)
+{
+ if (shader->has_volume) {
+ if (!output("Color")->links.empty()) {
+ attributes->add(ATTR_STD_VOLUME_COLOR);
+ }
+ if (!output("Density")->links.empty()) {
+ attributes->add(ATTR_STD_VOLUME_DENSITY);
+ }
+ if (!output("Flame")->links.empty()) {
+ attributes->add(ATTR_STD_VOLUME_FLAME);
+ }
+ if (!output("Temperature")->links.empty()) {
+ attributes->add(ATTR_STD_VOLUME_TEMPERATURE);
+ }
+ attributes->add(ATTR_STD_GENERATED_TRANSFORM);
+ }
+ ShaderNode::attributes(shader, attributes);
+}
+
+void VolumeInfoNode::expand(ShaderGraph *graph)
+{
+ ShaderOutput *color_out = output("Color");
+ if (!color_out->links.empty()) {
+ AttributeNode *attr = graph->create_node<AttributeNode>();
+ attr->set_attribute(ustring("color"));
+ graph->add(attr);
+ graph->relink(color_out, attr->output("Color"));
+ }
+
+ ShaderOutput *density_out = output("Density");
+ if (!density_out->links.empty()) {
+ AttributeNode *attr = graph->create_node<AttributeNode>();
+ attr->set_attribute(ustring("density"));
+ graph->add(attr);
+ graph->relink(density_out, attr->output("Fac"));
+ }
+
+ ShaderOutput *flame_out = output("Flame");
+ if (!flame_out->links.empty()) {
+ AttributeNode *attr = graph->create_node<AttributeNode>();
+ attr->set_attribute(ustring("flame"));
+ graph->add(attr);
+ graph->relink(flame_out, attr->output("Fac"));
+ }
+
+ ShaderOutput *temperature_out = output("Temperature");
+ if (!temperature_out->links.empty()) {
+ AttributeNode *attr = graph->create_node<AttributeNode>();
+ attr->set_attribute(ustring("temperature"));
+ graph->add(attr);
+ graph->relink(temperature_out, attr->output("Fac"));
+ }
+}
+
+void VolumeInfoNode::compile(SVMCompiler &)
+{
+}
+
+void VolumeInfoNode::compile(OSLCompiler &)
+{
+}
+
+NODE_DEFINE(VertexColorNode)
+{
+ NodeType *type = NodeType::add("vertex_color", create, NodeType::SHADER);
+
+ SOCKET_STRING(layer_name, "Layer Name", ustring());
+ SOCKET_OUT_COLOR(color, "Color");
+ SOCKET_OUT_FLOAT(alpha, "Alpha");
+
+ return type;
+}
+
+VertexColorNode::VertexColorNode() : ShaderNode(get_node_type())
+{
+}
+
+void VertexColorNode::attributes(Shader *shader, AttributeRequestSet *attributes)
+{
+ if (!(output("Color")->links.empty() && output("Alpha")->links.empty())) {
+ if (layer_name != "")
+ attributes->add_standard(layer_name);
+ else
+ attributes->add(ATTR_STD_VERTEX_COLOR);
+ }
+ ShaderNode::attributes(shader, attributes);
+}
+
+void VertexColorNode::compile(SVMCompiler &compiler)
+{
+ ShaderOutput *color_out = output("Color");
+ ShaderOutput *alpha_out = output("Alpha");
+ int layer_id = 0;
+
+ if (layer_name != "") {
+ layer_id = compiler.attribute(layer_name);
+ }
+ else {
+ layer_id = compiler.attribute(ATTR_STD_VERTEX_COLOR);
+ }
+
+ ShaderNodeType node;
+
+ if (bump == SHADER_BUMP_DX)
+ node = NODE_VERTEX_COLOR_BUMP_DX;
+ else if (bump == SHADER_BUMP_DY)
+ node = NODE_VERTEX_COLOR_BUMP_DY;
+ else {
+ node = NODE_VERTEX_COLOR;
+ }
+
+ compiler.add_node(
+ node, layer_id, compiler.stack_assign(color_out), compiler.stack_assign(alpha_out));
+}
+
+void VertexColorNode::compile(OSLCompiler &compiler)
+{
+ if (bump == SHADER_BUMP_DX) {
+ compiler.parameter("bump_offset", "dx");
+ }
+ else if (bump == SHADER_BUMP_DY) {
+ compiler.parameter("bump_offset", "dy");
+ }
+ else {
+ compiler.parameter("bump_offset", "center");
+ }
+
+ if (layer_name.empty()) {
+ compiler.parameter("layer_name", ustring("geom:vertex_color"));
+ }
+ else {
+ if (Attribute::name_standard(layer_name.c_str()) != ATTR_STD_NONE) {
+ compiler.parameter("name", (string("geom:") + layer_name.c_str()).c_str());
+ }
+ else {
+ compiler.parameter("layer_name", layer_name.c_str());
+ }
+ }
+
+ compiler.add(this, "node_vertex_color");
+}
+
+/* Value */
+
+NODE_DEFINE(ValueNode)
+{
+ NodeType *type = NodeType::add("value", create, NodeType::SHADER);
+
+ SOCKET_FLOAT(value, "Value", 0.0f);
+ SOCKET_OUT_FLOAT(value, "Value");
+
+ return type;
+}
+
+ValueNode::ValueNode() : ShaderNode(get_node_type())
+{
+}
+
+void ValueNode::constant_fold(const ConstantFolder &folder)
+{
+ folder.make_constant(value);
+}
+
+void ValueNode::compile(SVMCompiler &compiler)
+{
+ ShaderOutput *val_out = output("Value");
+
+ compiler.add_node(NODE_VALUE_F, __float_as_int(value), compiler.stack_assign(val_out));
+}
+
+void ValueNode::compile(OSLCompiler &compiler)
+{
+ compiler.parameter("value_value", value);
+ compiler.add(this, "node_value");
+}
+
+/* Color */
+
+NODE_DEFINE(ColorNode)
+{
+ NodeType *type = NodeType::add("color", create, NodeType::SHADER);
+
+ SOCKET_COLOR(value, "Value", zero_float3());
+ SOCKET_OUT_COLOR(color, "Color");
+
+ return type;
+}
+
+ColorNode::ColorNode() : ShaderNode(get_node_type())
+{
+}
+
+void ColorNode::constant_fold(const ConstantFolder &folder)
+{
+ folder.make_constant(value);
+}
+
+void ColorNode::compile(SVMCompiler &compiler)
+{
+ ShaderOutput *color_out = output("Color");
+
+ if (!color_out->links.empty()) {
+ compiler.add_node(NODE_VALUE_V, compiler.stack_assign(color_out));
+ compiler.add_node(NODE_VALUE_V, value);
+ }
+}
+
+void ColorNode::compile(OSLCompiler &compiler)
+{
+ compiler.parameter_color("color_value", value);
+
+ compiler.add(this, "node_value");
+}
+
+/* Add Closure */
+
+NODE_DEFINE(AddClosureNode)
+{
+ NodeType *type = NodeType::add("add_closure", create, NodeType::SHADER);
+
+ SOCKET_IN_CLOSURE(closure1, "Closure1");
+ SOCKET_IN_CLOSURE(closure2, "Closure2");
+ SOCKET_OUT_CLOSURE(closure, "Closure");
+
+ return type;
+}
+
+AddClosureNode::AddClosureNode() : ShaderNode(get_node_type())
+{
+ special_type = SHADER_SPECIAL_TYPE_COMBINE_CLOSURE;
+}
+
+void AddClosureNode::compile(SVMCompiler & /*compiler*/)
+{
+ /* handled in the SVM compiler */
+}
+
+void AddClosureNode::compile(OSLCompiler &compiler)
+{
+ compiler.add(this, "node_add_closure");
+}
+
+void AddClosureNode::constant_fold(const ConstantFolder &folder)
+{
+ ShaderInput *closure1_in = input("Closure1");
+ ShaderInput *closure2_in = input("Closure2");
+
+ /* remove useless add closures nodes */
+ if (!closure1_in->link) {
+ folder.bypass_or_discard(closure2_in);
+ }
+ else if (!closure2_in->link) {
+ folder.bypass_or_discard(closure1_in);
+ }
+}
+
+/* Mix Closure */
+
+NODE_DEFINE(MixClosureNode)
+{
+ NodeType *type = NodeType::add("mix_closure", create, NodeType::SHADER);
+
+ SOCKET_IN_FLOAT(fac, "Fac", 0.5f);
+ SOCKET_IN_CLOSURE(closure1, "Closure1");
+ SOCKET_IN_CLOSURE(closure2, "Closure2");
+
+ SOCKET_OUT_CLOSURE(closure, "Closure");
+
+ return type;
+}
+
+MixClosureNode::MixClosureNode() : ShaderNode(get_node_type())
+{
+ special_type = SHADER_SPECIAL_TYPE_COMBINE_CLOSURE;
+}
+
+void MixClosureNode::compile(SVMCompiler & /*compiler*/)
+{
+ /* handled in the SVM compiler */
+}
+
+void MixClosureNode::compile(OSLCompiler &compiler)
+{
+ compiler.add(this, "node_mix_closure");
+}
+
+void MixClosureNode::constant_fold(const ConstantFolder &folder)
+{
+ ShaderInput *fac_in = input("Fac");
+ ShaderInput *closure1_in = input("Closure1");
+ ShaderInput *closure2_in = input("Closure2");
+
+ /* remove useless mix closures nodes */
+ if (closure1_in->link == closure2_in->link) {
+ folder.bypass_or_discard(closure1_in);
+ }
+ /* remove unused mix closure input when factor is 0.0 or 1.0
+ * check for closure links and make sure factor link is disconnected */
+ else if (!fac_in->link) {
+ /* factor 0.0 */
+ if (fac <= 0.0f) {
+ folder.bypass_or_discard(closure1_in);
+ }
+ /* factor 1.0 */
+ else if (fac >= 1.0f) {
+ folder.bypass_or_discard(closure2_in);
+ }
+ }
+}
+
+/* Mix Closure */
+
+NODE_DEFINE(MixClosureWeightNode)
+{
+ NodeType *type = NodeType::add("mix_closure_weight", create, NodeType::SHADER);
+
+ SOCKET_IN_FLOAT(weight, "Weight", 1.0f);
+ SOCKET_IN_FLOAT(fac, "Fac", 1.0f);
+
+ SOCKET_OUT_FLOAT(weight1, "Weight1");
+ SOCKET_OUT_FLOAT(weight2, "Weight2");
+
+ return type;
+}
+
+MixClosureWeightNode::MixClosureWeightNode() : ShaderNode(get_node_type())
+{
+}
+
+void MixClosureWeightNode::compile(SVMCompiler &compiler)
+{
+ ShaderInput *weight_in = input("Weight");
+ ShaderInput *fac_in = input("Fac");
+ ShaderOutput *weight1_out = output("Weight1");
+ ShaderOutput *weight2_out = output("Weight2");
+
+ compiler.add_node(NODE_MIX_CLOSURE,
+ compiler.encode_uchar4(compiler.stack_assign(fac_in),
+ compiler.stack_assign(weight_in),
+ compiler.stack_assign(weight1_out),
+ compiler.stack_assign(weight2_out)));
+}
+
+void MixClosureWeightNode::compile(OSLCompiler & /*compiler*/)
+{
+ assert(0);
+}
+
+/* Invert */
+
+NODE_DEFINE(InvertNode)
+{
+ NodeType *type = NodeType::add("invert", create, NodeType::SHADER);
+
+ SOCKET_IN_FLOAT(fac, "Fac", 1.0f);
+ SOCKET_IN_COLOR(color, "Color", zero_float3());
+
+ SOCKET_OUT_COLOR(color, "Color");
+
+ return type;
+}
+
+InvertNode::InvertNode() : ShaderNode(get_node_type())
+{
+}
+
+void InvertNode::constant_fold(const ConstantFolder &folder)
+{
+ ShaderInput *fac_in = input("Fac");
+ ShaderInput *color_in = input("Color");
+
+ if (!fac_in->link) {
+ /* evaluate fully constant node */
+ if (!color_in->link) {
+ folder.make_constant(interp(color, one_float3() - color, fac));
+ }
+ /* remove no-op node */
+ else if (fac == 0.0f) {
+ folder.bypass(color_in->link);
+ }
+ }
+}
+
+void InvertNode::compile(SVMCompiler &compiler)
+{
+ ShaderInput *fac_in = input("Fac");
+ ShaderInput *color_in = input("Color");
+ ShaderOutput *color_out = output("Color");
+
+ compiler.add_node(NODE_INVERT,
+ compiler.stack_assign(fac_in),
+ compiler.stack_assign(color_in),
+ compiler.stack_assign(color_out));
+}
+
+void InvertNode::compile(OSLCompiler &compiler)
+{
+ compiler.add(this, "node_invert");
+}
+
+/* Mix */
+
+NODE_DEFINE(MixNode)
+{
+ NodeType *type = NodeType::add("mix", create, NodeType::SHADER);
+
+ static NodeEnum type_enum;
+ type_enum.insert("mix", NODE_MIX_BLEND);
+ type_enum.insert("add", NODE_MIX_ADD);
+ type_enum.insert("multiply", NODE_MIX_MUL);
+ type_enum.insert("screen", NODE_MIX_SCREEN);
+ type_enum.insert("overlay", NODE_MIX_OVERLAY);
+ type_enum.insert("subtract", NODE_MIX_SUB);
+ type_enum.insert("divide", NODE_MIX_DIV);
+ type_enum.insert("difference", NODE_MIX_DIFF);
+ type_enum.insert("darken", NODE_MIX_DARK);
+ type_enum.insert("lighten", NODE_MIX_LIGHT);
+ type_enum.insert("dodge", NODE_MIX_DODGE);
+ type_enum.insert("burn", NODE_MIX_BURN);
+ type_enum.insert("hue", NODE_MIX_HUE);
+ type_enum.insert("saturation", NODE_MIX_SAT);
+ type_enum.insert("value", NODE_MIX_VAL);
+ type_enum.insert("color", NODE_MIX_COLOR);
+ type_enum.insert("soft_light", NODE_MIX_SOFT);
+ type_enum.insert("linear_light", NODE_MIX_LINEAR);
+ SOCKET_ENUM(mix_type, "Type", type_enum, NODE_MIX_BLEND);
+
+ SOCKET_BOOLEAN(use_clamp, "Use Clamp", false);
+
+ SOCKET_IN_FLOAT(fac, "Fac", 0.5f);
+ SOCKET_IN_COLOR(color1, "Color1", zero_float3());
+ SOCKET_IN_COLOR(color2, "Color2", zero_float3());
+
+ SOCKET_OUT_COLOR(color, "Color");
+
+ return type;
+}
+
+MixNode::MixNode() : ShaderNode(get_node_type())
+{
+}
+
+void MixNode::compile(SVMCompiler &compiler)
+{
+ ShaderInput *fac_in = input("Fac");
+ ShaderInput *color1_in = input("Color1");
+ ShaderInput *color2_in = input("Color2");
+ ShaderOutput *color_out = output("Color");
+
+ compiler.add_node(NODE_MIX,
+ compiler.stack_assign(fac_in),
+ compiler.stack_assign(color1_in),
+ compiler.stack_assign(color2_in));
+ compiler.add_node(NODE_MIX, mix_type, compiler.stack_assign(color_out));
+
+ if (use_clamp) {
+ compiler.add_node(NODE_MIX, 0, compiler.stack_assign(color_out));
+ compiler.add_node(NODE_MIX, NODE_MIX_CLAMP, compiler.stack_assign(color_out));
+ }
+}
+
+void MixNode::compile(OSLCompiler &compiler)
+{
+ compiler.parameter(this, "mix_type");
+ compiler.parameter(this, "use_clamp");
+ compiler.add(this, "node_mix");
+}
+
+void MixNode::constant_fold(const ConstantFolder &folder)
+{
+ if (folder.all_inputs_constant()) {
+ folder.make_constant_clamp(svm_mix(mix_type, fac, color1, color2), use_clamp);
+ }
+ else {
+ folder.fold_mix(mix_type, use_clamp);
+ }
+}
+
+/* Combine RGB */
+
+NODE_DEFINE(CombineRGBNode)
+{
+ NodeType *type = NodeType::add("combine_rgb", create, NodeType::SHADER);
+
+ SOCKET_IN_FLOAT(r, "R", 0.0f);
+ SOCKET_IN_FLOAT(g, "G", 0.0f);
+ SOCKET_IN_FLOAT(b, "B", 0.0f);
+
+ SOCKET_OUT_COLOR(image, "Image");
+
+ return type;
+}
+
+CombineRGBNode::CombineRGBNode() : ShaderNode(get_node_type())
+{
+}
+
+void CombineRGBNode::constant_fold(const ConstantFolder &folder)
+{
+ if (folder.all_inputs_constant()) {
+ folder.make_constant(make_float3(r, g, b));
+ }
+}
+
+void CombineRGBNode::compile(SVMCompiler &compiler)
+{
+ ShaderInput *red_in = input("R");
+ ShaderInput *green_in = input("G");
+ ShaderInput *blue_in = input("B");
+ ShaderOutput *color_out = output("Image");
+
+ compiler.add_node(
+ NODE_COMBINE_VECTOR, compiler.stack_assign(red_in), 0, compiler.stack_assign(color_out));
+
+ compiler.add_node(
+ NODE_COMBINE_VECTOR, compiler.stack_assign(green_in), 1, compiler.stack_assign(color_out));
+
+ compiler.add_node(
+ NODE_COMBINE_VECTOR, compiler.stack_assign(blue_in), 2, compiler.stack_assign(color_out));
+}
+
+void CombineRGBNode::compile(OSLCompiler &compiler)
+{
+ compiler.add(this, "node_combine_rgb");
+}
+
+/* Combine XYZ */
+
+NODE_DEFINE(CombineXYZNode)
+{
+ NodeType *type = NodeType::add("combine_xyz", create, NodeType::SHADER);
+
+ SOCKET_IN_FLOAT(x, "X", 0.0f);
+ SOCKET_IN_FLOAT(y, "Y", 0.0f);
+ SOCKET_IN_FLOAT(z, "Z", 0.0f);
+
+ SOCKET_OUT_VECTOR(vector, "Vector");
+
+ return type;
+}
+
+CombineXYZNode::CombineXYZNode() : ShaderNode(get_node_type())
+{
+}
+
+void CombineXYZNode::constant_fold(const ConstantFolder &folder)
+{
+ if (folder.all_inputs_constant()) {
+ folder.make_constant(make_float3(x, y, z));
+ }
+}
+
+void CombineXYZNode::compile(SVMCompiler &compiler)
+{
+ ShaderInput *x_in = input("X");
+ ShaderInput *y_in = input("Y");
+ ShaderInput *z_in = input("Z");
+ ShaderOutput *vector_out = output("Vector");
+
+ compiler.add_node(
+ NODE_COMBINE_VECTOR, compiler.stack_assign(x_in), 0, compiler.stack_assign(vector_out));
+
+ compiler.add_node(
+ NODE_COMBINE_VECTOR, compiler.stack_assign(y_in), 1, compiler.stack_assign(vector_out));
+
+ compiler.add_node(
+ NODE_COMBINE_VECTOR, compiler.stack_assign(z_in), 2, compiler.stack_assign(vector_out));
+}
+
+void CombineXYZNode::compile(OSLCompiler &compiler)
+{
+ compiler.add(this, "node_combine_xyz");
+}
+
+/* Combine HSV */
+
+NODE_DEFINE(CombineHSVNode)
+{
+ NodeType *type = NodeType::add("combine_hsv", create, NodeType::SHADER);
+
+ SOCKET_IN_FLOAT(h, "H", 0.0f);
+ SOCKET_IN_FLOAT(s, "S", 0.0f);
+ SOCKET_IN_FLOAT(v, "V", 0.0f);
+
+ SOCKET_OUT_COLOR(color, "Color");
+
+ return type;
+}
+
+CombineHSVNode::CombineHSVNode() : ShaderNode(get_node_type())
+{
+}
+
+void CombineHSVNode::constant_fold(const ConstantFolder &folder)
+{
+ if (folder.all_inputs_constant()) {
+ folder.make_constant(hsv_to_rgb(make_float3(h, s, v)));
+ }
+}
+
+void CombineHSVNode::compile(SVMCompiler &compiler)
+{
+ ShaderInput *hue_in = input("H");
+ ShaderInput *saturation_in = input("S");
+ ShaderInput *value_in = input("V");
+ ShaderOutput *color_out = output("Color");
+
+ compiler.add_node(NODE_COMBINE_HSV,
+ compiler.stack_assign(hue_in),
+ compiler.stack_assign(saturation_in),
+ compiler.stack_assign(value_in));
+ compiler.add_node(NODE_COMBINE_HSV, compiler.stack_assign(color_out));
+}
+
+void CombineHSVNode::compile(OSLCompiler &compiler)
+{
+ compiler.add(this, "node_combine_hsv");
+}
+
+/* Gamma */
+
+NODE_DEFINE(GammaNode)
+{
+ NodeType *type = NodeType::add("gamma", create, NodeType::SHADER);
+
+ SOCKET_IN_COLOR(color, "Color", zero_float3());
+ SOCKET_IN_FLOAT(gamma, "Gamma", 1.0f);
+ SOCKET_OUT_COLOR(color, "Color");
+
+ return type;
+}
+
+GammaNode::GammaNode() : ShaderNode(get_node_type())
+{
+}
+
+void GammaNode::constant_fold(const ConstantFolder &folder)
+{
+ if (folder.all_inputs_constant()) {
+ folder.make_constant(svm_math_gamma_color(color, gamma));
+ }
+ else {
+ ShaderInput *color_in = input("Color");
+ ShaderInput *gamma_in = input("Gamma");
+
+ /* 1 ^ X == X ^ 0 == 1 */
+ if (folder.is_one(color_in) || folder.is_zero(gamma_in)) {
+ folder.make_one();
+ }
+ /* X ^ 1 == X */
+ else if (folder.is_one(gamma_in)) {
+ folder.try_bypass_or_make_constant(color_in, false);
+ }
+ }
+}
+
+void GammaNode::compile(SVMCompiler &compiler)
+{
+ ShaderInput *color_in = input("Color");
+ ShaderInput *gamma_in = input("Gamma");
+ ShaderOutput *color_out = output("Color");
+
+ compiler.add_node(NODE_GAMMA,
+ compiler.stack_assign(gamma_in),
+ compiler.stack_assign(color_in),
+ compiler.stack_assign(color_out));
+}
+
+void GammaNode::compile(OSLCompiler &compiler)
+{
+ compiler.add(this, "node_gamma");
+}
+
+/* Bright Contrast */
+
+NODE_DEFINE(BrightContrastNode)
+{
+ NodeType *type = NodeType::add("brightness_contrast", create, NodeType::SHADER);
+
+ SOCKET_IN_COLOR(color, "Color", zero_float3());
+ SOCKET_IN_FLOAT(bright, "Bright", 0.0f);
+ SOCKET_IN_FLOAT(contrast, "Contrast", 0.0f);
+
+ SOCKET_OUT_COLOR(color, "Color");
+
+ return type;
+}
+
+BrightContrastNode::BrightContrastNode() : ShaderNode(get_node_type())
+{
+}
+
+void BrightContrastNode::constant_fold(const ConstantFolder &folder)
+{
+ if (folder.all_inputs_constant()) {
+ folder.make_constant(svm_brightness_contrast(color, bright, contrast));
+ }
+}
+
+void BrightContrastNode::compile(SVMCompiler &compiler)
+{
+ ShaderInput *color_in = input("Color");
+ ShaderInput *bright_in = input("Bright");
+ ShaderInput *contrast_in = input("Contrast");
+ ShaderOutput *color_out = output("Color");
+
+ compiler.add_node(NODE_BRIGHTCONTRAST,
+ compiler.stack_assign(color_in),
+ compiler.stack_assign(color_out),
+ compiler.encode_uchar4(compiler.stack_assign(bright_in),
+ compiler.stack_assign(contrast_in)));
+}
+
+void BrightContrastNode::compile(OSLCompiler &compiler)
+{
+ compiler.add(this, "node_brightness");
+}
+
+/* Separate RGB */
+
+NODE_DEFINE(SeparateRGBNode)
+{
+ NodeType *type = NodeType::add("separate_rgb", create, NodeType::SHADER);
+
+ SOCKET_IN_COLOR(color, "Image", zero_float3());
+
+ SOCKET_OUT_FLOAT(r, "R");
+ SOCKET_OUT_FLOAT(g, "G");
+ SOCKET_OUT_FLOAT(b, "B");
+
+ return type;
+}
+
+SeparateRGBNode::SeparateRGBNode() : ShaderNode(get_node_type())
+{
+}
+
+void SeparateRGBNode::constant_fold(const ConstantFolder &folder)
+{
+ if (folder.all_inputs_constant()) {
+ for (int channel = 0; channel < 3; channel++) {
+ if (outputs[channel] == folder.output) {
+ folder.make_constant(color[channel]);
+ return;
+ }
+ }
+ }
+}
+
+void SeparateRGBNode::compile(SVMCompiler &compiler)
+{
+ ShaderInput *color_in = input("Image");
+ ShaderOutput *red_out = output("R");
+ ShaderOutput *green_out = output("G");
+ ShaderOutput *blue_out = output("B");
+
+ compiler.add_node(
+ NODE_SEPARATE_VECTOR, compiler.stack_assign(color_in), 0, compiler.stack_assign(red_out));
+
+ compiler.add_node(
+ NODE_SEPARATE_VECTOR, compiler.stack_assign(color_in), 1, compiler.stack_assign(green_out));
+
+ compiler.add_node(
+ NODE_SEPARATE_VECTOR, compiler.stack_assign(color_in), 2, compiler.stack_assign(blue_out));
+}
+
+void SeparateRGBNode::compile(OSLCompiler &compiler)
+{
+ compiler.add(this, "node_separate_rgb");
+}
+
+/* Separate XYZ */
+
+NODE_DEFINE(SeparateXYZNode)
+{
+ NodeType *type = NodeType::add("separate_xyz", create, NodeType::SHADER);
+
+ SOCKET_IN_COLOR(vector, "Vector", zero_float3());
+
+ SOCKET_OUT_FLOAT(x, "X");
+ SOCKET_OUT_FLOAT(y, "Y");
+ SOCKET_OUT_FLOAT(z, "Z");
+
+ return type;
+}
+
+SeparateXYZNode::SeparateXYZNode() : ShaderNode(get_node_type())
+{
+}
+
+void SeparateXYZNode::constant_fold(const ConstantFolder &folder)
+{
+ if (folder.all_inputs_constant()) {
+ for (int channel = 0; channel < 3; channel++) {
+ if (outputs[channel] == folder.output) {
+ folder.make_constant(vector[channel]);
+ return;
+ }
+ }
+ }
+}
+
+void SeparateXYZNode::compile(SVMCompiler &compiler)
+{
+ ShaderInput *vector_in = input("Vector");
+ ShaderOutput *x_out = output("X");
+ ShaderOutput *y_out = output("Y");
+ ShaderOutput *z_out = output("Z");
+
+ compiler.add_node(
+ NODE_SEPARATE_VECTOR, compiler.stack_assign(vector_in), 0, compiler.stack_assign(x_out));
+
+ compiler.add_node(
+ NODE_SEPARATE_VECTOR, compiler.stack_assign(vector_in), 1, compiler.stack_assign(y_out));
+
+ compiler.add_node(
+ NODE_SEPARATE_VECTOR, compiler.stack_assign(vector_in), 2, compiler.stack_assign(z_out));
+}
+
+void SeparateXYZNode::compile(OSLCompiler &compiler)
+{
+ compiler.add(this, "node_separate_xyz");
+}
+
+/* Separate HSV */
+
+NODE_DEFINE(SeparateHSVNode)
+{
+ NodeType *type = NodeType::add("separate_hsv", create, NodeType::SHADER);
+
+ SOCKET_IN_COLOR(color, "Color", zero_float3());
+
+ SOCKET_OUT_FLOAT(h, "H");
+ SOCKET_OUT_FLOAT(s, "S");
+ SOCKET_OUT_FLOAT(v, "V");
+
+ return type;
+}
+
+SeparateHSVNode::SeparateHSVNode() : ShaderNode(get_node_type())
+{
+}
+
+void SeparateHSVNode::constant_fold(const ConstantFolder &folder)
+{
+ if (folder.all_inputs_constant()) {
+ float3 hsv = rgb_to_hsv(color);
+
+ for (int channel = 0; channel < 3; channel++) {
+ if (outputs[channel] == folder.output) {
+ folder.make_constant(hsv[channel]);
+ return;
+ }
+ }
+ }
+}
+
+void SeparateHSVNode::compile(SVMCompiler &compiler)
+{
+ ShaderInput *color_in = input("Color");
+ ShaderOutput *hue_out = output("H");
+ ShaderOutput *saturation_out = output("S");
+ ShaderOutput *value_out = output("V");
+
+ compiler.add_node(NODE_SEPARATE_HSV,
+ compiler.stack_assign(color_in),
+ compiler.stack_assign(hue_out),
+ compiler.stack_assign(saturation_out));
+ compiler.add_node(NODE_SEPARATE_HSV, compiler.stack_assign(value_out));
+}
+
+void SeparateHSVNode::compile(OSLCompiler &compiler)
+{
+ compiler.add(this, "node_separate_hsv");
+}
+
+/* Hue Saturation Value */
+
+NODE_DEFINE(HSVNode)
+{
+ NodeType *type = NodeType::add("hsv", create, NodeType::SHADER);
+
+ SOCKET_IN_FLOAT(hue, "Hue", 0.5f);
+ SOCKET_IN_FLOAT(saturation, "Saturation", 1.0f);
+ SOCKET_IN_FLOAT(value, "Value", 1.0f);
+ SOCKET_IN_FLOAT(fac, "Fac", 1.0f);
+ SOCKET_IN_COLOR(color, "Color", zero_float3());
+
+ SOCKET_OUT_COLOR(color, "Color");
+
+ return type;
+}
+
+HSVNode::HSVNode() : ShaderNode(get_node_type())
+{
+}
+
+void HSVNode::compile(SVMCompiler &compiler)
+{
+ ShaderInput *hue_in = input("Hue");
+ ShaderInput *saturation_in = input("Saturation");
+ ShaderInput *value_in = input("Value");
+ ShaderInput *fac_in = input("Fac");
+ ShaderInput *color_in = input("Color");
+ ShaderOutput *color_out = output("Color");
+
+ compiler.add_node(NODE_HSV,
+ compiler.encode_uchar4(compiler.stack_assign(color_in),
+ compiler.stack_assign(fac_in),
+ compiler.stack_assign(color_out)),
+ compiler.encode_uchar4(compiler.stack_assign(hue_in),
+ compiler.stack_assign(saturation_in),
+ compiler.stack_assign(value_in)));
+}
+
+void HSVNode::compile(OSLCompiler &compiler)
+{
+ compiler.add(this, "node_hsv");
+}
+
+/* Attribute */
+
+NODE_DEFINE(AttributeNode)
+{
+ NodeType *type = NodeType::add("attribute", create, NodeType::SHADER);
+
+ SOCKET_STRING(attribute, "Attribute", ustring());
+
+ SOCKET_OUT_COLOR(color, "Color");
+ SOCKET_OUT_VECTOR(vector, "Vector");
+ SOCKET_OUT_FLOAT(fac, "Fac");
+ SOCKET_OUT_FLOAT(alpha, "Alpha");
+
+ return type;
+}
+
+AttributeNode::AttributeNode() : ShaderNode(get_node_type())
+{
+}
+
+void AttributeNode::attributes(Shader *shader, AttributeRequestSet *attributes)
+{
+ ShaderOutput *color_out = output("Color");
+ ShaderOutput *vector_out = output("Vector");
+ ShaderOutput *fac_out = output("Fac");
+ ShaderOutput *alpha_out = output("Alpha");
+
+ if (!color_out->links.empty() || !vector_out->links.empty() || !fac_out->links.empty() ||
+ !alpha_out->links.empty()) {
+ attributes->add_standard(attribute);
+ }
+
+ if (shader->has_volume) {
+ attributes->add(ATTR_STD_GENERATED_TRANSFORM);
+ }
+
+ ShaderNode::attributes(shader, attributes);
+}
+
+void AttributeNode::compile(SVMCompiler &compiler)
+{
+ ShaderOutput *color_out = output("Color");
+ ShaderOutput *vector_out = output("Vector");
+ ShaderOutput *fac_out = output("Fac");
+ ShaderOutput *alpha_out = output("Alpha");
+ ShaderNodeType attr_node = NODE_ATTR;
+ int attr = compiler.attribute_standard(attribute);
+
+ if (bump == SHADER_BUMP_DX)
+ attr_node = NODE_ATTR_BUMP_DX;
+ else if (bump == SHADER_BUMP_DY)
+ attr_node = NODE_ATTR_BUMP_DY;
+
+ if (!color_out->links.empty() || !vector_out->links.empty()) {
+ if (!color_out->links.empty()) {
+ compiler.add_node(
+ attr_node, attr, compiler.stack_assign(color_out), NODE_ATTR_OUTPUT_FLOAT3);
+ }
+ if (!vector_out->links.empty()) {
+ compiler.add_node(
+ attr_node, attr, compiler.stack_assign(vector_out), NODE_ATTR_OUTPUT_FLOAT3);
+ }
+ }
+
+ if (!fac_out->links.empty()) {
+ compiler.add_node(attr_node, attr, compiler.stack_assign(fac_out), NODE_ATTR_OUTPUT_FLOAT);
+ }
+
+ if (!alpha_out->links.empty()) {
+ compiler.add_node(
+ attr_node, attr, compiler.stack_assign(alpha_out), NODE_ATTR_OUTPUT_FLOAT_ALPHA);
+ }
+}
+
+void AttributeNode::compile(OSLCompiler &compiler)
+{
+ if (bump == SHADER_BUMP_DX)
+ compiler.parameter("bump_offset", "dx");
+ else if (bump == SHADER_BUMP_DY)
+ compiler.parameter("bump_offset", "dy");
+ else
+ compiler.parameter("bump_offset", "center");
+
+ if (Attribute::name_standard(attribute.c_str()) != ATTR_STD_NONE)
+ compiler.parameter("name", (string("geom:") + attribute.c_str()).c_str());
+ else
+ compiler.parameter("name", attribute.c_str());
+
+ compiler.add(this, "node_attribute");
+}
+
+/* Camera */
+
+NODE_DEFINE(CameraNode)
+{
+ NodeType *type = NodeType::add("camera_info", create, NodeType::SHADER);
+
+ SOCKET_OUT_VECTOR(view_vector, "View Vector");
+ SOCKET_OUT_FLOAT(view_z_depth, "View Z Depth");
+ SOCKET_OUT_FLOAT(view_distance, "View Distance");
+
+ return type;
+}
+
+CameraNode::CameraNode() : ShaderNode(get_node_type())
+{
+}
+
+void CameraNode::compile(SVMCompiler &compiler)
+{
+ ShaderOutput *vector_out = output("View Vector");
+ ShaderOutput *z_depth_out = output("View Z Depth");
+ ShaderOutput *distance_out = output("View Distance");
+
+ compiler.add_node(NODE_CAMERA,
+ compiler.stack_assign(vector_out),
+ compiler.stack_assign(z_depth_out),
+ compiler.stack_assign(distance_out));
+}
+
+void CameraNode::compile(OSLCompiler &compiler)
+{
+ compiler.add(this, "node_camera");
+}
+
+/* Fresnel */
+
+NODE_DEFINE(FresnelNode)
+{
+ NodeType *type = NodeType::add("fresnel", create, NodeType::SHADER);
+
+ SOCKET_IN_NORMAL(
+ normal, "Normal", zero_float3(), SocketType::LINK_NORMAL | SocketType::OSL_INTERNAL);
+ SOCKET_IN_FLOAT(IOR, "IOR", 1.45f);
+
+ SOCKET_OUT_FLOAT(fac, "Fac");
+
+ return type;
+}
+
+FresnelNode::FresnelNode() : ShaderNode(get_node_type())
+{
+}
+
+void FresnelNode::compile(SVMCompiler &compiler)
+{
+ ShaderInput *normal_in = input("Normal");
+ ShaderInput *IOR_in = input("IOR");
+ ShaderOutput *fac_out = output("Fac");
+
+ compiler.add_node(NODE_FRESNEL,
+ compiler.stack_assign(IOR_in),
+ __float_as_int(IOR),
+ compiler.encode_uchar4(compiler.stack_assign_if_linked(normal_in),
+ compiler.stack_assign(fac_out)));
+}
+
+void FresnelNode::compile(OSLCompiler &compiler)
+{
+ compiler.add(this, "node_fresnel");
+}
+
+/* Layer Weight */
+
+NODE_DEFINE(LayerWeightNode)
+{
+ NodeType *type = NodeType::add("layer_weight", create, NodeType::SHADER);
+
+ SOCKET_IN_NORMAL(
+ normal, "Normal", zero_float3(), SocketType::LINK_NORMAL | SocketType::OSL_INTERNAL);
+ SOCKET_IN_FLOAT(blend, "Blend", 0.5f);
+
+ SOCKET_OUT_FLOAT(fresnel, "Fresnel");
+ SOCKET_OUT_FLOAT(facing, "Facing");
+
+ return type;
+}
+
+LayerWeightNode::LayerWeightNode() : ShaderNode(get_node_type())
+{
+}
+
+void LayerWeightNode::compile(SVMCompiler &compiler)
+{
+ ShaderInput *normal_in = input("Normal");
+ ShaderInput *blend_in = input("Blend");
+ ShaderOutput *fresnel_out = output("Fresnel");
+ ShaderOutput *facing_out = output("Facing");
+
+ if (!fresnel_out->links.empty()) {
+ compiler.add_node(NODE_LAYER_WEIGHT,
+ compiler.stack_assign_if_linked(blend_in),
+ __float_as_int(blend),
+ compiler.encode_uchar4(NODE_LAYER_WEIGHT_FRESNEL,
+ compiler.stack_assign_if_linked(normal_in),
+ compiler.stack_assign(fresnel_out)));
+ }
+
+ if (!facing_out->links.empty()) {
+ compiler.add_node(NODE_LAYER_WEIGHT,
+ compiler.stack_assign_if_linked(blend_in),
+ __float_as_int(blend),
+ compiler.encode_uchar4(NODE_LAYER_WEIGHT_FACING,
+ compiler.stack_assign_if_linked(normal_in),
+ compiler.stack_assign(facing_out)));
+ }
+}
+
+void LayerWeightNode::compile(OSLCompiler &compiler)
+{
+ compiler.add(this, "node_layer_weight");
+}
+
+/* Wireframe */
+
+NODE_DEFINE(WireframeNode)
+{
+ NodeType *type = NodeType::add("wireframe", create, NodeType::SHADER);
+
+ SOCKET_BOOLEAN(use_pixel_size, "Use Pixel Size", false);
+ SOCKET_IN_FLOAT(size, "Size", 0.01f);
+ SOCKET_OUT_FLOAT(fac, "Fac");
+
+ return type;
+}
+
+WireframeNode::WireframeNode() : ShaderNode(get_node_type())
+{
+}
+
+void WireframeNode::compile(SVMCompiler &compiler)
+{
+ ShaderInput *size_in = input("Size");
+ ShaderOutput *fac_out = output("Fac");
+ NodeBumpOffset bump_offset = NODE_BUMP_OFFSET_CENTER;
+ if (bump == SHADER_BUMP_DX) {
+ bump_offset = NODE_BUMP_OFFSET_DX;
+ }
+ else if (bump == SHADER_BUMP_DY) {
+ bump_offset = NODE_BUMP_OFFSET_DY;
+ }
+ compiler.add_node(NODE_WIREFRAME,
+ compiler.stack_assign(size_in),
+ compiler.stack_assign(fac_out),
+ compiler.encode_uchar4(use_pixel_size, bump_offset, 0, 0));
+}
+
+void WireframeNode::compile(OSLCompiler &compiler)
+{
+ if (bump == SHADER_BUMP_DX) {
+ compiler.parameter("bump_offset", "dx");
+ }
+ else if (bump == SHADER_BUMP_DY) {
+ compiler.parameter("bump_offset", "dy");
+ }
+ else {
+ compiler.parameter("bump_offset", "center");
+ }
+ compiler.parameter(this, "use_pixel_size");
+ compiler.add(this, "node_wireframe");
+}
+
+/* Wavelength */
+
+NODE_DEFINE(WavelengthNode)
+{
+ NodeType *type = NodeType::add("wavelength", create, NodeType::SHADER);
+
+ SOCKET_IN_FLOAT(wavelength, "Wavelength", 500.0f);
+ SOCKET_OUT_COLOR(color, "Color");
+
+ return type;
+}
+
+WavelengthNode::WavelengthNode() : ShaderNode(get_node_type())
+{
+}
+
+void WavelengthNode::compile(SVMCompiler &compiler)
+{
+ ShaderInput *wavelength_in = input("Wavelength");
+ ShaderOutput *color_out = output("Color");
+
+ compiler.add_node(
+ NODE_WAVELENGTH, compiler.stack_assign(wavelength_in), compiler.stack_assign(color_out));
+}
+
+void WavelengthNode::compile(OSLCompiler &compiler)
+{
+ compiler.add(this, "node_wavelength");
+}
+
+/* Blackbody */
+
+NODE_DEFINE(BlackbodyNode)
+{
+ NodeType *type = NodeType::add("blackbody", create, NodeType::SHADER);
+
+ SOCKET_IN_FLOAT(temperature, "Temperature", 1200.0f);
+ SOCKET_OUT_COLOR(color, "Color");
+
+ return type;
+}
+
+BlackbodyNode::BlackbodyNode() : ShaderNode(get_node_type())
+{
+}
+
+void BlackbodyNode::constant_fold(const ConstantFolder &folder)
+{
+ if (folder.all_inputs_constant()) {
+ folder.make_constant(svm_math_blackbody_color(temperature));
+ }
+}
+
+void BlackbodyNode::compile(SVMCompiler &compiler)
+{
+ ShaderInput *temperature_in = input("Temperature");
+ ShaderOutput *color_out = output("Color");
+
+ compiler.add_node(
+ NODE_BLACKBODY, compiler.stack_assign(temperature_in), compiler.stack_assign(color_out));
+}
+
+void BlackbodyNode::compile(OSLCompiler &compiler)
+{
+ compiler.add(this, "node_blackbody");
+}
+
+/* Output */
+
+NODE_DEFINE(OutputNode)
+{
+ NodeType *type = NodeType::add("output", create, NodeType::SHADER);
+
+ SOCKET_IN_CLOSURE(surface, "Surface");
+ SOCKET_IN_CLOSURE(volume, "Volume");
+ SOCKET_IN_VECTOR(displacement, "Displacement", zero_float3());
+ SOCKET_IN_NORMAL(normal, "Normal", zero_float3());
+
+ return type;
+}
+
+OutputNode::OutputNode() : ShaderNode(get_node_type())
+{
+ special_type = SHADER_SPECIAL_TYPE_OUTPUT;
+}
+
+void OutputNode::compile(SVMCompiler &compiler)
+{
+ if (compiler.output_type() == SHADER_TYPE_DISPLACEMENT) {
+ ShaderInput *displacement_in = input("Displacement");
+
+ if (displacement_in->link) {
+ compiler.add_node(NODE_SET_DISPLACEMENT, compiler.stack_assign(displacement_in));
+ }
+ }
+}
+
+void OutputNode::compile(OSLCompiler &compiler)
+{
+ if (compiler.output_type() == SHADER_TYPE_SURFACE)
+ compiler.add(this, "node_output_surface");
+ else if (compiler.output_type() == SHADER_TYPE_VOLUME)
+ compiler.add(this, "node_output_volume");
+ else if (compiler.output_type() == SHADER_TYPE_DISPLACEMENT)
+ compiler.add(this, "node_output_displacement");
+}
+
+/* Map Range Node */
+
+NODE_DEFINE(MapRangeNode)
+{
+ NodeType *type = NodeType::add("map_range", create, NodeType::SHADER);
+
+ static NodeEnum type_enum;
+ type_enum.insert("linear", NODE_MAP_RANGE_LINEAR);
+ type_enum.insert("stepped", NODE_MAP_RANGE_STEPPED);
+ type_enum.insert("smoothstep", NODE_MAP_RANGE_SMOOTHSTEP);
+ type_enum.insert("smootherstep", NODE_MAP_RANGE_SMOOTHERSTEP);
+ SOCKET_ENUM(range_type, "Type", type_enum, NODE_MAP_RANGE_LINEAR);
+
+ SOCKET_IN_FLOAT(value, "Value", 1.0f);
+ SOCKET_IN_FLOAT(from_min, "From Min", 0.0f);
+ SOCKET_IN_FLOAT(from_max, "From Max", 1.0f);
+ SOCKET_IN_FLOAT(to_min, "To Min", 0.0f);
+ SOCKET_IN_FLOAT(to_max, "To Max", 1.0f);
+ SOCKET_IN_FLOAT(steps, "Steps", 4.0f);
+ SOCKET_IN_BOOLEAN(clamp, "Clamp", false);
+
+ SOCKET_OUT_FLOAT(result, "Result");
+
+ return type;
+}
+
+MapRangeNode::MapRangeNode() : ShaderNode(get_node_type())
+{
+}
+
+void MapRangeNode::expand(ShaderGraph *graph)
+{
+ if (clamp) {
+ ShaderOutput *result_out = output("Result");
+ if (!result_out->links.empty()) {
+ ClampNode *clamp_node = graph->create_node<ClampNode>();
+ clamp_node->set_clamp_type(NODE_CLAMP_RANGE);
+ graph->add(clamp_node);
+ graph->relink(result_out, clamp_node->output("Result"));
+ graph->connect(result_out, clamp_node->input("Value"));
+ if (input("To Min")->link) {
+ graph->connect(input("To Min")->link, clamp_node->input("Min"));
+ }
+ else {
+ clamp_node->set_min(to_min);
+ }
+ if (input("To Max")->link) {
+ graph->connect(input("To Max")->link, clamp_node->input("Max"));
+ }
+ else {
+ clamp_node->set_max(to_max);
+ }
+ }
+ }
+}
+
+void MapRangeNode::compile(SVMCompiler &compiler)
+{
+ ShaderInput *value_in = input("Value");
+ ShaderInput *from_min_in = input("From Min");
+ ShaderInput *from_max_in = input("From Max");
+ ShaderInput *to_min_in = input("To Min");
+ ShaderInput *to_max_in = input("To Max");
+ ShaderInput *steps_in = input("Steps");
+ ShaderOutput *result_out = output("Result");
+
+ int value_stack_offset = compiler.stack_assign(value_in);
+ int from_min_stack_offset = compiler.stack_assign_if_linked(from_min_in);
+ int from_max_stack_offset = compiler.stack_assign_if_linked(from_max_in);
+ int to_min_stack_offset = compiler.stack_assign_if_linked(to_min_in);
+ int to_max_stack_offset = compiler.stack_assign_if_linked(to_max_in);
+ int steps_stack_offset = compiler.stack_assign(steps_in);
+ int result_stack_offset = compiler.stack_assign(result_out);
+
+ compiler.add_node(
+ NODE_MAP_RANGE,
+ value_stack_offset,
+ compiler.encode_uchar4(
+ from_min_stack_offset, from_max_stack_offset, to_min_stack_offset, to_max_stack_offset),
+ compiler.encode_uchar4(range_type, steps_stack_offset, result_stack_offset));
+
+ compiler.add_node(__float_as_int(from_min),
+ __float_as_int(from_max),
+ __float_as_int(to_min),
+ __float_as_int(to_max));
+ compiler.add_node(__float_as_int(steps));
+}
+
+void MapRangeNode::compile(OSLCompiler &compiler)
+{
+ compiler.parameter(this, "range_type");
+ compiler.add(this, "node_map_range");
+}
+
+/* Clamp Node */
+
+NODE_DEFINE(ClampNode)
+{
+ NodeType *type = NodeType::add("clamp", create, NodeType::SHADER);
+
+ static NodeEnum type_enum;
+ type_enum.insert("minmax", NODE_CLAMP_MINMAX);
+ type_enum.insert("range", NODE_CLAMP_RANGE);
+ SOCKET_ENUM(clamp_type, "Type", type_enum, NODE_CLAMP_MINMAX);
+
+ SOCKET_IN_FLOAT(value, "Value", 1.0f);
+ SOCKET_IN_FLOAT(min, "Min", 0.0f);
+ SOCKET_IN_FLOAT(max, "Max", 1.0f);
+
+ SOCKET_OUT_FLOAT(result, "Result");
+
+ return type;
+}
+
+ClampNode::ClampNode() : ShaderNode(get_node_type())
+{
+}
+
+void ClampNode::constant_fold(const ConstantFolder &folder)
+{
+ if (folder.all_inputs_constant()) {
+ if (clamp_type == NODE_CLAMP_RANGE && (min > max)) {
+ folder.make_constant(clamp(value, max, min));
+ }
+ else {
+ folder.make_constant(clamp(value, min, max));
+ }
+ }
+}
+
+void ClampNode::compile(SVMCompiler &compiler)
+{
+ ShaderInput *value_in = input("Value");
+ ShaderInput *min_in = input("Min");
+ ShaderInput *max_in = input("Max");
+ ShaderOutput *result_out = output("Result");
+
+ int value_stack_offset = compiler.stack_assign(value_in);
+ int min_stack_offset = compiler.stack_assign(min_in);
+ int max_stack_offset = compiler.stack_assign(max_in);
+ int result_stack_offset = compiler.stack_assign(result_out);
+
+ compiler.add_node(NODE_CLAMP,
+ value_stack_offset,
+ compiler.encode_uchar4(min_stack_offset, max_stack_offset, clamp_type),
+ result_stack_offset);
+ compiler.add_node(__float_as_int(min), __float_as_int(max));
+}
+
+void ClampNode::compile(OSLCompiler &compiler)
+{
+ compiler.parameter(this, "clamp_type");
+ compiler.add(this, "node_clamp");
+}
+
+/* AOV Output */
+
+NODE_DEFINE(OutputAOVNode)
+{
+ NodeType *type = NodeType::add("aov_output", create, NodeType::SHADER);
+
+ SOCKET_IN_COLOR(color, "Color", zero_float3());
+ SOCKET_IN_FLOAT(value, "Value", 0.0f);
+
+ SOCKET_STRING(name, "AOV Name", ustring(""));
+
+ return type;
+}
+
+OutputAOVNode::OutputAOVNode() : ShaderNode(get_node_type())
+{
+ special_type = SHADER_SPECIAL_TYPE_OUTPUT_AOV;
+ offset = -1;
+}
+
+void OutputAOVNode::simplify_settings(Scene *scene)
+{
+ offset = scene->film->get_aov_offset(scene, name.string(), is_color);
+ if (offset == -1) {
+ offset = scene->film->get_aov_offset(scene, name.string(), is_color);
+ }
+
+ if (offset == -1 || is_color) {
+ input("Value")->disconnect();
+ }
+ if (offset == -1 || !is_color) {
+ input("Color")->disconnect();
+ }
+}
+
+void OutputAOVNode::compile(SVMCompiler &compiler)
+{
+ assert(offset >= 0);
+
+ if (is_color) {
+ compiler.add_node(NODE_AOV_COLOR, compiler.stack_assign(input("Color")), offset);
+ }
+ else {
+ compiler.add_node(NODE_AOV_VALUE, compiler.stack_assign(input("Value")), offset);
+ }
+}
+
+void OutputAOVNode::compile(OSLCompiler & /*compiler*/)
+{
+ /* TODO */
+}
+
+/* Math */
+
+NODE_DEFINE(MathNode)
+{
+ NodeType *type = NodeType::add("math", create, NodeType::SHADER);
+
+ static NodeEnum type_enum;
+ type_enum.insert("add", NODE_MATH_ADD);
+ type_enum.insert("subtract", NODE_MATH_SUBTRACT);
+ type_enum.insert("multiply", NODE_MATH_MULTIPLY);
+ type_enum.insert("divide", NODE_MATH_DIVIDE);
+ type_enum.insert("multiply_add", NODE_MATH_MULTIPLY_ADD);
+ type_enum.insert("sine", NODE_MATH_SINE);
+ type_enum.insert("cosine", NODE_MATH_COSINE);
+ type_enum.insert("tangent", NODE_MATH_TANGENT);
+ type_enum.insert("sinh", NODE_MATH_SINH);
+ type_enum.insert("cosh", NODE_MATH_COSH);
+ type_enum.insert("tanh", NODE_MATH_TANH);
+ type_enum.insert("arcsine", NODE_MATH_ARCSINE);
+ type_enum.insert("arccosine", NODE_MATH_ARCCOSINE);
+ type_enum.insert("arctangent", NODE_MATH_ARCTANGENT);
+ type_enum.insert("power", NODE_MATH_POWER);
+ type_enum.insert("logarithm", NODE_MATH_LOGARITHM);
+ type_enum.insert("minimum", NODE_MATH_MINIMUM);
+ type_enum.insert("maximum", NODE_MATH_MAXIMUM);
+ type_enum.insert("round", NODE_MATH_ROUND);
+ type_enum.insert("less_than", NODE_MATH_LESS_THAN);
+ type_enum.insert("greater_than", NODE_MATH_GREATER_THAN);
+ type_enum.insert("modulo", NODE_MATH_MODULO);
+ type_enum.insert("absolute", NODE_MATH_ABSOLUTE);
+ type_enum.insert("arctan2", NODE_MATH_ARCTAN2);
+ type_enum.insert("floor", NODE_MATH_FLOOR);
+ type_enum.insert("ceil", NODE_MATH_CEIL);
+ type_enum.insert("fraction", NODE_MATH_FRACTION);
+ type_enum.insert("trunc", NODE_MATH_TRUNC);
+ type_enum.insert("snap", NODE_MATH_SNAP);
+ type_enum.insert("wrap", NODE_MATH_WRAP);
+ type_enum.insert("pingpong", NODE_MATH_PINGPONG);
+ type_enum.insert("sqrt", NODE_MATH_SQRT);
+ type_enum.insert("inversesqrt", NODE_MATH_INV_SQRT);
+ type_enum.insert("sign", NODE_MATH_SIGN);
+ type_enum.insert("exponent", NODE_MATH_EXPONENT);
+ type_enum.insert("radians", NODE_MATH_RADIANS);
+ type_enum.insert("degrees", NODE_MATH_DEGREES);
+ type_enum.insert("smoothmin", NODE_MATH_SMOOTH_MIN);
+ type_enum.insert("smoothmax", NODE_MATH_SMOOTH_MAX);
+ type_enum.insert("compare", NODE_MATH_COMPARE);
+ SOCKET_ENUM(math_type, "Type", type_enum, NODE_MATH_ADD);
+
+ SOCKET_BOOLEAN(use_clamp, "Use Clamp", false);
+
+ SOCKET_IN_FLOAT(value1, "Value1", 0.5f);
+ SOCKET_IN_FLOAT(value2, "Value2", 0.5f);
+ SOCKET_IN_FLOAT(value3, "Value3", 0.0f);
+
+ SOCKET_OUT_FLOAT(value, "Value");
+
+ return type;
+}
+
+MathNode::MathNode() : ShaderNode(get_node_type())
+{
+}
+
+void MathNode::expand(ShaderGraph *graph)
+{
+ if (use_clamp) {
+ ShaderOutput *result_out = output("Value");
+ if (!result_out->links.empty()) {
+ ClampNode *clamp_node = graph->create_node<ClampNode>();
+ clamp_node->set_clamp_type(NODE_CLAMP_MINMAX);
+ clamp_node->set_min(0.0f);
+ clamp_node->set_max(1.0f);
+ graph->add(clamp_node);
+ graph->relink(result_out, clamp_node->output("Result"));
+ graph->connect(result_out, clamp_node->input("Value"));
+ }
+ }
+}
+
+void MathNode::constant_fold(const ConstantFolder &folder)
+{
+ if (folder.all_inputs_constant()) {
+ folder.make_constant(svm_math(math_type, value1, value2, value3));
+ }
+ else {
+ folder.fold_math(math_type);
+ }
+}
+
+void MathNode::compile(SVMCompiler &compiler)
+{
+ ShaderInput *value1_in = input("Value1");
+ ShaderInput *value2_in = input("Value2");
+ ShaderInput *value3_in = input("Value3");
+ ShaderOutput *value_out = output("Value");
+
+ int value1_stack_offset = compiler.stack_assign(value1_in);
+ int value2_stack_offset = compiler.stack_assign(value2_in);
+ int value3_stack_offset = compiler.stack_assign(value3_in);
+ int value_stack_offset = compiler.stack_assign(value_out);
+
+ compiler.add_node(
+ NODE_MATH,
+ math_type,
+ compiler.encode_uchar4(value1_stack_offset, value2_stack_offset, value3_stack_offset),
+ value_stack_offset);
+}
+
+void MathNode::compile(OSLCompiler &compiler)
+{
+ compiler.parameter(this, "math_type");
+ compiler.add(this, "node_math");
+}
+
+/* VectorMath */
+
+NODE_DEFINE(VectorMathNode)
+{
+ NodeType *type = NodeType::add("vector_math", create, NodeType::SHADER);
+
+ static NodeEnum type_enum;
+ type_enum.insert("add", NODE_VECTOR_MATH_ADD);
+ type_enum.insert("subtract", NODE_VECTOR_MATH_SUBTRACT);
+ type_enum.insert("multiply", NODE_VECTOR_MATH_MULTIPLY);
+ type_enum.insert("divide", NODE_VECTOR_MATH_DIVIDE);
+
+ type_enum.insert("cross_product", NODE_VECTOR_MATH_CROSS_PRODUCT);
+ type_enum.insert("project", NODE_VECTOR_MATH_PROJECT);
+ type_enum.insert("reflect", NODE_VECTOR_MATH_REFLECT);
+ type_enum.insert("refract", NODE_VECTOR_MATH_REFRACT);
+ type_enum.insert("faceforward", NODE_VECTOR_MATH_FACEFORWARD);
+ type_enum.insert("multiply_add", NODE_VECTOR_MATH_MULTIPLY_ADD);
+
+ type_enum.insert("dot_product", NODE_VECTOR_MATH_DOT_PRODUCT);
+
+ type_enum.insert("distance", NODE_VECTOR_MATH_DISTANCE);
+ type_enum.insert("length", NODE_VECTOR_MATH_LENGTH);
+ type_enum.insert("scale", NODE_VECTOR_MATH_SCALE);
+ type_enum.insert("normalize", NODE_VECTOR_MATH_NORMALIZE);
+
+ type_enum.insert("snap", NODE_VECTOR_MATH_SNAP);
+ type_enum.insert("floor", NODE_VECTOR_MATH_FLOOR);
+ type_enum.insert("ceil", NODE_VECTOR_MATH_CEIL);
+ type_enum.insert("modulo", NODE_VECTOR_MATH_MODULO);
+ type_enum.insert("wrap", NODE_VECTOR_MATH_WRAP);
+ type_enum.insert("fraction", NODE_VECTOR_MATH_FRACTION);
+ type_enum.insert("absolute", NODE_VECTOR_MATH_ABSOLUTE);
+ type_enum.insert("minimum", NODE_VECTOR_MATH_MINIMUM);
+ type_enum.insert("maximum", NODE_VECTOR_MATH_MAXIMUM);
+
+ type_enum.insert("sine", NODE_VECTOR_MATH_SINE);
+ type_enum.insert("cosine", NODE_VECTOR_MATH_COSINE);
+ type_enum.insert("tangent", NODE_VECTOR_MATH_TANGENT);
+ SOCKET_ENUM(math_type, "Type", type_enum, NODE_VECTOR_MATH_ADD);
+
+ SOCKET_IN_VECTOR(vector1, "Vector1", zero_float3());
+ SOCKET_IN_VECTOR(vector2, "Vector2", zero_float3());
+ SOCKET_IN_VECTOR(vector3, "Vector3", zero_float3());
+ SOCKET_IN_FLOAT(scale, "Scale", 1.0f);
+
+ SOCKET_OUT_FLOAT(value, "Value");
+ SOCKET_OUT_VECTOR(vector, "Vector");
+
+ return type;
+}
+
+VectorMathNode::VectorMathNode() : ShaderNode(get_node_type())
+{
+}
+
+void VectorMathNode::constant_fold(const ConstantFolder &folder)
+{
+ float value = 0.0f;
+ float3 vector = zero_float3();
+
+ if (folder.all_inputs_constant()) {
+ svm_vector_math(&value, &vector, math_type, vector1, vector2, vector3, scale);
+ if (folder.output == output("Value")) {
+ folder.make_constant(value);
+ }
+ else if (folder.output == output("Vector")) {
+ folder.make_constant(vector);
+ }
+ }
+ else {
+ folder.fold_vector_math(math_type);
+ }
+}
+
+void VectorMathNode::compile(SVMCompiler &compiler)
+{
+ ShaderInput *vector1_in = input("Vector1");
+ ShaderInput *vector2_in = input("Vector2");
+ ShaderInput *param1_in = input("Scale");
+ ShaderOutput *value_out = output("Value");
+ ShaderOutput *vector_out = output("Vector");
+
+ int vector1_stack_offset = compiler.stack_assign(vector1_in);
+ int vector2_stack_offset = compiler.stack_assign(vector2_in);
+ int param1_stack_offset = compiler.stack_assign(param1_in);
+ int value_stack_offset = compiler.stack_assign_if_linked(value_out);
+ int vector_stack_offset = compiler.stack_assign_if_linked(vector_out);
+
+ /* 3 Vector Operators */
+ if (math_type == NODE_VECTOR_MATH_WRAP || math_type == NODE_VECTOR_MATH_FACEFORWARD ||
+ math_type == NODE_VECTOR_MATH_MULTIPLY_ADD) {
+ ShaderInput *vector3_in = input("Vector3");
+ int vector3_stack_offset = compiler.stack_assign(vector3_in);
+ compiler.add_node(
+ NODE_VECTOR_MATH,
+ math_type,
+ compiler.encode_uchar4(vector1_stack_offset, vector2_stack_offset, param1_stack_offset),
+ compiler.encode_uchar4(value_stack_offset, vector_stack_offset));
+ compiler.add_node(vector3_stack_offset);
+ }
+ else {
+ compiler.add_node(
+ NODE_VECTOR_MATH,
+ math_type,
+ compiler.encode_uchar4(vector1_stack_offset, vector2_stack_offset, param1_stack_offset),
+ compiler.encode_uchar4(value_stack_offset, vector_stack_offset));
+ }
+}
+
+void VectorMathNode::compile(OSLCompiler &compiler)
+{
+ compiler.parameter(this, "math_type");
+ compiler.add(this, "node_vector_math");
+}
+
+/* Vector Rotate */
+
+NODE_DEFINE(VectorRotateNode)
+{
+ NodeType *type = NodeType::add("vector_rotate", create, NodeType::SHADER);
+
+ static NodeEnum type_enum;
+ type_enum.insert("axis", NODE_VECTOR_ROTATE_TYPE_AXIS);
+ type_enum.insert("x_axis", NODE_VECTOR_ROTATE_TYPE_AXIS_X);
+ type_enum.insert("y_axis", NODE_VECTOR_ROTATE_TYPE_AXIS_Y);
+ type_enum.insert("z_axis", NODE_VECTOR_ROTATE_TYPE_AXIS_Z);
+ type_enum.insert("euler_xyz", NODE_VECTOR_ROTATE_TYPE_EULER_XYZ);
+ SOCKET_ENUM(rotate_type, "Type", type_enum, NODE_VECTOR_ROTATE_TYPE_AXIS);
+
+ SOCKET_BOOLEAN(invert, "Invert", false);
+
+ SOCKET_IN_VECTOR(vector, "Vector", zero_float3());
+ SOCKET_IN_POINT(rotation, "Rotation", zero_float3());
+ SOCKET_IN_POINT(center, "Center", zero_float3());
+ SOCKET_IN_VECTOR(axis, "Axis", make_float3(0.0f, 0.0f, 1.0f));
+ SOCKET_IN_FLOAT(angle, "Angle", 0.0f);
+ SOCKET_OUT_VECTOR(vector, "Vector");
+
+ return type;
+}
+
+VectorRotateNode::VectorRotateNode() : ShaderNode(get_node_type())
+{
+}
+
+void VectorRotateNode::compile(SVMCompiler &compiler)
+{
+ ShaderInput *vector_in = input("Vector");
+ ShaderInput *rotation_in = input("Rotation");
+ ShaderInput *center_in = input("Center");
+ ShaderInput *axis_in = input("Axis");
+ ShaderInput *angle_in = input("Angle");
+ ShaderOutput *vector_out = output("Vector");
+
+ compiler.add_node(NODE_VECTOR_ROTATE,
+ compiler.encode_uchar4(rotate_type,
+ compiler.stack_assign(vector_in),
+ compiler.stack_assign(rotation_in),
+ invert),
+ compiler.encode_uchar4(compiler.stack_assign(center_in),
+ compiler.stack_assign(axis_in),
+ compiler.stack_assign(angle_in)),
+ compiler.stack_assign(vector_out));
+}
+
+void VectorRotateNode::compile(OSLCompiler &compiler)
+{
+ compiler.parameter(this, "rotate_type");
+ compiler.parameter(this, "invert");
+ compiler.add(this, "node_vector_rotate");
+}
+
+/* VectorTransform */
+
+NODE_DEFINE(VectorTransformNode)
+{
+ NodeType *type = NodeType::add("vector_transform", create, NodeType::SHADER);
+
+ static NodeEnum type_enum;
+ type_enum.insert("vector", NODE_VECTOR_TRANSFORM_TYPE_VECTOR);
+ type_enum.insert("point", NODE_VECTOR_TRANSFORM_TYPE_POINT);
+ type_enum.insert("normal", NODE_VECTOR_TRANSFORM_TYPE_NORMAL);
+ SOCKET_ENUM(transform_type, "Type", type_enum, NODE_VECTOR_TRANSFORM_TYPE_VECTOR);
+
+ static NodeEnum space_enum;
+ space_enum.insert("world", NODE_VECTOR_TRANSFORM_CONVERT_SPACE_WORLD);
+ space_enum.insert("object", NODE_VECTOR_TRANSFORM_CONVERT_SPACE_OBJECT);
+ space_enum.insert("camera", NODE_VECTOR_TRANSFORM_CONVERT_SPACE_CAMERA);
+ SOCKET_ENUM(convert_from, "Convert From", space_enum, NODE_VECTOR_TRANSFORM_CONVERT_SPACE_WORLD);
+ SOCKET_ENUM(convert_to, "Convert To", space_enum, NODE_VECTOR_TRANSFORM_CONVERT_SPACE_OBJECT);
+
+ SOCKET_IN_VECTOR(vector, "Vector", zero_float3());
+ SOCKET_OUT_VECTOR(vector, "Vector");
+
+ return type;
+}
+
+VectorTransformNode::VectorTransformNode() : ShaderNode(get_node_type())
+{
+}
+
+void VectorTransformNode::compile(SVMCompiler &compiler)
+{
+ ShaderInput *vector_in = input("Vector");
+ ShaderOutput *vector_out = output("Vector");
+
+ compiler.add_node(
+ NODE_VECTOR_TRANSFORM,
+ compiler.encode_uchar4(transform_type, convert_from, convert_to),
+ compiler.encode_uchar4(compiler.stack_assign(vector_in), compiler.stack_assign(vector_out)));
+}
+
+void VectorTransformNode::compile(OSLCompiler &compiler)
+{
+ compiler.parameter(this, "transform_type");
+ compiler.parameter(this, "convert_from");
+ compiler.parameter(this, "convert_to");
+ compiler.add(this, "node_vector_transform");
+}
+
+/* BumpNode */
+
+NODE_DEFINE(BumpNode)
+{
+ NodeType *type = NodeType::add("bump", create, NodeType::SHADER);
+
+ SOCKET_BOOLEAN(invert, "Invert", false);
+ SOCKET_BOOLEAN(use_object_space, "UseObjectSpace", false);
+
+ /* this input is used by the user, but after graph transform it is no longer
+ * used and moved to sampler center/x/y instead */
+ SOCKET_IN_FLOAT(height, "Height", 1.0f);
+
+ SOCKET_IN_FLOAT(sample_center, "SampleCenter", 0.0f);
+ SOCKET_IN_FLOAT(sample_x, "SampleX", 0.0f);
+ SOCKET_IN_FLOAT(sample_y, "SampleY", 0.0f);
+ SOCKET_IN_NORMAL(normal, "Normal", zero_float3(), SocketType::LINK_NORMAL);
+ SOCKET_IN_FLOAT(strength, "Strength", 1.0f);
+ SOCKET_IN_FLOAT(distance, "Distance", 0.1f);
+
+ SOCKET_OUT_NORMAL(normal, "Normal");
+
+ return type;
+}
+
+BumpNode::BumpNode() : ShaderNode(get_node_type())
+{
+ special_type = SHADER_SPECIAL_TYPE_BUMP;
+}
+
+void BumpNode::compile(SVMCompiler &compiler)
+{
+ ShaderInput *center_in = input("SampleCenter");
+ ShaderInput *dx_in = input("SampleX");
+ ShaderInput *dy_in = input("SampleY");
+ ShaderInput *normal_in = input("Normal");
+ ShaderInput *strength_in = input("Strength");
+ ShaderInput *distance_in = input("Distance");
+ ShaderOutput *normal_out = output("Normal");
+
+ /* pack all parameters in the node */
+ compiler.add_node(NODE_SET_BUMP,
+ compiler.encode_uchar4(compiler.stack_assign_if_linked(normal_in),
+ compiler.stack_assign(distance_in),
+ invert,
+ use_object_space),
+ compiler.encode_uchar4(compiler.stack_assign(center_in),
+ compiler.stack_assign(dx_in),
+ compiler.stack_assign(dy_in),
+ compiler.stack_assign(strength_in)),
+ compiler.stack_assign(normal_out));
+}
+
+void BumpNode::compile(OSLCompiler &compiler)
+{
+ compiler.parameter(this, "invert");
+ compiler.parameter(this, "use_object_space");
+ compiler.add(this, "node_bump");
+}
+
+void BumpNode::constant_fold(const ConstantFolder &folder)
+{
+ ShaderInput *height_in = input("Height");
+ ShaderInput *normal_in = input("Normal");
+
+ if (height_in->link == NULL) {
+ if (normal_in->link == NULL) {
+ GeometryNode *geom = folder.graph->create_node<GeometryNode>();
+ folder.graph->add(geom);
+ folder.bypass(geom->output("Normal"));
+ }
+ else {
+ folder.bypass(normal_in->link);
+ }
+ }
+
+ /* TODO(sergey): Ignore bump with zero strength. */
+}
+
+/* Curves node */
+
+CurvesNode::CurvesNode(const NodeType *node_type) : ShaderNode(node_type)
+{
+}
+
+void CurvesNode::constant_fold(const ConstantFolder &folder, ShaderInput *value_in)
+{
+ ShaderInput *fac_in = input("Fac");
+
+ /* evaluate fully constant node */
+ if (folder.all_inputs_constant()) {
+ if (curves.size() == 0) {
+ return;
+ }
+
+ float3 pos = (value - make_float3(min_x, min_x, min_x)) / (max_x - min_x);
+ float3 result;
+
+ result[0] = rgb_ramp_lookup(curves.data(), pos[0], true, true, curves.size()).x;
+ result[1] = rgb_ramp_lookup(curves.data(), pos[1], true, true, curves.size()).y;
+ result[2] = rgb_ramp_lookup(curves.data(), pos[2], true, true, curves.size()).z;
+
+ folder.make_constant(interp(value, result, fac));
+ }
+ /* remove no-op node */
+ else if (!fac_in->link && fac == 0.0f) {
+ /* link is not null because otherwise all inputs are constant */
+ folder.bypass(value_in->link);
+ }
+}
+
+void CurvesNode::compile(SVMCompiler &compiler,
+ int type,
+ ShaderInput *value_in,
+ ShaderOutput *value_out)
+{
+ if (curves.size() == 0)
+ return;
+
+ ShaderInput *fac_in = input("Fac");
+
+ compiler.add_node(type,
+ compiler.encode_uchar4(compiler.stack_assign(fac_in),
+ compiler.stack_assign(value_in),
+ compiler.stack_assign(value_out)),
+ __float_as_int(min_x),
+ __float_as_int(max_x));
+
+ compiler.add_node(curves.size());
+ for (int i = 0; i < curves.size(); i++)
+ compiler.add_node(float3_to_float4(curves[i]));
+}
+
+void CurvesNode::compile(OSLCompiler &compiler, const char *name)
+{
+ if (curves.size() == 0)
+ return;
+
+ compiler.parameter_color_array("ramp", curves);
+ compiler.parameter(this, "min_x");
+ compiler.parameter(this, "max_x");
+ compiler.add(this, name);
+}
+
+void CurvesNode::compile(SVMCompiler & /*compiler*/)
+{
+ assert(0);
+}
+
+void CurvesNode::compile(OSLCompiler & /*compiler*/)
+{
+ assert(0);
+}
+
+/* RGBCurvesNode */
+
+NODE_DEFINE(RGBCurvesNode)
+{
+ NodeType *type = NodeType::add("rgb_curves", create, NodeType::SHADER);
+
+ SOCKET_COLOR_ARRAY(curves, "Curves", array<float3>());
+ SOCKET_FLOAT(min_x, "Min X", 0.0f);
+ SOCKET_FLOAT(max_x, "Max X", 1.0f);
+
+ SOCKET_IN_FLOAT(fac, "Fac", 0.0f);
+ SOCKET_IN_COLOR(value, "Color", zero_float3());
+
+ SOCKET_OUT_COLOR(value, "Color");
+
+ return type;
+}
+
+RGBCurvesNode::RGBCurvesNode() : CurvesNode(get_node_type())
+{
+}
+
+void RGBCurvesNode::constant_fold(const ConstantFolder &folder)
+{
+ CurvesNode::constant_fold(folder, input("Color"));
+}
+
+void RGBCurvesNode::compile(SVMCompiler &compiler)
+{
+ CurvesNode::compile(compiler, NODE_RGB_CURVES, input("Color"), output("Color"));
+}
+
+void RGBCurvesNode::compile(OSLCompiler &compiler)
+{
+ CurvesNode::compile(compiler, "node_rgb_curves");
+}
+
+/* VectorCurvesNode */
+
+NODE_DEFINE(VectorCurvesNode)
+{
+ NodeType *type = NodeType::add("vector_curves", create, NodeType::SHADER);
+
+ SOCKET_VECTOR_ARRAY(curves, "Curves", array<float3>());
+ SOCKET_FLOAT(min_x, "Min X", 0.0f);
+ SOCKET_FLOAT(max_x, "Max X", 1.0f);
+
+ SOCKET_IN_FLOAT(fac, "Fac", 0.0f);
+ SOCKET_IN_VECTOR(value, "Vector", zero_float3());
+
+ SOCKET_OUT_VECTOR(value, "Vector");
+
+ return type;
+}
+
+VectorCurvesNode::VectorCurvesNode() : CurvesNode(get_node_type())
+{
+}
+
+void VectorCurvesNode::constant_fold(const ConstantFolder &folder)
+{
+ CurvesNode::constant_fold(folder, input("Vector"));
+}
+
+void VectorCurvesNode::compile(SVMCompiler &compiler)
+{
+ CurvesNode::compile(compiler, NODE_VECTOR_CURVES, input("Vector"), output("Vector"));
+}
+
+void VectorCurvesNode::compile(OSLCompiler &compiler)
+{
+ CurvesNode::compile(compiler, "node_vector_curves");
+}
+
+/* FloatCurveNode */
+
+NODE_DEFINE(FloatCurveNode)
+{
+ NodeType *type = NodeType::add("float_curve", create, NodeType::SHADER);
+
+ SOCKET_FLOAT_ARRAY(curve, "Curve", array<float>());
+ SOCKET_FLOAT(min_x, "Min X", 0.0f);
+ SOCKET_FLOAT(max_x, "Max X", 1.0f);
+
+ SOCKET_IN_FLOAT(fac, "Factor", 0.0f);
+ SOCKET_IN_FLOAT(value, "Value", 0.0f);
+
+ SOCKET_OUT_FLOAT(value, "Value");
+
+ return type;
+}
+
+FloatCurveNode::FloatCurveNode() : ShaderNode(get_node_type())
+{
+}
+
+void FloatCurveNode::constant_fold(const ConstantFolder &folder)
+{
+ ShaderInput *value_in = input("Value");
+ ShaderInput *fac_in = input("Factor");
+
+ /* evaluate fully constant node */
+ if (folder.all_inputs_constant()) {
+ if (curve.size() == 0) {
+ return;
+ }
+
+ float pos = (value - min_x) / (max_x - min_x);
+ float result = float_ramp_lookup(curve.data(), pos, true, true, curve.size());
+
+ folder.make_constant(value + fac * (result - value));
+ }
+ /* remove no-op node */
+ else if (!fac_in->link && fac == 0.0f) {
+ /* link is not null because otherwise all inputs are constant */
+ folder.bypass(value_in->link);
+ }
+}
+
+void FloatCurveNode::compile(SVMCompiler &compiler)
+{
+ if (curve.size() == 0)
+ return;
+
+ ShaderInput *value_in = input("Value");
+ ShaderInput *fac_in = input("Factor");
+ ShaderOutput *value_out = output("Value");
+
+ compiler.add_node(NODE_FLOAT_CURVE,
+ compiler.encode_uchar4(compiler.stack_assign(fac_in),
+ compiler.stack_assign(value_in),
+ compiler.stack_assign(value_out)),
+ __float_as_int(min_x),
+ __float_as_int(max_x));
+
+ compiler.add_node(curve.size());
+ for (int i = 0; i < curve.size(); i++)
+ compiler.add_node(make_float4(curve[i]));
+}
+
+void FloatCurveNode::compile(OSLCompiler &compiler)
+{
+ if (curve.size() == 0)
+ return;
+
+ compiler.parameter_array("ramp", curve.data(), curve.size());
+ compiler.parameter(this, "min_x");
+ compiler.parameter(this, "max_x");
+ compiler.add(this, "node_float_curve");
+}
+
+/* RGBRampNode */
+
+NODE_DEFINE(RGBRampNode)
+{
+ NodeType *type = NodeType::add("rgb_ramp", create, NodeType::SHADER);
+
+ SOCKET_COLOR_ARRAY(ramp, "Ramp", array<float3>());
+ SOCKET_FLOAT_ARRAY(ramp_alpha, "Ramp Alpha", array<float>());
+ SOCKET_BOOLEAN(interpolate, "Interpolate", true);
+
+ SOCKET_IN_FLOAT(fac, "Fac", 0.0f);
+
+ SOCKET_OUT_COLOR(color, "Color");
+ SOCKET_OUT_FLOAT(alpha, "Alpha");
+
+ return type;
+}
+
+RGBRampNode::RGBRampNode() : ShaderNode(get_node_type())
+{
+}
+
+void RGBRampNode::constant_fold(const ConstantFolder &folder)
+{
+ if (ramp.size() == 0 || ramp.size() != ramp_alpha.size())
+ return;
+
+ if (folder.all_inputs_constant()) {
+ float f = clamp(fac, 0.0f, 1.0f) * (ramp.size() - 1);
+
+ /* clamp int as well in case of NaN */
+ int i = clamp((int)f, 0, ramp.size() - 1);
+ float t = f - (float)i;
+
+ bool use_lerp = interpolate && t > 0.0f;
+
+ if (folder.output == output("Color")) {
+ float3 color = rgb_ramp_lookup(ramp.data(), fac, use_lerp, false, ramp.size());
+ folder.make_constant(color);
+ }
+ else if (folder.output == output("Alpha")) {
+ float alpha = float_ramp_lookup(ramp_alpha.data(), fac, use_lerp, false, ramp_alpha.size());
+ folder.make_constant(alpha);
+ }
+ }
+}
+
+void RGBRampNode::compile(SVMCompiler &compiler)
+{
+ if (ramp.size() == 0 || ramp.size() != ramp_alpha.size())
+ return;
+
+ ShaderInput *fac_in = input("Fac");
+ ShaderOutput *color_out = output("Color");
+ ShaderOutput *alpha_out = output("Alpha");
+
+ compiler.add_node(NODE_RGB_RAMP,
+ compiler.encode_uchar4(compiler.stack_assign(fac_in),
+ compiler.stack_assign_if_linked(color_out),
+ compiler.stack_assign_if_linked(alpha_out)),
+ interpolate);
+
+ compiler.add_node(ramp.size());
+ for (int i = 0; i < ramp.size(); i++)
+ compiler.add_node(make_float4(ramp[i].x, ramp[i].y, ramp[i].z, ramp_alpha[i]));
+}
+
+void RGBRampNode::compile(OSLCompiler &compiler)
+{
+ if (ramp.size() == 0 || ramp.size() != ramp_alpha.size())
+ return;
+
+ compiler.parameter_color_array("ramp_color", ramp);
+ compiler.parameter_array("ramp_alpha", ramp_alpha.data(), ramp_alpha.size());
+ compiler.parameter(this, "interpolate");
+
+ compiler.add(this, "node_rgb_ramp");
+}
+
+/* Set Normal Node */
+
+NODE_DEFINE(SetNormalNode)
+{
+ NodeType *type = NodeType::add("set_normal", create, NodeType::SHADER);
+
+ SOCKET_IN_VECTOR(direction, "Direction", zero_float3());
+ SOCKET_OUT_NORMAL(normal, "Normal");
+
+ return type;
+}
+
+SetNormalNode::SetNormalNode() : ShaderNode(get_node_type())
+{
+}
+
+void SetNormalNode::compile(SVMCompiler &compiler)
+{
+ ShaderInput *direction_in = input("Direction");
+ ShaderOutput *normal_out = output("Normal");
+
+ compiler.add_node(NODE_CLOSURE_SET_NORMAL,
+ compiler.stack_assign(direction_in),
+ compiler.stack_assign(normal_out));
+}
+
+void SetNormalNode::compile(OSLCompiler &compiler)
+{
+ compiler.add(this, "node_set_normal");
+}
+
+/* OSLNode */
+
+OSLNode::OSLNode() : ShaderNode(new NodeType(NodeType::SHADER))
+{
+ special_type = SHADER_SPECIAL_TYPE_OSL;
+}
+
+OSLNode::~OSLNode()
+{
+ delete type;
+}
+
+ShaderNode *OSLNode::clone(ShaderGraph *graph) const
+{
+ return OSLNode::create(graph, this->inputs.size(), this);
+}
+
+OSLNode *OSLNode::create(ShaderGraph *graph, size_t num_inputs, const OSLNode *from)
+{
+ /* allocate space for the node itself and parameters, aligned to 16 bytes
+ * assuming that's the most parameter types need */
+ size_t node_size = align_up(sizeof(OSLNode), 16);
+ size_t inputs_size = align_up(SocketType::max_size(), 16) * num_inputs;
+
+ char *node_memory = (char *)operator new(node_size + inputs_size);
+ memset(node_memory, 0, node_size + inputs_size);
+
+ if (!from) {
+ OSLNode *node = new (node_memory) OSLNode();
+ node->set_owner(graph);
+ return node;
+ }
+ else {
+ /* copy input default values and node type for cloning */
+ memcpy(node_memory + node_size, (char *)from + node_size, inputs_size);
+
+ OSLNode *node = new (node_memory) OSLNode(*from);
+ node->type = new NodeType(*(from->type));
+ node->set_owner(from->owner);
+ return node;
+ }
+}
+
+char *OSLNode::input_default_value()
+{
+ /* pointer to default value storage, which is the same as our actual value */
+ size_t num_inputs = type->inputs.size();
+ size_t inputs_size = align_up(SocketType::max_size(), 16) * num_inputs;
+ return (char *)this + align_up(sizeof(OSLNode), 16) + inputs_size;
+}
+
+void OSLNode::add_input(ustring name, SocketType::Type socket_type)
+{
+ char *memory = input_default_value();
+ size_t offset = memory - (char *)this;
+ const_cast<NodeType *>(type)->register_input(
+ name, name, socket_type, offset, memory, NULL, NULL, SocketType::LINKABLE);
+}
+
+void OSLNode::add_output(ustring name, SocketType::Type socket_type)
+{
+ const_cast<NodeType *>(type)->register_output(name, name, socket_type);
+}
+
+void OSLNode::compile(SVMCompiler &)
+{
+ /* doesn't work for SVM, obviously ... */
+}
+
+void OSLNode::compile(OSLCompiler &compiler)
+{
+ if (!filepath.empty())
+ compiler.add(this, filepath.c_str(), true);
+ else
+ compiler.add(this, bytecode_hash.c_str(), false);
+}
+
+/* Normal Map */
+
+NODE_DEFINE(NormalMapNode)
+{
+ NodeType *type = NodeType::add("normal_map", create, NodeType::SHADER);
+
+ static NodeEnum space_enum;
+ space_enum.insert("tangent", NODE_NORMAL_MAP_TANGENT);
+ space_enum.insert("object", NODE_NORMAL_MAP_OBJECT);
+ space_enum.insert("world", NODE_NORMAL_MAP_WORLD);
+ space_enum.insert("blender_object", NODE_NORMAL_MAP_BLENDER_OBJECT);
+ space_enum.insert("blender_world", NODE_NORMAL_MAP_BLENDER_WORLD);
+ SOCKET_ENUM(space, "Space", space_enum, NODE_NORMAL_MAP_TANGENT);
+
+ SOCKET_STRING(attribute, "Attribute", ustring());
+
+ SOCKET_IN_NORMAL(
+ normal_osl, "NormalIn", zero_float3(), SocketType::LINK_NORMAL | SocketType::OSL_INTERNAL);
+ SOCKET_IN_FLOAT(strength, "Strength", 1.0f);
+ SOCKET_IN_COLOR(color, "Color", make_float3(0.5f, 0.5f, 1.0f));
+
+ SOCKET_OUT_NORMAL(normal, "Normal");
+
+ return type;
+}
+
+NormalMapNode::NormalMapNode() : ShaderNode(get_node_type())
+{
+}
+
+void NormalMapNode::attributes(Shader *shader, AttributeRequestSet *attributes)
+{
+ if (shader->has_surface_link() && space == NODE_NORMAL_MAP_TANGENT) {
+ if (attribute.empty()) {
+ attributes->add(ATTR_STD_UV_TANGENT);
+ attributes->add(ATTR_STD_UV_TANGENT_SIGN);
+ }
+ else {
+ attributes->add(ustring((string(attribute.c_str()) + ".tangent").c_str()));
+ attributes->add(ustring((string(attribute.c_str()) + ".tangent_sign").c_str()));
+ }
+ }
+
+ ShaderNode::attributes(shader, attributes);
+}
+
+void NormalMapNode::compile(SVMCompiler &compiler)
+{
+ ShaderInput *color_in = input("Color");
+ ShaderInput *strength_in = input("Strength");
+ ShaderOutput *normal_out = output("Normal");
+ int attr = 0, attr_sign = 0;
+
+ if (space == NODE_NORMAL_MAP_TANGENT) {
+ if (attribute.empty()) {
+ attr = compiler.attribute(ATTR_STD_UV_TANGENT);
+ attr_sign = compiler.attribute(ATTR_STD_UV_TANGENT_SIGN);
+ }
+ else {
+ attr = compiler.attribute(ustring((string(attribute.c_str()) + ".tangent").c_str()));
+ attr_sign = compiler.attribute(
+ ustring((string(attribute.c_str()) + ".tangent_sign").c_str()));
+ }
+ }
+
+ compiler.add_node(NODE_NORMAL_MAP,
+ compiler.encode_uchar4(compiler.stack_assign(color_in),
+ compiler.stack_assign(strength_in),
+ compiler.stack_assign(normal_out),
+ space),
+ attr,
+ attr_sign);
+}
+
+void NormalMapNode::compile(OSLCompiler &compiler)
+{
+ if (space == NODE_NORMAL_MAP_TANGENT) {
+ if (attribute.empty()) {
+ compiler.parameter("attr_name", ustring("geom:tangent"));
+ compiler.parameter("attr_sign_name", ustring("geom:tangent_sign"));
+ }
+ else {
+ compiler.parameter("attr_name", ustring((string(attribute.c_str()) + ".tangent").c_str()));
+ compiler.parameter("attr_sign_name",
+ ustring((string(attribute.c_str()) + ".tangent_sign").c_str()));
+ }
+ }
+
+ compiler.parameter(this, "space");
+ compiler.add(this, "node_normal_map");
+}
+
+/* Tangent */
+
+NODE_DEFINE(TangentNode)
+{
+ NodeType *type = NodeType::add("tangent", create, NodeType::SHADER);
+
+ static NodeEnum direction_type_enum;
+ direction_type_enum.insert("radial", NODE_TANGENT_RADIAL);
+ direction_type_enum.insert("uv_map", NODE_TANGENT_UVMAP);
+ SOCKET_ENUM(direction_type, "Direction Type", direction_type_enum, NODE_TANGENT_RADIAL);
+
+ static NodeEnum axis_enum;
+ axis_enum.insert("x", NODE_TANGENT_AXIS_X);
+ axis_enum.insert("y", NODE_TANGENT_AXIS_Y);
+ axis_enum.insert("z", NODE_TANGENT_AXIS_Z);
+ SOCKET_ENUM(axis, "Axis", axis_enum, NODE_TANGENT_AXIS_X);
+
+ SOCKET_STRING(attribute, "Attribute", ustring());
+
+ SOCKET_IN_NORMAL(
+ normal_osl, "NormalIn", zero_float3(), SocketType::LINK_NORMAL | SocketType::OSL_INTERNAL);
+ SOCKET_OUT_NORMAL(tangent, "Tangent");
+
+ return type;
+}
+
+TangentNode::TangentNode() : ShaderNode(get_node_type())
+{
+}
+
+void TangentNode::attributes(Shader *shader, AttributeRequestSet *attributes)
+{
+ if (shader->has_surface_link()) {
+ if (direction_type == NODE_TANGENT_UVMAP) {
+ if (attribute.empty())
+ attributes->add(ATTR_STD_UV_TANGENT);
+ else
+ attributes->add(ustring((string(attribute.c_str()) + ".tangent").c_str()));
+ }
+ else
+ attributes->add(ATTR_STD_GENERATED);
+ }
+
+ ShaderNode::attributes(shader, attributes);
+}
+
+void TangentNode::compile(SVMCompiler &compiler)
+{
+ ShaderOutput *tangent_out = output("Tangent");
+ int attr;
+
+ if (direction_type == NODE_TANGENT_UVMAP) {
+ if (attribute.empty())
+ attr = compiler.attribute(ATTR_STD_UV_TANGENT);
+ else
+ attr = compiler.attribute(ustring((string(attribute.c_str()) + ".tangent").c_str()));
+ }
+ else
+ attr = compiler.attribute(ATTR_STD_GENERATED);
+
+ compiler.add_node(
+ NODE_TANGENT,
+ compiler.encode_uchar4(compiler.stack_assign(tangent_out), direction_type, axis),
+ attr);
+}
+
+void TangentNode::compile(OSLCompiler &compiler)
+{
+ if (direction_type == NODE_TANGENT_UVMAP) {
+ if (attribute.empty())
+ compiler.parameter("attr_name", ustring("geom:tangent"));
+ else
+ compiler.parameter("attr_name", ustring((string(attribute.c_str()) + ".tangent").c_str()));
+ }
+
+ compiler.parameter(this, "direction_type");
+ compiler.parameter(this, "axis");
+ compiler.add(this, "node_tangent");
+}
+
+/* Bevel */
+
+NODE_DEFINE(BevelNode)
+{
+ NodeType *type = NodeType::add("bevel", create, NodeType::SHADER);
+
+ SOCKET_INT(samples, "Samples", 4);
+
+ SOCKET_IN_FLOAT(radius, "Radius", 0.05f);
+ SOCKET_IN_NORMAL(normal, "Normal", zero_float3(), SocketType::LINK_NORMAL);
+
+ SOCKET_OUT_NORMAL(bevel, "Normal");
+
+ return type;
+}
+
+BevelNode::BevelNode() : ShaderNode(get_node_type())
+{
+}
+
+void BevelNode::compile(SVMCompiler &compiler)
+{
+ ShaderInput *radius_in = input("Radius");
+ ShaderInput *normal_in = input("Normal");
+ ShaderOutput *normal_out = output("Normal");
+
+ compiler.add_node(NODE_BEVEL,
+ compiler.encode_uchar4(samples,
+ compiler.stack_assign(radius_in),
+ compiler.stack_assign_if_linked(normal_in),
+ compiler.stack_assign(normal_out)));
+}
+
+void BevelNode::compile(OSLCompiler &compiler)
+{
+ compiler.parameter(this, "samples");
+ compiler.add(this, "node_bevel");
+}
+
+/* Displacement */
+
+NODE_DEFINE(DisplacementNode)
+{
+ NodeType *type = NodeType::add("displacement", create, NodeType::SHADER);
+
+ static NodeEnum space_enum;
+ space_enum.insert("object", NODE_NORMAL_MAP_OBJECT);
+ space_enum.insert("world", NODE_NORMAL_MAP_WORLD);
+
+ SOCKET_ENUM(space, "Space", space_enum, NODE_NORMAL_MAP_OBJECT);
+
+ SOCKET_IN_FLOAT(height, "Height", 0.0f);
+ SOCKET_IN_FLOAT(midlevel, "Midlevel", 0.5f);
+ SOCKET_IN_FLOAT(scale, "Scale", 1.0f);
+ SOCKET_IN_NORMAL(normal, "Normal", zero_float3(), SocketType::LINK_NORMAL);
+
+ SOCKET_OUT_VECTOR(displacement, "Displacement");
+
+ return type;
+}
+
+DisplacementNode::DisplacementNode() : ShaderNode(get_node_type())
+{
+}
+
+void DisplacementNode::constant_fold(const ConstantFolder &folder)
+{
+ if (folder.all_inputs_constant()) {
+ if ((height - midlevel == 0.0f) || (scale == 0.0f)) {
+ folder.make_zero();
+ }
+ }
+}
+
+void DisplacementNode::compile(SVMCompiler &compiler)
+{
+ ShaderInput *height_in = input("Height");
+ ShaderInput *midlevel_in = input("Midlevel");
+ ShaderInput *scale_in = input("Scale");
+ ShaderInput *normal_in = input("Normal");
+ ShaderOutput *displacement_out = output("Displacement");
+
+ compiler.add_node(NODE_DISPLACEMENT,
+ compiler.encode_uchar4(compiler.stack_assign(height_in),
+ compiler.stack_assign(midlevel_in),
+ compiler.stack_assign(scale_in),
+ compiler.stack_assign_if_linked(normal_in)),
+ compiler.stack_assign(displacement_out),
+ space);
+}
+
+void DisplacementNode::compile(OSLCompiler &compiler)
+{
+ compiler.parameter(this, "space");
+ compiler.add(this, "node_displacement");
+}
+
+/* Vector Displacement */
+
+NODE_DEFINE(VectorDisplacementNode)
+{
+ NodeType *type = NodeType::add("vector_displacement", create, NodeType::SHADER);
+
+ static NodeEnum space_enum;
+ space_enum.insert("tangent", NODE_NORMAL_MAP_TANGENT);
+ space_enum.insert("object", NODE_NORMAL_MAP_OBJECT);
+ space_enum.insert("world", NODE_NORMAL_MAP_WORLD);
+
+ SOCKET_ENUM(space, "Space", space_enum, NODE_NORMAL_MAP_TANGENT);
+ SOCKET_STRING(attribute, "Attribute", ustring());
+
+ SOCKET_IN_COLOR(vector, "Vector", zero_float3());
+ SOCKET_IN_FLOAT(midlevel, "Midlevel", 0.0f);
+ SOCKET_IN_FLOAT(scale, "Scale", 1.0f);
+
+ SOCKET_OUT_VECTOR(displacement, "Displacement");
+
+ return type;
+}
+
+VectorDisplacementNode::VectorDisplacementNode() : ShaderNode(get_node_type())
+{
+}
+
+void VectorDisplacementNode::constant_fold(const ConstantFolder &folder)
+{
+ if (folder.all_inputs_constant()) {
+ if ((vector == zero_float3() && midlevel == 0.0f) || (scale == 0.0f)) {
+ folder.make_zero();
+ }
+ }
+}
+
+void VectorDisplacementNode::attributes(Shader *shader, AttributeRequestSet *attributes)
+{
+ if (shader->has_surface_link() && space == NODE_NORMAL_MAP_TANGENT) {
+ if (attribute.empty()) {
+ attributes->add(ATTR_STD_UV_TANGENT);
+ attributes->add(ATTR_STD_UV_TANGENT_SIGN);
+ }
+ else {
+ attributes->add(ustring((string(attribute.c_str()) + ".tangent").c_str()));
+ attributes->add(ustring((string(attribute.c_str()) + ".tangent_sign").c_str()));
+ }
+ }
+
+ ShaderNode::attributes(shader, attributes);
+}
+
+void VectorDisplacementNode::compile(SVMCompiler &compiler)
+{
+ ShaderInput *vector_in = input("Vector");
+ ShaderInput *midlevel_in = input("Midlevel");
+ ShaderInput *scale_in = input("Scale");
+ ShaderOutput *displacement_out = output("Displacement");
+ int attr = 0, attr_sign = 0;
+
+ if (space == NODE_NORMAL_MAP_TANGENT) {
+ if (attribute.empty()) {
+ attr = compiler.attribute(ATTR_STD_UV_TANGENT);
+ attr_sign = compiler.attribute(ATTR_STD_UV_TANGENT_SIGN);
+ }
+ else {
+ attr = compiler.attribute(ustring((string(attribute.c_str()) + ".tangent").c_str()));
+ attr_sign = compiler.attribute(
+ ustring((string(attribute.c_str()) + ".tangent_sign").c_str()));
+ }
+ }
+
+ compiler.add_node(NODE_VECTOR_DISPLACEMENT,
+ compiler.encode_uchar4(compiler.stack_assign(vector_in),
+ compiler.stack_assign(midlevel_in),
+ compiler.stack_assign(scale_in),
+ compiler.stack_assign(displacement_out)),
+ attr,
+ attr_sign);
+
+ compiler.add_node(space);
+}
+
+void VectorDisplacementNode::compile(OSLCompiler &compiler)
+{
+ if (space == NODE_NORMAL_MAP_TANGENT) {
+ if (attribute.empty()) {
+ compiler.parameter("attr_name", ustring("geom:tangent"));
+ compiler.parameter("attr_sign_name", ustring("geom:tangent_sign"));
+ }
+ else {
+ compiler.parameter("attr_name", ustring((string(attribute.c_str()) + ".tangent").c_str()));
+ compiler.parameter("attr_sign_name",
+ ustring((string(attribute.c_str()) + ".tangent_sign").c_str()));
+ }
+ }
+
+ compiler.parameter(this, "space");
+ compiler.add(this, "node_vector_displacement");
+}
+
+CCL_NAMESPACE_END