Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'intern/iksolver/intern/MT_ExpMap.cpp')
-rw-r--r--intern/iksolver/intern/MT_ExpMap.cpp268
1 files changed, 268 insertions, 0 deletions
diff --git a/intern/iksolver/intern/MT_ExpMap.cpp b/intern/iksolver/intern/MT_ExpMap.cpp
new file mode 100644
index 00000000000..ea005a42096
--- /dev/null
+++ b/intern/iksolver/intern/MT_ExpMap.cpp
@@ -0,0 +1,268 @@
+/**
+ * $Id$
+ * ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version. The Blender
+ * Foundation also sells licenses for use in proprietary software under
+ * the Blender License. See http://www.blender.org/BL/ for information
+ * about this.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+ *
+ * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
+ * All rights reserved.
+ *
+ * The Original Code is: all of this file.
+ *
+ * Contributor(s): none yet.
+ *
+ * ***** END GPL/BL DUAL LICENSE BLOCK *****
+ */
+
+/**
+
+ * $Id$
+ * Copyright (C) 2001 NaN Technologies B.V.
+ *
+ * @author Laurence
+ */
+
+#include "MT_ExpMap.h"
+
+/**
+ * Set the exponential map from a quaternion. The quaternion must be non-zero.
+ */
+
+ void
+MT_ExpMap::
+setRotation(
+ const MT_Quaternion &q
+) {
+ // ok first normailize the quaternion
+ // then compute theta the axis-angle and the normalized axis v
+ // scale v by theta and that's it hopefully!
+
+ MT_Quaternion qt = q.normalized();
+
+ MT_Vector3 axis(qt.x(),qt.y(),qt.z());
+ MT_Scalar cosp = qt.w();
+ MT_Scalar sinp = axis.length();
+ axis /= sinp;
+
+ MT_Scalar theta = atan2(double(sinp),double(cosp));
+
+ axis *= theta;
+ m_v = axis;
+}
+
+/**
+ * Convert from an exponential map to a quaternion
+ * representation
+ */
+
+ MT_Quaternion
+MT_ExpMap::
+getRotation(
+) const {
+ bool rep=0;
+ MT_Scalar cosp, sinp, theta;
+
+ MT_Quaternion q;
+
+ theta = m_v.length();
+
+ cosp = MT_Scalar(cos(.5*theta));
+ sinp = MT_Scalar(sin(.5*theta));
+
+ q.w() = cosp;
+
+ if (theta < MT_EXPMAP_MINANGLE) {
+
+ MT_Vector3 temp = m_v * MT_Scalar(MT_Scalar(.5) - theta*theta/MT_Scalar(48.0)); /* Taylor Series for sinc */
+ q.x() = temp.x();
+ q.y() = temp.y();
+ q.z() = temp.z();
+ } else {
+ MT_Vector3 temp = m_v * (sinp/theta); /* Taylor Series for sinc */
+ q.x() = temp.x();
+ q.y() = temp.y();
+ q.z() = temp.z();
+ }
+
+ return q;
+}
+
+/**
+ * Convert the exponential map to a 3x3 matrix
+ */
+
+ MT_Matrix3x3
+MT_ExpMap::
+getMatrix(
+) const {
+
+ MT_Quaternion q = getRotation();
+ return MT_Matrix3x3(q);
+}
+
+
+
+
+/**
+ * Force a reparameterization of the exponential
+ * map.
+ */
+
+ bool
+MT_ExpMap::
+reParameterize(
+ MT_Scalar &theta
+){
+ bool rep(false);
+ theta = m_v.length();
+
+ if (theta > MT_PI){
+ MT_Scalar scl = theta;
+ if (theta > MT_2_PI){ /* first get theta into range 0..2PI */
+ theta = MT_Scalar(fmod(theta, MT_2_PI));
+ scl = theta/scl;
+ m_v *= scl;
+ rep = true;
+ }
+ if (theta > MT_PI){
+ scl = theta;
+ theta = MT_2_PI - theta;
+ scl = MT_Scalar(1.0) - MT_2_PI/scl;
+ m_v *= scl;
+ rep = true;
+ }
+ }
+ return rep;
+
+}
+
+/**
+ * Compute the partial derivatives of the exponential
+ * map (dR/de - where R is a 4x4 rotation matrix formed
+ * from the map) and return them as a 4x4 matrix
+ */
+
+ MT_Matrix4x4
+MT_ExpMap::
+partialDerivatives(
+ const int i
+) const {
+
+ MT_Quaternion q = getRotation();
+ MT_Quaternion dQdx;
+
+ MT_Matrix4x4 output;
+
+ compute_dQdVi(i,dQdx);
+ compute_dRdVi(q,dQdx,output);
+
+ return output;
+}
+
+ void
+MT_ExpMap::
+compute_dRdVi(
+ const MT_Quaternion &q,
+ const MT_Quaternion &dQdvi,
+ MT_Matrix4x4 & dRdvi
+) const {
+
+ MT_Scalar prod[9];
+
+ /* This efficient formulation is arrived at by writing out the
+ * entire chain rule product dRdq * dqdv in terms of 'q' and
+ * noticing that all the entries are formed from sums of just
+ * nine products of 'q' and 'dqdv' */
+
+ prod[0] = -MT_Scalar(4)*q.x()*dQdvi.x();
+ prod[1] = -MT_Scalar(4)*q.y()*dQdvi.y();
+ prod[2] = -MT_Scalar(4)*q.z()*dQdvi.z();
+ prod[3] = MT_Scalar(2)*(q.y()*dQdvi.x() + q.x()*dQdvi.y());
+ prod[4] = MT_Scalar(2)*(q.w()*dQdvi.z() + q.z()*dQdvi.w());
+ prod[5] = MT_Scalar(2)*(q.z()*dQdvi.x() + q.x()*dQdvi.z());
+ prod[6] = MT_Scalar(2)*(q.w()*dQdvi.y() + q.y()*dQdvi.w());
+ prod[7] = MT_Scalar(2)*(q.z()*dQdvi.y() + q.y()*dQdvi.z());
+ prod[8] = MT_Scalar(2)*(q.w()*dQdvi.x() + q.x()*dQdvi.w());
+
+ /* first row, followed by second and third */
+ dRdvi[0][0] = prod[1] + prod[2];
+ dRdvi[0][1] = prod[3] - prod[4];
+ dRdvi[0][2] = prod[5] + prod[6];
+
+ dRdvi[1][0] = prod[3] + prod[4];
+ dRdvi[1][1] = prod[0] + prod[2];
+ dRdvi[1][2] = prod[7] - prod[8];
+
+ dRdvi[2][0] = prod[5] - prod[6];
+ dRdvi[2][1] = prod[7] + prod[8];
+ dRdvi[2][2] = prod[0] + prod[1];
+
+ /* the 4th row and column are all zero */
+ int i;
+
+ for (i=0; i<3; i++)
+ dRdvi[3][i] = dRdvi[i][3] = MT_Scalar(0);
+ dRdvi[3][3] = 0;
+}
+
+// compute partial derivatives dQ/dVi
+
+ void
+MT_ExpMap::
+compute_dQdVi(
+ const int i,
+ MT_Quaternion & dQdX
+) const {
+
+ MT_Scalar theta = m_v.length();
+ MT_Scalar cosp(cos(MT_Scalar(.5)*theta)), sinp(sin(MT_Scalar(.5)*theta));
+
+ MT_assert(i>=0 && i<3);
+
+ /* This is an efficient implementation of the derivatives given
+ * in Appendix A of the paper with common subexpressions factored out */
+ if (theta < MT_EXPMAP_MINANGLE){
+ const int i2 = (i+1)%3, i3 = (i+2)%3;
+ MT_Scalar Tsinc = MT_Scalar(0.5) - theta*theta/MT_Scalar(48.0);
+ MT_Scalar vTerm = m_v[i] * (theta*theta/MT_Scalar(40.0) - MT_Scalar(1.0)) / MT_Scalar(24.0);
+
+ dQdX.w() = -.5*m_v[i]*Tsinc;
+ dQdX[i] = m_v[i]* vTerm + Tsinc;
+ dQdX[i2] = m_v[i2]*vTerm;
+ dQdX[i3] = m_v[i3]*vTerm;
+ } else {
+ const int i2 = (i+1)%3, i3 = (i+2)%3;
+ const MT_Scalar ang = 1.0/theta, ang2 = ang*ang*m_v[i], sang = sinp*ang;
+ const MT_Scalar cterm = ang2*(.5*cosp - sang);
+
+ dQdX[i] = cterm*m_v[i] + sang;
+ dQdX[i2] = cterm*m_v[i2];
+ dQdX[i3] = cterm*m_v[i3];
+ dQdX.w() = MT_Scalar(-.5)*m_v[i]*sang;
+ }
+}
+
+
+
+
+
+
+
+
+
+