Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'intern/sky')
-rw-r--r--intern/sky/source/sky_nishita.cpp103
1 files changed, 52 insertions, 51 deletions
diff --git a/intern/sky/source/sky_nishita.cpp b/intern/sky/source/sky_nishita.cpp
index eae95dc73fe..f36bfcc3d7b 100644
--- a/intern/sky/source/sky_nishita.cpp
+++ b/intern/sky/source/sky_nishita.cpp
@@ -18,20 +18,21 @@
#include "sky_model.h"
/* Constants */
-static const float rayleigh_scale = 8000.0f; // Rayleigh scale height (m)
-static const float mie_scale = 1200.0f; // Mie scale height (m)
-static const float mie_coeff = 2e-5f; // Mie scattering coefficient
-static const float mie_G = 0.76f; // aerosols anisotropy
-static const float sqr_G = mie_G * mie_G; // squared aerosols anisotropy
-static const float earth_radius = 6360000.0f; // radius of Earth (m)
-static const float atmosphere_radius = 6420000.0f; // radius of atmosphere (m)
-static const int steps = 32; // segments per primary ray
-static const int steps_light = 16; // segments per sun connection ray
-static const int num_wavelengths = 21; // number of wavelengths
-static const int max_luminous_efficacy = 683; // maximum luminous efficacy
-static const float step_lambda = (num_wavelengths - 1) *
- 1e-9f; // step between each sampled wavelength
-/* irradiance at top of atmosphere */
+static const float rayleigh_scale = 8e3f; // Rayleigh scale height (m)
+static const float mie_scale = 1.2e3f; // Mie scale height (m)
+static const float mie_coeff = 2e-5f; // Mie scattering coefficient (m^-1)
+static const float mie_G = 0.76f; // aerosols anisotropy
+static const float sqr_G = mie_G * mie_G; // squared aerosols anisotropy
+static const float earth_radius = 6360e3f; // radius of Earth (m)
+static const float atmosphere_radius = 6420e3f; // radius of atmosphere (m)
+static const int steps = 32; // segments of primary ray
+static const int steps_light = 16; // segments of sun connection ray
+static const int num_wavelengths = 21; // number of wavelengths
+static const int min_wavelength = 380; // lowest sampled wavelength (nm)
+static const int max_wavelength = 780; // highest sampled wavelength (nm)
+// step between each sampled wavelength (nm)
+static const float step_lambda = (max_wavelength - min_wavelength) / (num_wavelengths - 1);
+/* Sun irradiance on top of the atmosphere (W*m^-2*nm^-1) */
static const float irradiance[] = {
1.45756829855592995315f, 1.56596305559738380175f, 1.65148449067670455293f,
1.71496242737209314555f, 1.75797983805020541226f, 1.78256407885924539336f,
@@ -40,7 +41,7 @@ static const float irradiance[] = {
1.61993437242451854274f, 1.57083597368892080581f, 1.51932335059305478886f,
1.46628494965214395407f, 1.41245852740172450623f, 1.35844961970384092709f,
1.30474913844739281998f, 1.25174963272610817455f, 1.19975998755420620867f};
-/* Rayleigh scattering coefficient */
+/* Rayleigh scattering coefficient (m^-1) */
static const float rayleigh_coeff[] = {
0.00005424820087636473f, 0.00004418549866505454f, 0.00003635151910165377f,
0.00003017929012024763f, 0.00002526320226989157f, 0.00002130859310621843f,
@@ -49,7 +50,7 @@ static const float rayleigh_coeff[] = {
0.00000765513700977967f, 0.00000674217203751443f, 0.00000596134125832052f,
0.00000529034598065810f, 0.00000471115687557433f, 0.00000420910481110487f,
0.00000377218381260133f, 0.00000339051255477280f, 0.00000305591531679811f};
-/* Ozone absorption coefficient */
+/* Ozone absorption coefficient (m^-1) */
static const float ozone_coeff[] = {
0.00000000325126849861f, 0.00000000585395365047f, 0.00000001977191155085f,
0.00000007309568762914f, 0.00000020084561514287f, 0.00000040383958096161f,
@@ -94,11 +95,10 @@ static float3 spec_to_xyz(float *spectrum)
xyz.y += cmf_xyz[i][1] * spectrum[i];
xyz.z += cmf_xyz[i][2] * spectrum[i];
}
- return xyz * step_lambda * max_luminous_efficacy;
+ return xyz * step_lambda;
}
/* Atmosphere volume models */
-
static float density_rayleigh(float height)
{
return expf(-height / rayleigh_scale);
@@ -135,11 +135,13 @@ static bool surface_intersection(float3 pos, float3 dir)
{
if (dir.z >= 0)
return false;
- float t = dot(dir, -pos) / len_squared(dir);
- float D = pos.x * pos.x - 2.0f * (-pos.x) * dir.x * t + dir.x * t * dir.x * t + pos.y * pos.y -
- 2.0f * (-pos.y) * dir.y * t + (dir.y * t) * (dir.y * t) + pos.z * pos.z -
- 2.0f * (-pos.z) * dir.z * t + dir.z * t * dir.z * t;
- return (D <= sqr(earth_radius));
+ float b = -2.0f * dot(dir, -pos);
+ float c = len_squared(pos) - sqr(earth_radius);
+ float t = b * b - 4.0f * c;
+ if (t >= 0.0f)
+ return true;
+ else
+ return false;
}
static float3 atmosphere_intersection(float3 pos, float3 dir)
@@ -152,41 +154,40 @@ static float3 atmosphere_intersection(float3 pos, float3 dir)
static float3 ray_optical_depth(float3 ray_origin, float3 ray_dir)
{
- /* This code computes the optical depth along a ray through the atmosphere. */
+ /* this code computes the optical depth along a ray through the atmosphere */
float3 ray_end = atmosphere_intersection(ray_origin, ray_dir);
float ray_length = distance(ray_origin, ray_end);
- /* To compute the optical depth, we step along the ray in segments and
- * accumulate the optical depth along each segment. */
+ /* to compute the optical depth, we step along the ray in segments and
+ * accumulate the optical depth along each segment */
float segment_length = ray_length / steps_light;
float3 segment = segment_length * ray_dir;
- /* Instead of tracking the transmission spectrum across all wavelengths directly,
+ /* instead of tracking the transmission spectrum across all wavelengths directly,
* we use the fact that the density always has the same spectrum for each type of
* scattering, so we split the density into a constant spectrum and a factor and
- * only track the factors. */
+ * only track the factors */
float3 optical_depth = make_float3(0.0f, 0.0f, 0.0f);
- /* The density of each segment is evaluated at its middle. */
+ /* the density of each segment is evaluated at its middle */
float3 P = ray_origin + 0.5f * segment;
for (int i = 0; i < steps_light; i++) {
- /* Compute height above sea level. */
+ /* height above sea level */
float height = len(P) - earth_radius;
- /* Accumulate optical depth of this segment (density is assumed to be constant along it). */
+ /* accumulate optical depth of this segment (density is assumed to be constant along it) */
float3 density = make_float3(
density_rayleigh(height), density_mie(height), density_ozone(height));
optical_depth += density;
- /* Advance along ray. */
+ /* advance along ray */
P += segment;
}
return optical_depth * segment_length;
}
-/* Single Scattering implementation */
static void single_scattering(float3 ray_dir,
float3 sun_dir,
float3 ray_origin,
@@ -195,45 +196,45 @@ static void single_scattering(float3 ray_dir,
float ozone_density,
float *r_spectrum)
{
- /* This code computes single-inscattering along a ray through the atmosphere. */
+ /* this code computes single-inscattering along a ray through the atmosphere */
float3 ray_end = atmosphere_intersection(ray_origin, ray_dir);
float ray_length = distance(ray_origin, ray_end);
- /* To compute the inscattering, we step along the ray in segments and accumulate
- * the inscattering as well as the optical depth along each segment. */
+ /* to compute the inscattering, we step along the ray in segments and accumulate
+ * the inscattering as well as the optical depth along each segment */
float segment_length = ray_length / steps;
float3 segment = segment_length * ray_dir;
- /* Instead of tracking the transmission spectrum across all wavelengths directly,
+ /* instead of tracking the transmission spectrum across all wavelengths directly,
* we use the fact that the density always has the same spectrum for each type of
* scattering, so we split the density into a constant spectrum and a factor and
- * only track the factors. */
+ * only track the factors */
float3 optical_depth = make_float3(0.0f, 0.0f, 0.0f);
- /* Zero out light accumulation. */
+ /* zero out light accumulation */
for (int wl = 0; wl < num_wavelengths; wl++) {
r_spectrum[wl] = 0.0f;
}
- /* Compute phase function for scattering and the density scale factor. */
+ /* phase function for scattering and the density scale factor */
float mu = dot(ray_dir, sun_dir);
float3 phase_function = make_float3(phase_rayleigh(mu), phase_mie(mu), 0.0f);
float3 density_scale = make_float3(air_density, dust_density, ozone_density);
- /* The density and in-scattering of each segment is evaluated at its middle. */
+ /* the density and in-scattering of each segment is evaluated at its middle */
float3 P = ray_origin + 0.5f * segment;
for (int i = 0; i < steps; i++) {
- /* Compute height above sea level. */
+ /* height above sea level */
float height = len(P) - earth_radius;
- /* Evaluate and accumulate optical depth along the ray. */
+ /* evaluate and accumulate optical depth along the ray */
float3 density = density_scale * make_float3(density_rayleigh(height),
density_mie(height),
density_ozone(height));
optical_depth += segment_length * density;
- /* If the earth isn't in the way, evaluate inscattering from the sun. */
+ /* if the Earth isn't in the way, evaluate inscattering from the sun */
if (!surface_intersection(P, sun_dir)) {
float3 light_optical_depth = density_scale * ray_optical_depth(P, sun_dir);
float3 total_optical_depth = optical_depth + light_optical_depth;
@@ -247,7 +248,7 @@ static void single_scattering(float3 ray_dir,
float3 scattering_density = density * make_float3(rayleigh_coeff[wl], mie_coeff, 0.0f);
- /* The total inscattered radiance from one segment is:
+ /* the total inscattered radiance from one segment is:
* Tr(A<->B) * Tr(B<->C) * sigma_s * phase * L * segment_length
*
* These terms are:
@@ -258,19 +259,18 @@ static void single_scattering(float3 ray_dir,
* length of the segment
*
* The code here is just that, with a bit of additional optimization to not store full
- * spectra for the optical depth.
+ * spectra for the optical depth
*/
r_spectrum[wl] += attenuation * reduce_add(phase_function * scattering_density) *
irradiance[wl] * segment_length;
}
}
- /* Advance along ray. */
+ /* advance along ray */
P += segment;
}
}
-/* calculate texture array */
void SKY_nishita_skymodel_precompute_texture(float *pixels,
int stride,
int start_y,
@@ -305,6 +305,7 @@ void SKY_nishita_skymodel_precompute_texture(float *pixels,
single_scattering(dir, sun_dir, cam_pos, air_density, dust_density, ozone_density, spectrum);
float3 xyz = spec_to_xyz(spectrum);
+ /* store pixels */
int pos_x = x * stride;
pixel_row[pos_x] = xyz.x;
pixel_row[pos_x + 1] = xyz.y;
@@ -318,7 +319,7 @@ void SKY_nishita_skymodel_precompute_texture(float *pixels,
}
}
-/* Sun disc */
+/*********** Sun ***********/
static void sun_radiation(float3 cam_dir,
float altitude,
float air_density,
@@ -329,9 +330,9 @@ static void sun_radiation(float3 cam_dir,
float3 cam_pos = make_float3(0, 0, earth_radius + altitude);
float3 optical_depth = ray_optical_depth(cam_pos, cam_dir);
- /* Compute final spectrum. */
+ /* compute final spectrum */
for (int i = 0; i < num_wavelengths; i++) {
- /* Combine spectra and the optical depth into transmittance. */
+ /* combine spectra and the optical depth into transmittance */
float transmittance = rayleigh_coeff[i] * optical_depth.x * air_density +
1.11f * mie_coeff * optical_depth.y * dust_density;
r_spectrum[i] = irradiance[i] * expf(-transmittance) / solid_angle;