Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'source/blender/blenkernel/intern/curve.c')
-rw-r--r--source/blender/blenkernel/intern/curve.c2344
1 files changed, 2344 insertions, 0 deletions
diff --git a/source/blender/blenkernel/intern/curve.c b/source/blender/blenkernel/intern/curve.c
new file mode 100644
index 00000000000..1f0c838e816
--- /dev/null
+++ b/source/blender/blenkernel/intern/curve.c
@@ -0,0 +1,2344 @@
+
+/* curve.c MIXED MODEL
+ *
+ * maart 95
+ *
+ * $Id$
+ *
+ * ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version. The Blender
+ * Foundation also sells licenses for use in proprietary software under
+ * the Blender License. See http://www.blender.org/BL/ for information
+ * about this.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+ *
+ * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
+ * All rights reserved.
+ *
+ * The Original Code is: all of this file.
+ *
+ * Contributor(s): none yet.
+ *
+ * ***** END GPL/BL DUAL LICENSE BLOCK *****
+ */
+
+#define STRUBI hack
+
+#include <math.h> // floor
+#include <string.h>
+#include <stdlib.h>
+
+#ifdef WIN32
+#include "BLI_winstuff.h"
+#endif
+#include "MEM_guardedalloc.h"
+#include "BLI_blenlib.h"
+#include "BLI_arithb.h"
+
+#include "DNA_object_types.h"
+#include "DNA_curve_types.h"
+#include "DNA_material_types.h"
+#include "DNA_mesh_types.h"
+
+/* for dereferencing pointers */
+#include "DNA_ID.h"
+#include "DNA_vfont_types.h"
+#include "DNA_key_types.h"
+#include "DNA_ipo_types.h"
+
+#include "BKE_global.h"
+#include "BKE_main.h"
+#include "BKE_utildefines.h" // VECCOPY
+#include "BKE_object.h"
+#include "BKE_mesh.h"
+#include "BKE_curve.h"
+#include "BKE_displist.h"
+#include "BKE_ipo.h"
+#include "BKE_anim.h"
+#include "BKE_library.h"
+#include "BKE_key.h"
+
+
+/* globals */
+
+extern ListBase editNurb; /* editcurve.c */
+
+/* local */
+int cu_isectLL(float *v1, float *v2, float *v3, float *v4,
+ short cox, short coy,
+ float *labda, float *mu, float *vec);
+
+
+#ifdef STRUBI
+/* hotfix; copies x*y array into extended (x+dx)*(y+dy) array
+old[] and new[] can be the same ! */
+int copyintoExtendedArray(float *old, int oldx, int oldy, float *new, int newx, int newy)
+{
+ int x, y;
+ float *oldp, *newp;
+ if (newx < oldx || newy < oldy) return 0;
+
+
+ for (y = newy - 1; y >= oldy; y--) {
+ for (x = newx - 1; x >= 0; x--) {
+ newp = new + 3 * (y * newx + x);
+ newp[0] = 0.0; newp[1] = 0.0; newp[2] = 0.0;
+ }
+ }
+
+ for (; y >= 0; y--) {
+
+ for (x = newx - 1; x >= oldx; x--) {
+ newp = new + 3 * (y * newx + x);
+ newp[0] = 0.0; newp[1] = 0.0; newp[2] = 0.0;
+ }
+ for (; x >= 0; x--) {
+ oldp = old + 3 * (y * oldx + x);
+ newp = new + 3 * (y * newx + x);
+ VECCOPY(newp, oldp);
+ }
+ }
+ return 1;
+}
+#endif
+
+void unlink_curve(Curve *cu)
+{
+ int a;
+
+ for(a=0; a<cu->totcol; a++) {
+ if(cu->mat[a]) cu->mat[a]->id.us--;
+ cu->mat[a]= 0;
+ }
+ if(cu->vfont) cu->vfont->id.us--;
+ cu->vfont= 0;
+ if(cu->key) cu->key->id.us--;
+ cu->key= 0;
+ if(cu->ipo) cu->ipo->id.us--;
+ cu->ipo= 0;
+}
+
+
+/* niet curve zelf vrijgeven */
+void free_curve(Curve *cu)
+{
+
+ freeNurblist(&cu->nurb);
+ BLI_freelistN(&cu->bev);
+ freedisplist(&cu->disp);
+
+ unlink_curve(cu);
+
+ if(cu->mat) MEM_freeN(cu->mat);
+ if(cu->str) MEM_freeN(cu->str);
+ if(cu->bb) MEM_freeN(cu->bb);
+ if(cu->path) free_path(cu->path);
+}
+
+Curve *add_curve(int type)
+{
+ Curve *cu;
+ char *str;
+
+ if(type==OB_CURVE) str= "Curve";
+ else if(type==OB_SURF) str= "Surf";
+ else str= "Text";
+
+ cu= alloc_libblock(&G.main->curve, ID_CU, str);
+
+ cu->size[0]= cu->size[1]= cu->size[2]= 1.0;
+ cu->flag= CU_FRONT+CU_BACK;
+ cu->pathlen= 100;
+ cu->resolu= cu->resolv= 6;
+ cu->width= 1.0;
+ cu->spacing= cu->linedist= 1.0;
+ cu->fsize= 1.0;
+ cu->texflag= AUTOSPACE;
+
+ cu->bb= unit_boundbox();
+
+ return cu;
+}
+
+Curve *copy_curve(Curve *cu)
+{
+ Curve *cun;
+ int a;
+
+ cun= copy_libblock(cu);
+ cun->nurb.first= cun->nurb.last= 0;
+ duplicateNurblist( &(cun->nurb), &(cu->nurb));
+
+ cun->mat= MEM_dupallocN(cu->mat);
+ for(a=0; a<cun->totcol; a++) {
+ id_us_plus((ID *)cun->mat[a]);
+ }
+
+ cun->str= MEM_dupallocN(cu->str);
+ cun->bb= MEM_dupallocN(cu->bb);
+
+ cun->key= copy_key(cu->key);
+ if(cun->key) cun->key->from= (ID *)cun;
+
+ cun->disp.first= cun->disp.last= 0;
+ cun->bev.first= cun->bev.last= 0;
+ cun->path= 0;
+
+ /* ook single user ipo */
+ if(cun->ipo) cun->ipo= copy_ipo(cun->ipo);
+
+ id_us_plus((ID *)cun->vfont);
+
+ return cun;
+}
+
+void make_local_curve(Curve *cu)
+{
+ Object *ob = 0;
+ Curve *cun;
+ int local=0, lib=0;
+
+ /* - zijn er alleen lib users: niet doen
+ * - zijn er alleen locale users: flag zetten
+ * - mixed: copy
+ */
+
+ if(cu->id.lib==0) return;
+
+ if(cu->vfont) cu->vfont->id.lib= 0;
+
+ if(cu->id.us==1) {
+ cu->id.lib= 0;
+ cu->id.flag= LIB_LOCAL;
+ new_id(0, (ID *)cu, 0);
+ return;
+ }
+
+ ob= G.main->object.first;
+ while(ob) {
+ if(ob->data==cu) {
+ if(ob->id.lib) lib= 1;
+ else local= 1;
+ }
+ ob= ob->id.next;
+ }
+
+ if(local && lib==0) {
+ cu->id.lib= 0;
+ cu->id.flag= LIB_LOCAL;
+ new_id(0, (ID *)cu, 0);
+ }
+ else if(local && lib) {
+ cun= copy_curve(cu);
+ cun->id.us= 0;
+
+ ob= G.main->object.first;
+ while(ob) {
+ if(ob->data==cu) {
+
+ if(ob->id.lib==0) {
+ ob->data= cun;
+ cun->id.us++;
+ cu->id.us--;
+ }
+ }
+ ob= ob->id.next;
+ }
+ }
+}
+
+
+void test_curve_type(Object *ob)
+{
+ Nurb *nu;
+ Curve *cu;
+
+ cu= ob->data;
+ if(cu->vfont) {
+ ob->type= OB_FONT;
+ return;
+ }
+ else {
+ nu= cu->nurb.first;
+ while(nu) {
+ if(nu->pntsv>1) {
+ ob->type= OB_SURF;
+ return;
+ }
+ nu= nu->next;
+ }
+ }
+ ob->type= OB_CURVE;
+}
+
+void tex_space_curve(Curve *cu)
+{
+ DispList *dl;
+ BoundBox *bb;
+ float *data, min[3], max[3], loc[3], size[3];
+ int tot, doit= 0;
+
+ if(cu->bb==0) cu->bb= MEM_callocN(sizeof(BoundBox), "boundbox");
+ bb= cu->bb;
+
+ INIT_MINMAX(min, max);
+
+ dl= cu->disp.first;
+ while(dl) {
+
+ if(dl->type==DL_INDEX3 || dl->type==DL_INDEX3) tot= dl->nr;
+ else tot= dl->nr*dl->parts;
+
+ if(tot) doit= 1;
+ data= dl->verts;
+ while(tot--) {
+ DO_MINMAX(data, min, max);
+ data+= 3;
+ }
+ dl= dl->next;
+ }
+
+ if(doit) {
+ loc[0]= (min[0]+max[0])/2.0f;
+ loc[1]= (min[1]+max[1])/2.0f;
+ loc[2]= (min[2]+max[2])/2.0f;
+
+ size[0]= (max[0]-min[0])/2.0f;
+ size[1]= (max[1]-min[1])/2.0f;
+ size[2]= (max[2]-min[2])/2.0f;
+ }
+ else {
+ loc[0]= loc[1]= loc[2]= 0.0f;
+ size[0]= size[1]= size[2]= 1.0f;
+ }
+
+ bb->vec[0][0]=bb->vec[1][0]=bb->vec[2][0]=bb->vec[3][0]= loc[0]-size[0];
+ bb->vec[4][0]=bb->vec[5][0]=bb->vec[6][0]=bb->vec[7][0]= loc[0]+size[0];
+
+ bb->vec[0][1]=bb->vec[1][1]=bb->vec[4][1]=bb->vec[5][1]= loc[1]-size[1];
+ bb->vec[2][1]=bb->vec[3][1]=bb->vec[6][1]=bb->vec[7][1]= loc[1]+size[1];
+
+ bb->vec[0][2]=bb->vec[3][2]=bb->vec[4][2]=bb->vec[7][2]= loc[2]-size[2];
+ bb->vec[1][2]=bb->vec[2][2]=bb->vec[5][2]=bb->vec[6][2]= loc[2]+size[2];
+
+ if(cu->texflag & AUTOSPACE) {
+ VECCOPY(cu->loc, loc);
+ VECCOPY(cu->size, size);
+ cu->rot[0]= cu->rot[1]= cu->rot[2]= 0.0;
+
+ if(cu->size[0]==0.0) cu->size[0]= 1.0;
+ else if(cu->size[0]>0.0 && cu->size[0]<0.00001) cu->size[0]= 0.00001;
+ else if(cu->size[0]<0.0 && cu->size[0]> -0.00001) cu->size[0]= -0.00001;
+
+ if(cu->size[1]==0.0) cu->size[1]= 1.0;
+ else if(cu->size[1]>0.0 && cu->size[1]<0.00001) cu->size[1]= 0.00001;
+ else if(cu->size[1]<0.0 && cu->size[1]> -0.00001) cu->size[1]= -0.00001;
+
+ if(cu->size[2]==0.0) cu->size[2]= 1.0;
+ else if(cu->size[2]>0.0 && cu->size[2]<0.00001) cu->size[2]= 0.00001;
+ else if(cu->size[2]<0.0 && cu->size[2]> -0.00001) cu->size[2]= -0.00001;
+
+ }
+}
+
+
+int count_curveverts(ListBase *nurb)
+{
+ Nurb *nu;
+ int tot=0;
+
+ nu= nurb->first;
+ while(nu) {
+ if(nu->bezt) tot+= 3*nu->pntsu;
+ else if(nu->bp) tot+= nu->pntsu*nu->pntsv;
+
+ nu= nu->next;
+ }
+ return tot;
+}
+
+
+
+/* **************** NURBS ROUTINES ******************** */
+
+void freeNurb(Nurb *nu)
+{
+
+ if(nu==0) return;
+
+ if(nu->bezt) MEM_freeN(nu->bezt);
+ nu->bezt= 0;
+ if(nu->bp) MEM_freeN(nu->bp);
+ nu->bp= 0;
+ if(nu->knotsu) MEM_freeN(nu->knotsu);
+ nu->knotsu= 0;
+ if(nu->knotsv) MEM_freeN(nu->knotsv);
+ nu->knotsv= 0;
+ /* if(nu->trim.first) freeNurblist(&(nu->trim)); */
+
+ MEM_freeN(nu);
+
+}
+
+
+void freeNurblist(ListBase *lb)
+{
+ Nurb *nu, *next;
+
+ if(lb==0) return;
+
+ nu= lb->first;
+ while(nu) {
+ next= nu->next;
+ freeNurb(nu);
+ nu= next;
+ }
+ lb->first= lb->last= 0;
+}
+
+Nurb *duplicateNurb(Nurb *nu)
+{
+ Nurb *newnu;
+ int len;
+
+ newnu= (Nurb*)MEM_mallocN(sizeof(Nurb),"duplicateNurb");
+ if(newnu==0) return 0;
+ memcpy(newnu, nu, sizeof(Nurb));
+
+ if(nu->bezt) {
+ newnu->bezt=
+ (BezTriple*)MEM_mallocN((nu->pntsu)* sizeof(BezTriple),"duplicateNurb2");
+ memcpy(newnu->bezt, nu->bezt, nu->pntsu*sizeof(BezTriple));
+ }
+ else {
+ len= nu->pntsu*nu->pntsv;
+ newnu->bp=
+ (BPoint*)MEM_mallocN((len)* sizeof(BPoint),"duplicateNurb3");
+ memcpy(newnu->bp, nu->bp, len*sizeof(BPoint));
+
+ newnu->knotsu=newnu->knotsv= 0;
+
+ if(nu->knotsu) {
+ len= KNOTSU(nu);
+ if(len) {
+ newnu->knotsu= MEM_mallocN(len*sizeof(float), "duplicateNurb4");
+ memcpy(newnu->knotsu, nu->knotsu, sizeof(float)*len);
+ }
+ }
+ if(nu->pntsv>1 && nu->knotsv) {
+ len= KNOTSV(nu);
+ if(len) {
+ newnu->knotsv= MEM_mallocN(len*sizeof(float), "duplicateNurb5");
+ memcpy(newnu->knotsv, nu->knotsv, sizeof(float)*len);
+ }
+ }
+ }
+ return newnu;
+}
+
+void duplicateNurblist(ListBase *lb1, ListBase *lb2)
+{
+ Nurb *nu, *nun;
+
+ freeNurblist(lb1);
+
+ nu= lb2->first;
+ while(nu) {
+ nun= duplicateNurb(nu);
+ BLI_addtail(lb1, nun);
+
+ nu= nu->next;
+ }
+}
+
+void test2DNurb(Nurb *nu)
+{
+ BezTriple *bezt;
+ BPoint *bp;
+ int a;
+
+ if( nu->type== CU_BEZIER+CU_2D ) {
+ a= nu->pntsu;
+ bezt= nu->bezt;
+ while(a--) {
+ bezt->vec[0][2]= 0.0;
+ bezt->vec[1][2]= 0.0;
+ bezt->vec[2][2]= 0.0;
+ bezt++;
+ }
+ }
+ else if(nu->type & CU_2D) {
+ a= nu->pntsu*nu->pntsv;
+ bp= nu->bp;
+ while(a--) {
+ bp->vec[2]= 0.0;
+ bp++;
+ }
+ }
+}
+
+void minmaxNurb(Nurb *nu, float *min, float *max)
+{
+ BezTriple *bezt;
+ BPoint *bp;
+ int a;
+
+ if( (nu->type & 7)==CU_BEZIER ) {
+ a= nu->pntsu;
+ bezt= nu->bezt;
+ while(a--) {
+ DO_MINMAX(bezt->vec[0], min, max);
+ DO_MINMAX(bezt->vec[1], min, max);
+ DO_MINMAX(bezt->vec[2], min, max);
+ bezt++;
+ }
+ }
+ else {
+ a= nu->pntsu*nu->pntsv;
+ bp= nu->bp;
+ while(a--) {
+ DO_MINMAX(bp->vec, min, max);
+ bp++;
+ }
+ }
+
+}
+
+/* ~~~~~~~~~~~~~~~~~~~~Non Uniform Rational B Spline berekeningen ~~~~~~~~~~~ */
+
+
+/* voor de goede orde: eigenlijk horen hier doubles gebruikt te worden */
+
+void extend_spline(float * pnts, int in, int out)
+{
+ float *_pnts;
+ double * add;
+ int i, j, k;
+
+ _pnts = pnts;
+ add = (double*)MEM_mallocN((in)* sizeof(double), "extend_spline");
+
+ for (k = 3; k > 0; k--){
+ pnts = _pnts;
+
+ /* punten kopieren naar add */
+ for (i = 0; i < in; i++){
+ add[i] = *pnts;
+ pnts += 3;
+ }
+
+ /* inverse forward differencen */
+ for (i = 0; i < in - 1; i++){
+ for (j = in - 1; j > i; j--){
+ add[j] -= add[j - 1];
+ }
+ }
+
+ pnts = _pnts;
+ for (i = out; i > 0; i--){
+ *pnts = (float)(add[0]);
+ pnts += 3;
+ for (j = 0; j < in - 1; j++){
+ add[j] += add[j+1];
+ }
+ }
+
+ _pnts++;
+ }
+
+ MEM_freeN(add);
+}
+
+
+void calcknots(float *knots, short aantal, short order, short type)
+/* knots: aantal pnts NIET gecorrigeerd voor cyclic */
+/* aantal, order, type; 0: uniform, 1: endpoints, 2: bezier */
+{
+ float k;
+ int a;
+
+ if(type==0) {
+ for(a=0;a<aantal+order;a++) {
+ knots[a]= (float)a;
+ }
+ }
+ else if(type==1) {
+ k= 0.0;
+ for(a=1;a<=aantal+order;a++) {
+ knots[a-1]= k;
+ if(a>=order && a<=aantal) k+= 1.0;
+ }
+ }
+ else if(type==2) {
+ if(order==4) {
+ k= 0.34;
+ for(a=0;a<aantal+order;a++) {
+ knots[a]= (float)floor(k);
+ k+= (1.0/3.0);
+ }
+ }
+ else if(order==3) {
+ k= 0.6;
+ for(a=0;a<aantal+order;a++) {
+ if(a>=order && a<=aantal) k+= (0.5);
+ knots[a]= (float)floor(k);
+ }
+ }
+ }
+}
+
+void makecyclicknots(float *knots, short pnts, short order)
+/* pnts, order: aantal pnts NIET gecorrigeerd voor cyclic */
+{
+ int a, b;
+
+ if(knots==0) return;
+
+ /* eerst lange rijen (order -1) dezelfde knots aan uiteinde verwijderen */
+ if(order>2) {
+ b= pnts+order-1;
+ for(a=1; a<order-1; a++) {
+ if(knots[b]!= knots[b-a]) break;
+ }
+ if(a==order-1) knots[pnts+order-2]+= 1.0;
+ }
+
+ b= order;
+ for(a=pnts+order-1; a<pnts+order+order-1; a++) {
+ knots[a]= knots[a-1]+ (knots[b]-knots[b-1]);
+ b--;
+ }
+}
+
+
+void makeknots(Nurb *nu, short uv, short type) /* 0: uniform, 1: endpoints, 2: bezier */
+{
+ if( (nu->type & 7)==CU_NURBS ) {
+ if(uv & 1) {
+ if(nu->knotsu) MEM_freeN(nu->knotsu);
+ if(nu->pntsu>1) {
+ nu->knotsu= MEM_callocN(4+sizeof(float)*KNOTSU(nu), "makeknots");
+ calcknots(nu->knotsu, nu->pntsu, nu->orderu, type);
+ if(nu->flagu & 1) makecyclicknots(nu->knotsu, nu->pntsu, nu->orderu);
+ }
+ else nu->knotsu= 0;
+ }
+ if(uv & 2) {
+ if(nu->knotsv) MEM_freeN(nu->knotsv);
+ if(nu->pntsv>1) {
+ nu->knotsv= MEM_callocN(4+sizeof(float)*KNOTSV(nu), "makeknots");
+ calcknots(nu->knotsv, nu->pntsv, nu->orderv, type);
+ if(nu->flagv & 1) makecyclicknots(nu->knotsv, nu->pntsv, nu->orderv);
+ }
+ else nu->knotsv= 0;
+ }
+ }
+}
+
+void basisNurb(float t, short order, short pnts, float *knots, float *basis, int *start, int *end)
+{
+ float d, e;
+ int i, i1 = 0, i2 = 0 ,j, orderpluspnts;
+
+ orderpluspnts= order+pnts;
+
+ /* this is for float inaccuracy */
+ if(t < knots[0]) t= knots[0];
+ else if(t > knots[orderpluspnts-1]) t= knots[orderpluspnts-1];
+
+ /* dit stuk is order '1' */
+ for(i=0;i<orderpluspnts-1;i++) {
+ if(knots[i]!=knots[i+1] && t>= knots[i] && t<=knots[i+1]) {
+ basis[i]= 1.0;
+ i1= i-order+1;
+ if(i1<0) i1= 0;
+ i2= i;
+ i++;
+ while(i<orderpluspnts-1) {
+ basis[i]= 0.0;
+ i++;
+ }
+ break;
+ }
+ else basis[i]= 0.0;
+ }
+ basis[i]= 0.0;
+
+ /* printf("u %f\n", t); for(k=0;k<orderpluspnts;k++) printf(" %2.2f",basis[k]); printf("\n"); */
+
+ /* dit is order 2,3,... */
+ for(j=2; j<=order; j++) {
+
+ if(i2+j>= orderpluspnts) i2= orderpluspnts-j-1;
+
+ for(i= i1; i<=i2; i++) {
+ if(basis[i]!=0.0)
+ d= ((t-knots[i])*basis[i]) / (knots[i+j-1]-knots[i]);
+ else
+ d= 0.0;
+
+ if(basis[i+1]!=0.0)
+ e= ((knots[i+j]-t)*basis[i+1]) / (knots[i+j]-knots[i+1]);
+ else
+ e= 0.0;
+
+ basis[i]= d+e;
+ }
+ }
+
+ *start= 1000;
+ *end= 0;
+
+ for(i=i1; i<=i2; i++) {
+ if(basis[i]>0.0) {
+ *end= i;
+ if(*start==1000) *start= i;
+ }
+ }
+}
+
+
+void makeNurbfaces(Nurb *nu, float *data)
+/* data moet 3*4*resolu*resolv lang zijn en op nul staan */
+{
+ BPoint *bp;
+ float *basisu, *basis, *basisv, *sum, *fp, *in;
+ float u, v, ustart, uend, ustep, vstart, vend, vstep, sumdiv;
+ int i, j, iofs, jofs, cycl, len, resolu, resolv;
+ int istart, iend, jsta, jen, *jstart, *jend, ratcomp;
+
+ if(nu->knotsu==0 || nu->knotsv==0) return;
+ if(nu->orderu>nu->pntsu) return;
+ if(nu->orderv>nu->pntsv) return;
+ if(data==0) return;
+
+ /* alloceren en vars goedzetten */
+ len= nu->pntsu*nu->pntsv;
+ if(len==0) return;
+ sum= (float *)MEM_callocN(sizeof(float)*len, "makeNurbfaces1");
+
+ resolu= nu->resolu;
+ resolv= nu->resolv;
+ len= resolu*resolv;
+ if(len==0) {
+ MEM_freeN(sum);
+ return;
+ }
+
+ bp= nu->bp;
+ i= nu->pntsu*nu->pntsv;
+ ratcomp=0;
+ while(i--) {
+ if(bp->vec[3]!=1.0) {
+ ratcomp= 1;
+ break;
+ }
+ bp++;
+ }
+
+ fp= nu->knotsu;
+ ustart= fp[nu->orderu-1];
+ if(nu->flagu & 1) uend= fp[nu->pntsu+nu->orderu-1];
+ else uend= fp[nu->pntsu];
+ ustep= (uend-ustart)/(resolu-1+(nu->flagu & 1));
+ basisu= (float *)MEM_mallocN(sizeof(float)*KNOTSU(nu), "makeNurbfaces3");
+
+ fp= nu->knotsv;
+ vstart= fp[nu->orderv-1];
+
+ if(nu->flagv & 1) vend= fp[nu->pntsv+nu->orderv-1];
+ else vend= fp[nu->pntsv];
+ vstep= (vend-vstart)/(resolv-1+(nu->flagv & 1));
+ len= KNOTSV(nu);
+ basisv= (float *)MEM_mallocN(sizeof(float)*len*resolv, "makeNurbfaces3");
+ jstart= (int *)MEM_mallocN(sizeof(float)*resolv, "makeNurbfaces4");
+ jend= (int *)MEM_mallocN(sizeof(float)*resolv, "makeNurbfaces5");
+
+ /* voorberekenen basisv en jstart,jend */
+ if(nu->flagv & 1) cycl= nu->orderv-1;
+ else cycl= 0;
+ v= vstart;
+ basis= basisv;
+ while(resolv--) {
+ basisNurb(v, nu->orderv, (short)(nu->pntsv+cycl), nu->knotsv, basis, jstart+resolv, jend+resolv);
+ basis+= KNOTSV(nu);
+ v+= vstep;
+ }
+
+ if(nu->flagu & 1) cycl= nu->orderu-1;
+ else cycl= 0;
+ in= data;
+ u= ustart;
+ while(resolu--) {
+
+ basisNurb(u, nu->orderu, (short)(nu->pntsu+cycl), nu->knotsu, basisu, &istart, &iend);
+
+ basis= basisv;
+ resolv= nu->resolv;
+ while(resolv--) {
+
+ jsta= jstart[resolv];
+ jen= jend[resolv];
+
+ /* bereken sum */
+ sumdiv= 0.0;
+ fp= sum;
+
+ for(j= jsta; j<=jen; j++) {
+
+ if(j>=nu->pntsv) jofs= (j - nu->pntsv);
+ else jofs= j;
+ bp= nu->bp+ nu->pntsu*jofs+istart-1;
+
+ for(i= istart; i<=iend; i++, fp++) {
+
+ if(i>= nu->pntsu) {
+ iofs= i- nu->pntsu;
+ bp= nu->bp+ nu->pntsu*jofs+iofs;
+ }
+ else bp++;
+
+ if(ratcomp) {
+ *fp= basisu[i]*basis[j]*bp->vec[3];
+ sumdiv+= *fp;
+ }
+ else *fp= basisu[i]*basis[j];
+ }
+ }
+
+ if(ratcomp) {
+ fp= sum;
+ for(j= jsta; j<=jen; j++) {
+ for(i= istart; i<=iend; i++, fp++) {
+ *fp/= sumdiv;
+ }
+ }
+ }
+
+ /* een! (1.0) echt punt nu */
+ fp= sum;
+ for(j= jsta; j<=jen; j++) {
+
+ if(j>=nu->pntsv) jofs= (j - nu->pntsv);
+ else jofs= j;
+ bp= nu->bp+ nu->pntsu*jofs+istart-1;
+
+ for(i= istart; i<=iend; i++, fp++) {
+
+ if(i>= nu->pntsu) {
+ iofs= i- nu->pntsu;
+ bp= nu->bp+ nu->pntsu*jofs+iofs;
+ }
+ else bp++;
+
+ if(*fp!=0.0) {
+ in[0]+= (*fp) * bp->vec[0];
+ in[1]+= (*fp) * bp->vec[1];
+ in[2]+= (*fp) * bp->vec[2];
+ }
+ }
+ }
+
+ in+=3;
+ basis+= KNOTSV(nu);
+ }
+ u+= ustep;
+ }
+
+ /* vrijgeven */
+ MEM_freeN(sum);
+ MEM_freeN(basisu);
+ MEM_freeN(basisv);
+ MEM_freeN(jstart);
+ MEM_freeN(jend);
+}
+
+
+void makeNurbcurve_forw(Nurb *nu, float *data)
+/* *data: moet 3*4*pntsu*resolu lang zijn en op nul staan */
+{
+ BPoint *bp;
+ float *basisu, *sum, *fp, *in;
+ float u, ustart, uend, ustep, sumdiv;
+ int i, j, k, len, resolu, istart, iend;
+ int wanted, org;
+
+ if(nu->knotsu==0) return;
+ if(data==0) return;
+
+ /* alloceren en vars goedzetten */
+ len= nu->pntsu;
+ if(len==0) return;
+ sum= (float *)MEM_callocN(sizeof(float)*len, "makeNurbcurve1");
+
+ resolu= nu->resolu*nu->pntsu;
+ if(resolu==0) {
+ MEM_freeN(sum);
+ return;
+ }
+
+ fp= nu->knotsu;
+ ustart= fp[nu->orderu-1];
+ uend= fp[nu->pntsu];
+ ustep= (uend-ustart)/(resolu-1);
+ basisu= (float *)MEM_mallocN(sizeof(float)*(nu->orderu+nu->pntsu), "makeNurbcurve3");
+
+ in= data;
+ u= ustart;
+ for (k = nu->orderu - 1; k < nu->pntsu; k++){
+
+ wanted = (int)((nu->knotsu[k+1] - nu->knotsu[k]) / ustep);
+ org = 4; /* gelijk aan order */
+ if (org > wanted) org = wanted;
+
+ for (j = org; j > 0; j--){
+
+ basisNurb(u, nu->orderu, nu->pntsu, nu->knotsu, basisu, &istart, &iend);
+ /* bereken sum */
+ sumdiv= 0.0;
+ fp= sum;
+ for(i= istart; i<=iend; i++, fp++) {
+ /* hier nog rationele component doen */
+ *fp= basisu[i];
+ sumdiv+= *fp;
+ }
+ if(sumdiv!=0.0) if(sumdiv<0.999 || sumdiv>1.001) {
+ /* is dit normaliseren ook nodig? */
+ fp= sum;
+ for(i= istart; i<=iend; i++, fp++) {
+ *fp/= sumdiv;
+ }
+ }
+
+ /* een! (1.0) echt punt nu */
+ fp= sum;
+ bp= nu->bp+ istart;
+ for(i= istart; i<=iend; i++, bp++, fp++) {
+
+ if(*fp!=0.0) {
+ in[0]+= (*fp) * bp->vec[0];
+ in[1]+= (*fp) * bp->vec[1];
+ in[2]+= (*fp) * bp->vec[2];
+ }
+ }
+
+ in+=3;
+
+ u+= ustep;
+ }
+
+ if (wanted > org){
+ extend_spline(in - 3 * org, org, wanted);
+ in += 3 * (wanted - org);
+ u += ustep * (wanted - org);
+ }
+ }
+
+ /* vrijgeven */
+ MEM_freeN(sum);
+ MEM_freeN(basisu);
+}
+
+
+void makeNurbcurve(Nurb *nu, float *data, int dim)
+/* data moet dim*4*pntsu*resolu lang zijn en op nul staan */
+{
+ BPoint *bp;
+ float u, ustart, uend, ustep, sumdiv;
+ float *basisu, *sum, *fp, *in;
+ int i, len, resolu, istart, iend, cycl;
+
+ if(nu->knotsu==0) return;
+ if(nu->orderu>nu->pntsu) return;
+ if(data==0) return;
+
+ /* alloceren en vars goedzetten */
+ len= nu->pntsu;
+ if(len==0) return;
+ sum= (float *)MEM_callocN(sizeof(float)*len, "makeNurbcurve1");
+
+ resolu= nu->resolu*nu->pntsu;
+ if(resolu==0) {
+ MEM_freeN(sum);
+ return;
+ }
+
+ fp= nu->knotsu;
+ ustart= fp[nu->orderu-1];
+ if(nu->flagu & 1) uend= fp[nu->pntsu+nu->orderu-1];
+ else uend= fp[nu->pntsu];
+ ustep= (uend-ustart)/(resolu-1+(nu->flagu & 1));
+ basisu= (float *)MEM_mallocN(sizeof(float)*KNOTSU(nu), "makeNurbcurve3");
+
+ if(nu->flagu & 1) cycl= nu->orderu-1;
+ else cycl= 0;
+
+ in= data;
+ u= ustart;
+ while(resolu--) {
+
+ basisNurb(u, nu->orderu, (short)(nu->pntsu+cycl), nu->knotsu, basisu, &istart, &iend);
+ /* bereken sum */
+ sumdiv= 0.0;
+ fp= sum;
+ bp= nu->bp+ istart-1;
+ for(i= istart; i<=iend; i++, fp++) {
+
+ if(i>=nu->pntsu) bp= nu->bp+(i - nu->pntsu);
+ else bp++;
+
+ *fp= basisu[i]*bp->vec[3];
+ sumdiv+= *fp;
+ }
+ if(sumdiv!=0.0) if(sumdiv<0.999 || sumdiv>1.001) {
+ /* is dit normaliseren ook nodig? */
+ fp= sum;
+ for(i= istart; i<=iend; i++, fp++) {
+ *fp/= sumdiv;
+ }
+ }
+
+ /* een! (1.0) echt punt nu */
+ fp= sum;
+ bp= nu->bp+ istart-1;
+ for(i= istart; i<=iend; i++, fp++) {
+
+ if(i>=nu->pntsu) bp= nu->bp+(i - nu->pntsu);
+ else bp++;
+
+ if(*fp!=0.0) {
+
+ in[0]+= (*fp) * bp->vec[0];
+ in[1]+= (*fp) * bp->vec[1];
+ if(dim>=3) {
+ in[2]+= (*fp) * bp->vec[2];
+ if(dim==4) in[3]+= (*fp) * bp->alfa;
+ }
+ }
+ }
+
+ in+= dim;
+
+ u+= ustep;
+ }
+
+ /* vrijgeven */
+ MEM_freeN(sum);
+ MEM_freeN(basisu);
+}
+
+void maakbez(float q0, float q1, float q2, float q3, float *p, int it)
+{
+ float rt0,rt1,rt2,rt3,f;
+ int a;
+
+ f= (float)it;
+ rt0= q0;
+ rt1= 3.0f*(q1-q0)/f;
+ f*= f;
+ rt2= 3.0f*(q0-2.0f*q1+q2)/f;
+ f*= it;
+ rt3= (q3-q0+3.0f*(q1-q2))/f;
+
+ q0= rt0;
+ q1= rt1+rt2+rt3;
+ q2= 2*rt2+6*rt3;
+ q3= 6*rt3;
+
+ for(a=0; a<=it; a++) {
+ *p= q0;
+ p+= 3;
+ q0+= q1;
+ q1+= q2;
+ q2+= q3;
+ }
+}
+
+/* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */
+
+void make_orco_surf(Curve *cu)
+{
+ Nurb *nu;
+ int a, b, tot=0;
+ int sizeu, sizev;// ###
+ float *data;
+
+
+ /* eerst voorspellen hoelang datablok moet worden */
+ nu= cu->nurb.first;
+ while(nu) {
+#ifdef STRUBI
+/* this is a bad hack: as we want to avoid the seam in a cyclic nurbs
+texture wrapping, reserve extra orco data space to save these extra needed
+vertex based UV coordinates for the meridian vertices.
+Vertices on the 0/2pi boundary are not duplicated inside the displist but later in
+the renderface/vert construction.
+
+See also blenderWorldManipulation.c: init_render_surf()
+
+*/
+
+ sizeu = nu->resolu; sizev = nu->resolv;
+ if (nu->flagu & CU_CYCLIC) sizeu++;
+ if (nu->flagv & CU_CYCLIC) sizev++;
+ if(nu->pntsv>1) tot+= sizeu * sizev;
+#else
+ if(nu->pntsv>1) tot+= nu->resolu*nu->resolv;
+#endif
+ nu= nu->next;
+ }
+ /* makeNurbfaces wil nullen */
+ data= cu->orco= MEM_callocN(3*sizeof(float)*tot, "make_orco");
+
+ nu= cu->nurb.first;
+ while(nu) {
+ if(nu->pntsv>1) {
+ sizeu = nu->resolu;
+ sizev = nu->resolv;
+#ifdef STRUBI
+ if (nu->flagu & CU_CYCLIC) sizeu++;
+ if (nu->flagv & CU_CYCLIC) sizev++;
+#endif
+
+ if(cu->flag & CU_UV_ORCO) {
+ for(b=0; b< sizeu; b++) {
+ for(a=0; a< sizev; a++) {
+
+ if(sizev <2) data[0]= 0.0f;
+ else data[0]= -1.0f + 2.0f*((float)a)/(sizev - 1);
+
+ if(sizeu <2) data[1]= 0.0f;
+ else data[1]= -1.0f + 2.0f*((float)b)/(sizeu - 1);
+
+ data[2]= 0.0;
+
+ data+= 3;
+ }
+ }
+ }
+ else {
+ makeNurbfaces(nu, data);
+#ifdef STRUBI
+ for(b=0; b< nu->resolu; b++) {
+ for(a=0; a< nu->resolv; a++) {
+ data = cu->orco + 3 * (b * nu->resolv + a);
+ data[0]= (data[0]-cu->loc[0])/cu->size[0];
+ data[1]= (data[1]-cu->loc[1])/cu->size[1];
+ data[2]= (data[2]-cu->loc[2])/cu->size[2];
+ }
+ }
+ copyintoExtendedArray(cu->orco, nu->resolv, nu->resolu, cu->orco, sizev, sizeu);
+ /* copy U/V-cyclic orco's */
+ if (nu->flagv & CU_CYCLIC) {
+ b = sizeu - 1;
+ for(a=0; a< sizev; a++) {
+ data = cu->orco + 3 * (b * sizev + a);
+ VECCOPY(data, cu->orco + 3*a);
+ }
+ }
+ if (nu->flagu & CU_CYCLIC) {
+ a = sizev - 1;
+ for(b=0; b< sizeu; b++) {
+ data = cu->orco + 3 * (b * sizev + a);
+ VECCOPY(data, cu->orco + 3 * b*sizev);
+ }
+ }
+
+#else
+ tot= sizeu * sizev;
+ while(tot--) {
+ data[0]= (data[0]-cu->loc[0])/cu->size[0];
+ data[1]= (data[1]-cu->loc[1])/cu->size[1];
+ data[2]= (data[2]-cu->loc[2])/cu->size[2];
+
+ data+= 3;
+ }
+#endif
+ }
+ }
+ nu= nu->next;
+ }
+ /* loadkeypostype(22, base, base); */
+
+}
+
+
+
+/* ***************** BEVEL ****************** */
+
+void makebevelcurve(Object *ob, ListBase *disp)
+{
+ DispList *dl, *dlnew;
+ Curve *bevcu, *cu;
+ float *fp, facx, facy, hoek, dhoek;
+ int nr, a;
+
+ cu= ob->data;
+
+ if(cu->bevobj && cu->bevobj!=ob) {
+ if(cu->bevobj->type==OB_CURVE) {
+ bevcu= cu->bevobj->data;
+ if(bevcu->ext1==0.0 && bevcu->ext2==0.0) {
+ facx= cu->bevobj->size[0];
+ facy= cu->bevobj->size[1];
+
+ dl= bevcu->disp.first;
+ if(dl==0) {
+ makeDispList(cu->bevobj);
+ dl= bevcu->disp.first;
+ }
+ while(dl) {
+ if ELEM(dl->type, DL_POLY, DL_SEGM) {
+ dlnew= MEM_mallocN(sizeof(DispList), "makebevelcurve1");
+ *dlnew= *dl;
+ dlnew->verts= MEM_mallocN(3*sizeof(float)*dl->parts*dl->nr, "makebevelcurve1");
+ memcpy(dlnew->verts, dl->verts, 3*sizeof(float)*dl->parts*dl->nr);
+
+ BLI_addtail(disp, dlnew);
+ fp= dlnew->verts;
+ nr= dlnew->parts*dlnew->nr;
+ while(nr--) {
+ fp[2]= fp[1]*facy;
+ fp[1]= -fp[0]*facx;
+ fp[0]= 0.0;
+ fp+= 3;
+ }
+ }
+ dl= dl->next;
+ }
+ }
+ }
+ }
+ else if(cu->ext2==0.0) {
+ dl= MEM_callocN(sizeof(DispList), "makebevelcurve2");
+ dl->verts= MEM_mallocN(2*3*sizeof(float), "makebevelcurve2");
+ BLI_addtail(disp, dl);
+ dl->type= DL_SEGM;
+ dl->parts= 1;
+ dl->nr= 2;
+ fp= dl->verts;
+ fp[0]= fp[1]= 0.0;
+ fp[2]= -cu->ext1;
+ fp[3]= fp[4]= 0.0;
+ fp[5]= cu->ext1;
+ }
+ else {
+ nr= 4+2*cu->bevresol;
+
+ dl= MEM_callocN(sizeof(DispList), "makebevelcurve3");
+ dl->verts= MEM_mallocN(nr*3*sizeof(float), "makebevelcurve3");
+ BLI_addtail(disp, dl);
+ dl->type= DL_SEGM;
+ dl->parts= 1;
+ dl->nr= nr;
+
+ /* eerst cirkel maken */
+ fp= dl->verts;
+ hoek= -0.5*M_PI;
+ dhoek= (float)(M_PI/(nr-2));
+ for(a=0; a<nr; a++) {
+ fp[0]= 0.0;
+ fp[1]= (float)(cos(hoek)*(cu->ext2));
+ fp[2]= (float)(sin(hoek)*(cu->ext2));
+ hoek+= dhoek;
+ fp+= 3;
+ if(cu->ext1!=0.0 && a==((nr/2)-1) ) {
+ VECCOPY(fp, fp-3);
+ fp+=3;
+ a++;
+ }
+ }
+ if(cu->ext1==0.0) dl->nr--;
+ else {
+ fp= dl->verts;
+ for(a=0; a<nr; a++) {
+ if(a<=(nr/2-1)) fp[2]-= (cu->ext1);
+ else fp[2]+= (cu->ext1);
+ fp+= 3;
+ }
+ }
+ }
+
+}
+
+int cu_isectLL(float *v1, float *v2, float *v3, float *v4, short cox, short coy, float *labda, float *mu, float *vec)
+{
+ /* return:
+ -1: colliniar
+ 0: no intersection of segments
+ 1: exact intersection of segments
+ 2: cross-intersection of segments
+ */
+ float deler;
+
+ deler= (v1[cox]-v2[cox])*(v3[coy]-v4[coy])-(v3[cox]-v4[cox])*(v1[coy]-v2[coy]);
+ if(deler==0.0) return -1;
+
+ *labda= (v1[coy]-v3[coy])*(v3[cox]-v4[cox])-(v1[cox]-v3[cox])*(v3[coy]-v4[coy]);
+ *labda= -(*labda/deler);
+
+ deler= v3[coy]-v4[coy];
+ if(deler==0) {
+ deler=v3[cox]-v4[cox];
+ *mu= -(*labda*(v2[cox]-v1[cox])+v1[cox]-v3[cox])/deler;
+ } else {
+ *mu= -(*labda*(v2[coy]-v1[coy])+v1[coy]-v3[coy])/deler;
+ }
+ vec[cox]= *labda*(v2[cox]-v1[cox])+v1[cox];
+ vec[coy]= *labda*(v2[coy]-v1[coy])+v1[coy];
+
+ if(*labda>=0.0 && *labda<=1.0 && *mu>=0.0 && *mu<=1.0) {
+ if(*labda==0.0 || *labda==1.0 || *mu==0.0 || *mu==1.0) return 1;
+ return 2;
+ }
+ return 0;
+}
+
+
+short bevelinside(BevList *bl1,BevList *bl2)
+{
+ /* is bl2 INSIDE bl1 ? met links-rechts methode en "labda's" */
+ /* geeft als correct gat 1 terug */
+ BevPoint *bevp, *prevbevp;
+ float min,max,vec[3],hvec1[3],hvec2[3],lab,mu;
+ int nr, links=0,rechts=0,mode;
+
+ /* neem eerste vertex van het mogelijke gat */
+
+ bevp= (BevPoint *)(bl2+1);
+ hvec1[0]= bevp->x;
+ hvec1[1]= bevp->y;
+ hvec1[2]= 0.0;
+ VECCOPY(hvec2,hvec1);
+ hvec2[0]+=1000;
+
+ /* test deze met alle edges van mogelijk omringende poly */
+ /* tel aantal overgangen links en rechts */
+
+ bevp= (BevPoint *)(bl1+1);
+ nr= bl1->nr;
+ prevbevp= bevp+(nr-1);
+
+ while(nr--) {
+ min= prevbevp->y;
+ max= bevp->y;
+ if(max<min) {
+ min= max;
+ max= prevbevp->y;
+ }
+ if(min!=max) {
+ if(min<=hvec1[1] && max>=hvec1[1]) {
+ /* er is een overgang, snijpunt berekenen */
+ mode= cu_isectLL(&(prevbevp->x),&(bevp->x),hvec1,hvec2,0,1,&lab,&mu,vec);
+ /* als lab==0.0 of lab==1.0 dan snijdt de edge exact de overgang
+ * alleen toestaan voor lab= 1.0 (of andersom, maakt niet uit)
+ */
+ if(mode>=0 && lab!=0.0) {
+ if(vec[0]<hvec1[0]) links++;
+ else rechts++;
+ }
+ }
+ }
+ prevbevp= bevp;
+ bevp++;
+ }
+
+ if( (links & 1) && (rechts & 1) ) return 1;
+ return 0;
+}
+
+
+struct bevelsort {
+ float left;
+ BevList *bl;
+ int dir;
+};
+
+int vergxcobev(const void *a1, const void *a2)
+{
+ const struct bevelsort *x1=a1,*x2=a2;
+
+ if( x1->left > x2->left ) return 1;
+ else if( x1->left < x2->left) return -1;
+ return 0;
+}
+
+/* deze kan niet zomaar door atan2 vervangen worden, maar waarom? */
+
+void calc_bevel_sin_cos(float x1, float y1, float x2, float y2, float *sina, float *cosa)
+{
+ float t01, t02, x3, y3;
+
+ t01= (float)sqrt(x1*x1+y1*y1);
+ t02= (float)sqrt(x2*x2+y2*y2);
+ if(t01==0.0) t01= 1.0;
+ if(t02==0.0) t02= 1.0;
+
+ x1/=t01;
+ y1/=t01;
+ x2/=t02;
+ y2/=t02;
+
+ t02= x1*x2+y1*y2;
+ if(fabs(t02)>=1.0) t02= .5*M_PI;
+ else t02= (saacos(t02))/2.0f;
+
+ t02= (float)sin(t02);
+ if(t02==0.0) t02= 1.0;
+
+ x3= x1-x2;
+ y3= y1-y2;
+ if(x3==0 && y3==0) {
+ /* printf("x3 en y3 nul \n"); */
+ x3= y1;
+ y3= -x1;
+ } else {
+ t01= (float)sqrt(x3*x3+y3*y3);
+ x3/=t01;
+ y3/=t01;
+ }
+
+ *sina= -y3/t02;
+ *cosa= x3/t02;
+
+}
+
+void alfa_bezpart(BezTriple *prevbezt, BezTriple *bezt, Nurb *nu, float *data_a)
+{
+ BezTriple *pprev, *next, *last;
+ float fac, dfac, t[4];
+ int a;
+
+ last= nu->bezt+(nu->pntsu-1);
+
+ /* een punt terug */
+ if(prevbezt==nu->bezt) {
+ if(nu->flagu & 1) pprev= last;
+ else pprev= prevbezt;
+ }
+ else pprev= prevbezt-1;
+
+ /* een punt verder */
+ if(bezt==last) {
+ if(nu->flagu & 1) next= nu->bezt;
+ else next= bezt;
+ }
+ else next= bezt+1;
+
+ fac= 0.0;
+ dfac= 1.0f/(float)nu->resolu;
+
+ for(a=0; a<nu->resolu; a++, fac+= dfac) {
+
+ set_four_ipo(fac, t, KEY_BSPLINE);
+
+ data_a[a]= t[0]*pprev->alfa + t[1]*prevbezt->alfa + t[2]*bezt->alfa + t[3]*next->alfa;
+ }
+}
+
+void makeBevelList(Object *ob)
+{
+ /* - alle curves omzetten in poly's, met aangegeven resol en vlaggen voor dubbele punten
+ - eventueel intelligent punten verwijderen (geval Nurb)
+ - scheiden in verschillende blokken met Boundbox
+ - Autogat detectie */
+ Curve *cu;
+ Nurb *nu;
+ BezTriple *bezt, *prevbezt;
+ BPoint *bp;
+ BevList *bl, *blnew, *blnext;
+ BevPoint *bevp, *bevp2, *bevp1 = NULL, *bevp0;
+ float *data, *data_a, *v1, *v2, min, inp, x1, x2, y1, y2, vec[3];
+ struct bevelsort *sortdata, *sd, *sd1;
+ int a, b, len, nr, poly;
+
+ /* deze fie moet object hebben in verband met tflag en upflag */
+ cu= ob->data;
+
+ /* STAP 1: POLY'S MAKEN */
+
+ BLI_freelistN(&(cu->bev));
+ if(ob==G.obedit) nu= editNurb.first;
+ else nu= cu->nurb.first;
+
+ while(nu) {
+ if(nu->pntsu>1) {
+
+ if((nu->type & 7)==CU_POLY) {
+
+ len= nu->pntsu;
+ bl= MEM_callocN(sizeof(BevList)+len*sizeof(BevPoint), "makeBevelList");
+ BLI_addtail(&(cu->bev), bl);
+
+ if(nu->flagu & 1) bl->poly= 0;
+ else bl->poly= -1;
+ bl->nr= len;
+ bl->flag= 0;
+ bevp= (BevPoint *)(bl+1);
+ bp= nu->bp;
+
+ while(len--) {
+ bevp->x= bp->vec[0];
+ bevp->y= bp->vec[1];
+ bevp->z= bp->vec[2];
+ bevp->alfa= bp->alfa;
+ bevp->f1= 1;
+ bevp++;
+ bp++;
+ }
+ }
+ else if((nu->type & 7)==CU_BEZIER) {
+
+ len= nu->resolu*(nu->pntsu+ (nu->flagu & 1) -1)+1; /* voor laatste punt niet cyclic */
+ bl= MEM_callocN(sizeof(BevList)+len*sizeof(BevPoint), "makeBevelList");
+ BLI_addtail(&(cu->bev), bl);
+
+ if(nu->flagu & 1) bl->poly= 0;
+ else bl->poly= -1;
+ bevp= (BevPoint *)(bl+1);
+
+ a= nu->pntsu-1;
+ bezt= nu->bezt;
+ if(nu->flagu & 1) {
+ a++;
+ prevbezt= nu->bezt+(nu->pntsu-1);
+ }
+ else {
+ prevbezt= bezt;
+ bezt++;
+ }
+
+ data= MEM_mallocN(3*sizeof(float)*(nu->resolu+1), "makeBevelList2");
+ data_a= MEM_callocN(sizeof(float)*(nu->resolu+1), "data_a");
+
+ while(a--) {
+ if(prevbezt->h2==HD_VECT && bezt->h1==HD_VECT) {
+
+ bevp->x= prevbezt->vec[1][0];
+ bevp->y= prevbezt->vec[1][1];
+ bevp->z= prevbezt->vec[1][2];
+ bevp->alfa= prevbezt->alfa;
+ bevp->f1= 1;
+ bevp->f2= 0;
+ bevp++;
+ bl->nr++;
+ bl->flag= 1;
+ }
+ else {
+ v1= prevbezt->vec[1];
+ v2= bezt->vec[0];
+
+ /* altijd alle drie doen: anders blijft data hangen */
+ maakbez(v1[0], v1[3], v2[0], v2[3], data, nu->resolu);
+ maakbez(v1[1], v1[4], v2[1], v2[4], data+1, nu->resolu);
+ maakbez(v1[2], v1[5], v2[2], v2[5], data+2, nu->resolu);
+
+ if((nu->type & CU_2D)==0) {
+ if(cu->flag & CU_3D) {
+ alfa_bezpart(prevbezt, bezt, nu, data_a);
+ }
+ }
+
+
+ /* met handlecodes dubbele punten aangeven */
+ if(prevbezt->h1==prevbezt->h2) {
+ if(prevbezt->h1==0 || prevbezt->h1==HD_VECT) bevp->f1= 1;
+ }
+ else {
+ if(prevbezt->h1==0 || prevbezt->h1==HD_VECT) bevp->f1= 1;
+ else if(prevbezt->h2==0 || prevbezt->h2==HD_VECT) bevp->f1= 1;
+ }
+
+ v1= data;
+ v2= data_a;
+ nr= nu->resolu;
+
+ while(nr--) {
+ bevp->x= v1[0];
+ bevp->y= v1[1];
+ bevp->z= v1[2];
+ bevp->alfa= v2[0];
+ bevp++;
+ v1+=3;
+ v2++;
+ }
+ bl->nr+= nu->resolu;
+
+ }
+ prevbezt= bezt;
+ bezt++;
+ }
+
+ MEM_freeN(data);
+ MEM_freeN(data_a);
+
+ if((nu->flagu & 1)==0) { /* niet cyclic: endpoint */
+ bevp->x= prevbezt->vec[1][0];
+ bevp->y= prevbezt->vec[1][1];
+ bevp->z= prevbezt->vec[1][2];
+ bl->nr++;
+ }
+
+ }
+ else if((nu->type & 7)==CU_NURBS) {
+ if(nu->pntsv==1) {
+ len= nu->resolu*nu->pntsu;
+ bl= MEM_mallocN(sizeof(BevList)+len*sizeof(BevPoint), "makeBevelList3");
+ BLI_addtail(&(cu->bev), bl);
+ bl->nr= len;
+ bl->flag= 0;
+ if(nu->flagu & 1) bl->poly= 0;
+ else bl->poly= -1;
+ bevp= (BevPoint *)(bl+1);
+
+ data= MEM_callocN(4*sizeof(float)*len, "makeBevelList4"); /* moet op nul staan */
+ makeNurbcurve(nu, data, 4);
+
+ v1= data;
+ while(len--) {
+ bevp->x= v1[0];
+ bevp->y= v1[1];
+ bevp->z= v1[2];
+ bevp->alfa= v1[3];
+
+ bevp->f1= bevp->f2= 0;
+ bevp++;
+ v1+=4;
+ }
+ MEM_freeN(data);
+ }
+ }
+ }
+ nu= nu->next;
+ }
+
+ /* STAP 2: DUBBELE PUNTEN EN AUTOMATISCHE RESOLUTIE, DATABLOKKEN VERKLEINEN */
+ bl= cu->bev.first;
+ while(bl) {
+ nr= bl->nr;
+ bevp1= (BevPoint *)(bl+1);
+ bevp0= bevp1+(nr-1);
+ nr--;
+ while(nr--) {
+ if( fabs(bevp0->x-bevp1->x)<0.00001 ) {
+ if( fabs(bevp0->y-bevp1->y)<0.00001 ) {
+ if( fabs(bevp0->z-bevp1->z)<0.00001 ) {
+ bevp0->f2= 1;
+ bl->flag++;
+ }
+ }
+ }
+ bevp0= bevp1;
+ bevp1++;
+ }
+ bl= bl->next;
+ }
+ bl= cu->bev.first;
+ while(bl) {
+ blnext= bl->next;
+ if(bl->flag) {
+ nr= bl->nr- bl->flag+1; /* +1 want vectorbezier zet ook flag */
+ blnew= MEM_mallocN(sizeof(BevList)+nr*sizeof(BevPoint), "makeBevelList");
+ memcpy(blnew, bl, sizeof(BevList));
+ blnew->nr= 0;
+ BLI_remlink(&(cu->bev), bl);
+ BLI_insertlinkbefore(&(cu->bev),blnext,blnew); /* zodat bevlijst met nurblijst gelijk loopt */
+ bevp0= (BevPoint *)(bl+1);
+ bevp1= (BevPoint *)(blnew+1);
+ nr= bl->nr;
+ while(nr--) {
+ if(bevp0->f2==0) {
+ memcpy(bevp1, bevp0, sizeof(BevPoint));
+ bevp1++;
+ blnew->nr++;
+ }
+ bevp0++;
+ }
+ MEM_freeN(bl);
+ blnew->flag= 0;
+ }
+ bl= blnext;
+ }
+
+ /* STAP 3: POLY'S TELLEN EN AUTOGAT */
+ bl= cu->bev.first;
+ poly= 0;
+ while(bl) {
+ if(bl->poly>=0) {
+ poly++;
+ bl->poly= poly;
+ bl->gat= 0;
+ }
+ bl= bl->next;
+ }
+
+
+ /* meest linkse punten vinden, tevens richting testen */
+ if(poly>0) {
+ sd= sortdata= MEM_mallocN(sizeof(struct bevelsort)*poly, "makeBevelList5");
+ bl= cu->bev.first;
+ while(bl) {
+ if(bl->poly>0) {
+
+ min= 300000.0;
+ bevp= (BevPoint *)(bl+1);
+ nr= bl->nr;
+ while(nr--) {
+ if(min>bevp->x) {
+ min= bevp->x;
+ bevp1= bevp;
+ }
+ bevp++;
+ }
+ sd->bl= bl;
+ sd->left= min;
+
+ bevp= (BevPoint *)(bl+1);
+ if(bevp1== bevp) bevp0= bevp+ (bl->nr-1);
+ else bevp0= bevp1-1;
+ bevp= bevp+ (bl->nr-1);
+ if(bevp1== bevp) bevp2= (BevPoint *)(bl+1);
+ else bevp2= bevp1+1;
+
+ inp= (bevp1->x- bevp0->x)*(bevp0->y- bevp2->y)
+ +(bevp0->y- bevp1->y)*(bevp0->x- bevp2->x);
+
+ if(inp>0.0) sd->dir= 1;
+ else sd->dir= 0;
+
+ sd++;
+ }
+
+ bl= bl->next;
+ }
+ qsort(sortdata,poly,sizeof(struct bevelsort), vergxcobev);
+
+ sd= sortdata+1;
+ for(a=1; a<poly; a++, sd++) {
+ bl= sd->bl; /* is bl een gat? */
+ sd1= sortdata+ (a-1);
+ for(b=a-1; b>=0; b--, sd1--) { /* alle polys links ervan */
+ if(bevelinside(sd1->bl, bl)) {
+ bl->gat= 1- sd1->bl->gat;
+ break;
+ }
+ }
+ }
+
+ /* draairichting */
+ if((cu->flag & CU_3D)==0) {
+ sd= sortdata;
+ for(a=0; a<poly; a++, sd++) {
+ if(sd->bl->gat==sd->dir) {
+ bl= sd->bl;
+ bevp1= (BevPoint *)(bl+1);
+ bevp2= bevp1+ (bl->nr-1);
+ nr= bl->nr/2;
+ while(nr--) {
+ SWAP(BevPoint, *bevp1, *bevp2);
+ bevp1++;
+ bevp2--;
+ }
+ }
+ }
+ }
+ MEM_freeN(sortdata);
+ }
+
+ /* STAP 4: COSINUSSEN */
+ bl= cu->bev.first;
+ while(bl) {
+
+ if(bl->nr==2) { /* 2 pnt, apart afhandelen: KAN DAT NIET AFGESCHAFT? */
+ bevp2= (BevPoint *)(bl+1);
+ bevp1= bevp2+1;
+
+ x1= bevp1->x- bevp2->x;
+ y1= bevp1->y- bevp2->y;
+
+ calc_bevel_sin_cos(x1, y1, -x1, -y1, &(bevp1->sina), &(bevp1->cosa));
+ bevp2->sina= bevp1->sina;
+ bevp2->cosa= bevp1->cosa;
+
+ if(cu->flag & CU_3D) { /* 3D */
+ float *quat, q[4];
+
+ vec[0]= bevp1->x - bevp2->x;
+ vec[1]= bevp1->y - bevp2->y;
+ vec[2]= bevp1->z - bevp2->z;
+
+ quat= vectoquat(vec, 5, 1);
+
+ Normalise(vec);
+ q[0]= (float)cos(0.5*bevp1->alfa);
+ x1= (float)sin(0.5*bevp1->alfa);
+ q[1]= x1*vec[0];
+ q[2]= x1*vec[1];
+ q[3]= x1*vec[2];
+ QuatMul(quat, q, quat);
+
+ QuatToMat3(quat, bevp1->mat);
+ Mat3CpyMat3(bevp2->mat, bevp1->mat);
+ }
+
+ }
+ else if(bl->nr>2) {
+ bevp2= (BevPoint *)(bl+1);
+ bevp1= bevp2+(bl->nr-1);
+ bevp0= bevp1-1;
+
+
+ nr= bl->nr;
+
+ while(nr--) {
+
+ if(cu->flag & CU_3D) { /* 3D */
+ float *quat, q[4];
+
+ vec[0]= bevp2->x - bevp0->x;
+ vec[1]= bevp2->y - bevp0->y;
+ vec[2]= bevp2->z - bevp0->z;
+
+ Normalise(vec);
+
+ quat= vectoquat(vec, 5, 1);
+
+ q[0]= (float)cos(0.5*bevp1->alfa);
+ x1= (float)sin(0.5*bevp1->alfa);
+ q[1]= x1*vec[0];
+ q[2]= x1*vec[1];
+ q[3]= x1*vec[2];
+ QuatMul(quat, q, quat);
+
+ QuatToMat3(quat, bevp1->mat);
+ }
+
+ x1= bevp1->x- bevp0->x;
+ x2= bevp1->x- bevp2->x;
+ y1= bevp1->y- bevp0->y;
+ y2= bevp1->y- bevp2->y;
+
+ calc_bevel_sin_cos(x1, y1, x2, y2, &(bevp1->sina), &(bevp1->cosa));
+
+
+ bevp0= bevp1;
+ bevp1= bevp2;
+ bevp2++;
+ }
+ /* niet cyclic gevallen corrigeren */
+ if(bl->poly== -1) {
+ if(bl->nr>2) {
+ bevp= (BevPoint *)(bl+1);
+ bevp1= bevp+1;
+ bevp->sina= bevp1->sina;
+ bevp->cosa= bevp1->cosa;
+ Mat3CpyMat3(bevp->mat, bevp1->mat);
+ bevp= (BevPoint *)(bl+1);
+ bevp+= (bl->nr-1);
+ bevp1= bevp-1;
+ bevp->sina= bevp1->sina;
+ bevp->cosa= bevp1->cosa;
+ Mat3CpyMat3(bevp->mat, bevp1->mat);
+ }
+ }
+ }
+ bl= bl->next;
+ }
+}
+
+/* ****************** HANDLES ************** */
+
+/*
+ * handlecodes:
+ * 1: niets, 1:auto, 2:vector, 3:aligned
+ */
+
+
+void calchandleNurb(BezTriple *bezt,BezTriple *prev, BezTriple *next, int mode)
+{
+ float *p1,*p2,*p3,pt[3];
+ float dx1,dy1,dz1,dx,dy,dz,vx,vy,vz,len,len1,len2;
+
+ if(bezt->h1==0 && bezt->h2==0) return;
+
+ p2= bezt->vec[1];
+
+ if(prev==0) {
+ p3= next->vec[1];
+ pt[0]= 2*p2[0]- p3[0];
+ pt[1]= 2*p2[1]- p3[1];
+ pt[2]= 2*p2[2]- p3[2];
+ p1= pt;
+ }
+ else p1= prev->vec[1];
+
+ if(next==0) {
+ pt[0]= 2*p2[0]- p1[0];
+ pt[1]= 2*p2[1]- p1[1];
+ pt[2]= 2*p2[2]- p1[2];
+ p3= pt;
+ }
+ else p3= next->vec[1];
+
+ if(mode && bezt->h1==HD_AUTO && prev) {
+ dx= p2[0] - (p1[0]+p1[3])/2.0f;
+ dy= p2[1] - (p1[1]+p1[4])/2.0f;
+ dz= p2[2] - (p1[2]+p1[5])/2.0f;
+ }
+ else {
+ dx= p2[0]- p1[0];
+ dy= p2[1]- p1[1];
+ dz= p2[2]- p1[2];
+ }
+ len1= (float)sqrt(dx*dx+dy*dy+dz*dz);
+
+ if(mode && bezt->h2==HD_AUTO && next) {
+ dx1= (p3[0]+p3[-3])/2.0f - p2[0];
+ dy1= (p3[1]+p3[-2])/2.0f - p2[1];
+ dz1= (p3[2]+p3[-1])/2.0f - p2[2];
+ }
+ else {
+ dx1= p3[0]- p2[0];
+ dy1= p3[1]- p2[1];
+ dz1= p3[2]- p2[2];
+ }
+ len2= (float)sqrt(dx1*dx1+dy1*dy1+dz1*dz1);
+
+ if(len1==0.0f) len1=1.0f;
+ if(len2==0.0f) len2=1.0f;
+
+
+ if(bezt->h1==HD_AUTO || bezt->h2==HD_AUTO) { /* auto */
+ vx= dx1/len2 + dx/len1;
+ vy= dy1/len2 + dy/len1;
+ vz= dz1/len2 + dz/len1;
+ len= 2.71f*(float)sqrt(vx*vx + vy*vy + vz*vz);
+ if(len!=0.0f) {
+
+ if(len1>5.0f*len2) len1= 5.0f*len2;
+ if(len2>5.0f*len1) len2= 5.0f*len1;
+
+ if(bezt->h1==HD_AUTO) {
+ len1/=len;
+ *(p2-3)= *p2-vx*len1;
+ *(p2-2)= *(p2+1)-vy*len1;
+ *(p2-1)= *(p2+2)-vz*len1;
+ }
+ if(bezt->h2==HD_AUTO) {
+ len2/=len;
+ *(p2+3)= *p2+vx*len2;
+ *(p2+4)= *(p2+1)+vy*len2;
+ *(p2+5)= *(p2+2)+vz*len2;
+ }
+ }
+ }
+
+ if(bezt->h1==HD_VECT) { /* vector */
+ dx/=3.0;
+ dy/=3.0;
+ dz/=3.0;
+ *(p2-3)= *p2-dx;
+ *(p2-2)= *(p2+1)-dy;
+ *(p2-1)= *(p2+2)-dz;
+ }
+ if(bezt->h2==HD_VECT) {
+ dx1/=3.0;
+ dy1/=3.0;
+ dz1/=3.0;
+ *(p2+3)= *p2+dx1;
+ *(p2+4)= *(p2+1)+dy1;
+ *(p2+5)= *(p2+2)+dz1;
+ }
+
+ len2= VecLenf(p2, p2+3);
+ len1= VecLenf(p2, p2-3);
+ if(len1==0.0) len1=1.0;
+ if(len2==0.0) len2=1.0;
+ if(bezt->f1 & 1) { /* volgorde van berekenen */
+ if(bezt->h2==HD_ALIGN) { /* aligned */
+ len= len2/len1;
+ p2[3]= p2[0]+len*(p2[0]-p2[-3]);
+ p2[4]= p2[1]+len*(p2[1]-p2[-2]);
+ p2[5]= p2[2]+len*(p2[2]-p2[-1]);
+ }
+ if(bezt->h1==HD_ALIGN) {
+ len= len1/len2;
+ p2[-3]= p2[0]+len*(p2[0]-p2[3]);
+ p2[-2]= p2[1]+len*(p2[1]-p2[4]);
+ p2[-1]= p2[2]+len*(p2[2]-p2[5]);
+ }
+ }
+ else {
+ if(bezt->h1==HD_ALIGN) {
+ len= len1/len2;
+ p2[-3]= p2[0]+len*(p2[0]-p2[3]);
+ p2[-2]= p2[1]+len*(p2[1]-p2[4]);
+ p2[-1]= p2[2]+len*(p2[2]-p2[5]);
+ }
+ if(bezt->h2==HD_ALIGN) { /* aligned */
+ len= len2/len1;
+ p2[3]= p2[0]+len*(p2[0]-p2[-3]);
+ p2[4]= p2[1]+len*(p2[1]-p2[-2]);
+ p2[5]= p2[2]+len*(p2[2]-p2[-1]);
+ }
+ }
+}
+
+void calchandlesNurb(Nurb *nu) /* wel eerst (zonodig) de handlevlaggen zetten */
+{
+ BezTriple *bezt, *prev, *next;
+ short a;
+
+ if((nu->type & 7)!=1) return;
+ if(nu->pntsu<2) return;
+
+ a= nu->pntsu;
+ bezt= nu->bezt;
+ if(nu->flagu & 1) prev= bezt+(a-1);
+ else prev= 0;
+ next= bezt+1;
+
+ while(a--) {
+ calchandleNurb(bezt, prev, next, 0);
+ prev= bezt;
+ if(a==1) {
+ if(nu->flagu & 1) next= nu->bezt;
+ else next= 0;
+ }
+ else next++;
+
+ bezt++;
+ }
+}
+
+
+void testhandlesNurb(Nurb *nu)
+{
+ /* Te gebruiken als er iets an de handles is veranderd.
+ * Loopt alle BezTriples af met de volgende regels:
+ * FASE 1: types veranderen?
+ * Autocalchandles: worden ligned als NOT(000 || 111)
+ * Vectorhandles worden 'niets' als (selected en andere niet)
+ * FASE 2: handles herbereken
+ */
+ BezTriple *bezt;
+ short flag, a;
+
+ if((nu->type & 7)!=CU_BEZIER) return;
+
+ bezt= nu->bezt;
+ a= nu->pntsu;
+ while(a--) {
+ flag= 0;
+ if(bezt->f1 & 1) flag++;
+ if(bezt->f2 & 1) flag += 2;
+ if(bezt->f3 & 1) flag += 4;
+
+ if( !(flag==0 || flag==7) ) {
+ if(bezt->h1==HD_AUTO) { /* auto */
+ bezt->h1= HD_ALIGN;
+ }
+ if(bezt->h2==HD_AUTO) { /* auto */
+ bezt->h2= HD_ALIGN;
+ }
+
+ if(bezt->h1==HD_VECT) { /* vector */
+ if(flag < 4) bezt->h1= 0;
+ }
+ if(bezt->h2==HD_VECT) { /* vector */
+ if( flag > 3) bezt->h2= 0;
+ }
+ }
+ bezt++;
+ }
+
+ calchandlesNurb(nu);
+}
+
+void autocalchandlesNurb(Nurb *nu, int flag)
+{
+ /* Kijkt naar de coordinaten van de handles en berekent de soort */
+
+ BezTriple *bezt2, *bezt1, *bezt0;
+ int i, align, leftsmall, rightsmall;
+
+ if(nu==0 || nu->bezt==0) return;
+
+ bezt2 = nu->bezt;
+ bezt1 = bezt2 + (nu->pntsu-1);
+ bezt0 = bezt1 - 1;
+ i = nu->pntsu;
+
+ while(i--) {
+
+ align= leftsmall= rightsmall= 0;
+
+ /* linker handle: */
+ if(flag==0 || (bezt1->f1 & flag) ) {
+ bezt1->h1= 0;
+ /* afstand te klein: vectorhandle */
+ if( VecLenf( bezt1->vec[1], bezt0->vec[1] ) < 0.0001) {
+ bezt1->h1= HD_VECT;
+ leftsmall= 1;
+ }
+ else {
+ /* aligned handle? */
+ if(DistVL2Dfl(bezt1->vec[1], bezt1->vec[0], bezt1->vec[2]) < 0.0001) {
+ align= 1;
+ bezt1->h1= HD_ALIGN;
+ }
+ /* of toch vector handle? */
+ if(DistVL2Dfl(bezt1->vec[0], bezt1->vec[1], bezt0->vec[1]) < 0.0001)
+ bezt1->h1= HD_VECT;
+
+ }
+ }
+ /* rechter handle: */
+ if(flag==0 || (bezt1->f3 & flag) ) {
+ bezt1->h2= 0;
+ /* afstand te klein: vectorhandle */
+ if( VecLenf( bezt1->vec[1], bezt2->vec[1] ) < 0.0001) {
+ bezt1->h2= HD_VECT;
+ rightsmall= 1;
+ }
+ else {
+ /* aligned handle? */
+ if(align) bezt1->h2= HD_ALIGN;
+
+ /* of toch vector handle? */
+ if(DistVL2Dfl(bezt1->vec[2], bezt1->vec[1], bezt2->vec[1]) < 0.0001)
+ bezt1->h2= HD_VECT;
+
+ }
+ }
+ if(leftsmall && bezt1->h2==HD_ALIGN) bezt1->h2= 0;
+ if(rightsmall && bezt1->h1==HD_ALIGN) bezt1->h1= 0;
+
+ /* onzalige combinatie: */
+ if(bezt1->h1==HD_ALIGN && bezt1->h2==HD_VECT) bezt1->h1= 0;
+ if(bezt1->h2==HD_ALIGN && bezt1->h1==HD_VECT) bezt1->h2= 0;
+
+ bezt0= bezt1;
+ bezt1= bezt2;
+ bezt2++;
+ }
+
+ calchandlesNurb(nu);
+}
+
+void autocalchandlesNurb_all(int flag)
+{
+ Nurb *nu;
+
+ nu= editNurb.first;
+ while(nu) {
+ autocalchandlesNurb(nu, flag);
+ nu= nu->next;
+ }
+}
+
+void sethandlesNurb(short code)
+{
+ /* code==1: set autohandle */
+ /* code==2: set vectorhandle */
+ /* als code==3 (HD_ALIGN) toggelt het, vectorhandles worden HD_FREE */
+ Nurb *nu;
+ BezTriple *bezt;
+ short a, ok=0;
+
+ if(code==1 || code==2) {
+ nu= editNurb.first;
+ while(nu) {
+ if( (nu->type & 7)==1) {
+ bezt= nu->bezt;
+ a= nu->pntsu;
+ while(a--) {
+ if(bezt->f1 || bezt->f3) {
+ if(bezt->f1) bezt->h1= code;
+ if(bezt->f3) bezt->h2= code;
+ if(bezt->h1!=bezt->h2) {
+ if ELEM(bezt->h1, HD_ALIGN, HD_AUTO) bezt->h1= HD_FREE;
+ if ELEM(bezt->h2, HD_ALIGN, HD_AUTO) bezt->h2= HD_FREE;
+ }
+ }
+ bezt++;
+ }
+ calchandlesNurb(nu);
+ }
+ nu= nu->next;
+ }
+ }
+ else {
+ /* is er 1 handle NIET vrij: alles vrijmaken, else ALIGNED maken */
+
+ nu= editNurb.first;
+ while(nu) {
+ if( (nu->type & 7)==1) {
+ bezt= nu->bezt;
+ a= nu->pntsu;
+ while(a--) {
+ if(bezt->f1 && bezt->h1) ok= 1;
+ if(bezt->f3 && bezt->h2) ok= 1;
+ if(ok) break;
+ bezt++;
+ }
+ }
+ nu= nu->next;
+ }
+ if(ok) ok= HD_FREE;
+ else ok= HD_ALIGN;
+
+ nu= editNurb.first;
+ while(nu) {
+ if( (nu->type & 7)==1) {
+ bezt= nu->bezt;
+ a= nu->pntsu;
+ while(a--) {
+ if(bezt->f1) bezt->h1= ok;
+ if(bezt->f3 ) bezt->h2= ok;
+
+ bezt++;
+ }
+ calchandlesNurb(nu);
+ }
+ nu= nu->next;
+ }
+ }
+}
+
+void swapdata(void *adr1, void *adr2, int len)
+{
+
+ if(len<=0) return;
+
+ if(len<65) {
+ char adr[64];
+
+ memcpy(adr, adr1, len);
+ memcpy(adr1, adr2, len);
+ memcpy(adr2, adr, len);
+ }
+ else {
+ char *adr;
+
+ adr= (char *)malloc(len);
+ memcpy(adr, adr1, len);
+ memcpy(adr1, adr2, len);
+ memcpy(adr2, adr, len);
+ free(adr);
+ }
+}
+
+void switchdirectionNurb(Nurb *nu)
+{
+ BezTriple *bezt1, *bezt2;
+ BPoint *bp1, *bp2;
+ float *fp1, *fp2, *tempf;
+ int a, b;
+
+ if(nu->pntsu==1 && nu->pntsv==1) return;
+
+ if((nu->type & 7)==CU_BEZIER) {
+ a= nu->pntsu;
+ bezt1= nu->bezt;
+ bezt2= bezt1+(a-1);
+ if(a & 1) a+= 1; /* bij oneven ook van middelste inhoud swappen */
+ a/= 2;
+ while(a>0) {
+ if(bezt1!=bezt2) SWAP(BezTriple, *bezt1, *bezt2);
+
+ swapdata(bezt1->vec[0], bezt1->vec[2], 12);
+ if(bezt1!=bezt2) swapdata(bezt2->vec[0], bezt2->vec[2], 12);
+
+ SWAP(char, bezt1->h1, bezt1->h2);
+ SWAP(short, bezt1->f1, bezt1->f3);
+
+ if(bezt1!=bezt2) {
+ SWAP(char, bezt2->h1, bezt2->h2);
+ SWAP(short, bezt2->f1, bezt2->f3);
+ bezt1->alfa= -bezt1->alfa;
+ bezt2->alfa= -bezt2->alfa;
+ }
+ a--;
+ bezt1++;
+ bezt2--;
+ }
+ }
+ else if(nu->pntsv==1) {
+ a= nu->pntsu;
+ bp1= nu->bp;
+ bp2= bp1+(a-1);
+ a/= 2;
+ while(bp1!=bp2 && a>0) {
+ SWAP(BPoint, *bp1, *bp2);
+ a--;
+ bp1->alfa= -bp1->alfa;
+ bp2->alfa= -bp2->alfa;
+ bp1++;
+ bp2--;
+ }
+ if((nu->type & 7)==CU_NURBS) {
+ /* de knots omkeren */
+ a= KNOTSU(nu);
+ fp1= nu->knotsu;
+ fp2= fp1+(a-1);
+ a/= 2;
+ while(fp1!=fp2 && a>0) {
+ SWAP(float, *fp1, *fp2);
+ a--;
+ fp1++;
+ fp2--;
+ }
+ /* en weer in stijgende lijn maken */
+ a= KNOTSU(nu);
+ fp1= nu->knotsu;
+ fp2=tempf= MEM_mallocN(sizeof(float)*a, "switchdirect");
+ while(a--) {
+ fp2[0]= fabs(fp1[1]-fp1[0]);
+ fp1++;
+ fp2++;
+ }
+
+ a= KNOTSU(nu)-1;
+ fp1= nu->knotsu;
+ fp2= tempf;
+ fp1[0]= 0.0;
+ fp1++;
+ while(a--) {
+ fp1[0]= fp1[-1]+fp2[0];
+ fp1++;
+ fp2++;
+ }
+ MEM_freeN(tempf);
+ }
+ }
+ else {
+
+ for(b=0; b<nu->pntsv; b++) {
+
+ bp1= nu->bp+b*nu->pntsu;
+ a= nu->pntsu;
+ bp2= bp1+(a-1);
+ a/= 2;
+
+ while(bp1!=bp2 && a>0) {
+ SWAP(BPoint, *bp1, *bp2);
+ a--;
+ bp1++;
+ bp2--;
+ }
+ }
+ }
+}