Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'source/blender/blenkernel/intern/effect.c')
-rw-r--r--source/blender/blenkernel/intern/effect.c862
1 files changed, 648 insertions, 214 deletions
diff --git a/source/blender/blenkernel/intern/effect.c b/source/blender/blenkernel/intern/effect.c
index acf906e3163..9b648e2c05c 100644
--- a/source/blender/blenkernel/intern/effect.c
+++ b/source/blender/blenkernel/intern/effect.c
@@ -48,12 +48,15 @@
#include "DNA_material_types.h"
#include "DNA_object_types.h"
#include "DNA_object_force.h"
+#include "DNA_particle_types.h"
#include "DNA_texture_types.h"
#include "DNA_scene_types.h"
#include "BLI_arithb.h"
#include "BLI_blenlib.h"
#include "BLI_jitter.h"
+#include "BLI_listbase.h"
+#include "BLI_noise.h"
#include "BLI_rand.h"
#include "PIL_time.h"
@@ -68,6 +71,7 @@
#include "BKE_depsgraph.h"
#include "BKE_displist.h"
#include "BKE_DerivedMesh.h"
+#include "BKE_cdderivedmesh.h"
#include "BKE_effect.h"
#include "BKE_global.h"
#include "BKE_group.h"
@@ -79,11 +83,13 @@
#include "BKE_main.h"
#include "BKE_modifier.h"
#include "BKE_object.h"
+#include "BKE_particle.h"
#include "BKE_scene.h"
#include "BKE_screen.h"
#include "BKE_utildefines.h"
#include "RE_render_ext.h"
+#include "RE_shader_ext.h"
/* fluid sim particle import */
#ifndef DISABLE_ELBEEM
@@ -95,17 +101,46 @@
//XXX #include "BIF_screen.h"
-PartDeflect *object_add_collision_fields(void)
+EffectorWeights *BKE_add_effector_weights(Group *group)
+{
+ EffectorWeights *weights = MEM_callocN(sizeof(EffectorWeights), "EffectorWeights");
+ int i;
+
+ for(i=0; i<NUM_PFIELD_TYPES; i++)
+ weights->weight[i] = 1.0f;
+
+ weights->global_gravity = 1.0f;
+
+ weights->group = group;
+
+ return weights;
+}
+PartDeflect *object_add_collision_fields(int type)
{
PartDeflect *pd;
pd= MEM_callocN(sizeof(PartDeflect), "PartDeflect");
+ pd->forcefield = type;
pd->pdef_sbdamp = 0.1f;
pd->pdef_sbift = 0.2f;
pd->pdef_sboft = 0.02f;
pd->seed = ((unsigned int)(ceil(PIL_check_seconds_timer()))+1) % 128;
pd->f_strength = 1.0f;
+ pd->f_damp = 1.0f;
+ pd->f_size = 1.0f;
+
+ /* set sensible defaults based on type */
+ switch(type) {
+ case PFIELD_VORTEX:
+ pd->shape = PFIELD_SHAPE_PLANE;
+ break;
+ case PFIELD_WIND:
+ pd->shape = PFIELD_SHAPE_PLANE;
+ pd->f_flow = 1.0f; /* realistic wind behavior */
+ break;
+ }
+ pd->flag = PFIELD_DO_LOCATION|PFIELD_DO_ROTATION;
return pd;
}
@@ -156,93 +191,218 @@ void free_effects(ListBase *lb)
}
/* -------------------------- Effectors ------------------ */
+void free_partdeflect(PartDeflect *pd)
+{
+ if(!pd)
+ return;
+
+ if(pd->tex)
+ pd->tex->id.us--;
-static void add_to_effectorcache(ListBase *lb, Scene *scene, Object *ob, Object *obsrc)
+ if(pd->rng)
+ rng_free(pd->rng);
+
+ MEM_freeN(pd);
+}
+
+static void precalculate_effector(EffectorCache *eff)
{
- pEffectorCache *ec;
- PartDeflect *pd= ob->pd;
-
- if(pd->forcefield == PFIELD_GUIDE) {
- if(ob->type==OB_CURVE && obsrc->type==OB_MESH) { /* guides only do mesh particles */
- Curve *cu= ob->data;
- if(cu->flag & CU_PATH) {
- if(cu->path==NULL || cu->path->data==NULL)
- makeDispListCurveTypes(scene, ob, 0);
- if(cu->path && cu->path->data) {
- ec= MEM_callocN(sizeof(pEffectorCache), "effector cache");
- ec->ob= ob;
- BLI_addtail(lb, ec);
- }
+ unsigned int cfra = (unsigned int)(eff->scene->r.cfra >= 0 ? eff->scene->r.cfra : -eff->scene->r.cfra);
+ if(!eff->pd->rng)
+ eff->pd->rng = rng_new(eff->pd->seed + cfra);
+ else
+ rng_srandom(eff->pd->rng, eff->pd->seed + cfra);
+
+ if(eff->pd->forcefield == PFIELD_GUIDE && eff->ob->type==OB_CURVE) {
+ Curve *cu= eff->ob->data;
+ if(cu->flag & CU_PATH) {
+ if(cu->path==NULL || cu->path->data==NULL)
+ makeDispListCurveTypes(eff->scene, eff->ob, 0);
+
+ if(cu->path && cu->path->data) {
+ where_on_path(eff->ob, 0.0, eff->guide_loc, eff->guide_dir, NULL, &eff->guide_radius);
+ Mat4MulVecfl(eff->ob->obmat, eff->guide_loc);
+ Mat4Mul3Vecfl(eff->ob->obmat, eff->guide_dir);
}
}
}
- else if(pd->forcefield) {
-
- if(pd->forcefield == PFIELD_WIND)
- {
- pd->rng = rng_new(pd->seed);
- }
-
- ec= MEM_callocN(sizeof(pEffectorCache), "effector cache");
- ec->ob= ob;
- BLI_addtail(lb, ec);
+ else if(eff->pd->shape == PFIELD_SHAPE_SURFACE) {
+ eff->surmd = (SurfaceModifierData *)modifiers_findByType ( eff->ob, eModifierType_Surface );
+ if(eff->ob->type == OB_CURVE)
+ eff->flag |= PE_USE_NORMAL_DATA;
+ }
+ else if(eff->psys)
+ psys_update_particle_tree(eff->psys, eff->scene->r.cfra);
+}
+static EffectorCache *new_effector_cache(Scene *scene, Object *ob, ParticleSystem *psys, PartDeflect *pd)
+{
+ EffectorCache *eff = MEM_callocN(sizeof(EffectorCache), "EffectorCache");
+ eff->scene = scene;
+ eff->ob = ob;
+ eff->psys = psys;
+ eff->pd = pd;
+ eff->frame = -1;
+
+ precalculate_effector(eff);
+
+ return eff;
+}
+static void add_object_to_effectors(ListBase **effectors, Scene *scene, EffectorWeights *weights, Object *ob, Object *ob_src)
+{
+ EffectorCache *eff = NULL;
+
+ if( ob == ob_src || weights->weight[ob->pd->forcefield] == 0.0f )
+ return;
+
+ if (ob->pd->shape == PFIELD_SHAPE_POINTS && !ob->derivedFinal )
+ return;
+
+ if(*effectors == NULL)
+ *effectors = MEM_callocN(sizeof(ListBase), "effectors list");
+
+ eff = new_effector_cache(scene, ob, NULL, ob->pd);
+
+ BLI_addtail(*effectors, eff);
+}
+static void add_particles_to_effectors(ListBase **effectors, Scene *scene, EffectorWeights *weights, Object *ob, ParticleSystem *psys, ParticleSystem *psys_src)
+{
+ ParticleSettings *part= psys->part;
+
+ if( !psys_check_enabled(ob, psys) )
+ return;
+
+ if( psys == psys_src && (part->flag & PART_SELF_EFFECT) == 0)
+ return;
+
+ if( part->pd && part->pd->forcefield && weights->weight[part->pd->forcefield] != 0.0f) {
+ if(*effectors == NULL)
+ *effectors = MEM_callocN(sizeof(ListBase), "effectors list");
+
+ BLI_addtail(*effectors, new_effector_cache(scene, ob, psys, part->pd));
+ }
+
+ if (part->pd2 && part->pd2->forcefield && weights->weight[part->pd2->forcefield] != 0.0f) {
+ if(*effectors == NULL)
+ *effectors = MEM_callocN(sizeof(ListBase), "effectors list");
+
+ BLI_addtail(*effectors, new_effector_cache(scene, ob, psys, part->pd2));
}
}
/* returns ListBase handle with objects taking part in the effecting */
-ListBase *pdInitEffectors(Scene *scene, Object *obsrc, Group *group)
+ListBase *pdInitEffectors(Scene *scene, Object *ob_src, ParticleSystem *psys_src, EffectorWeights *weights)
{
- static ListBase listb={NULL, NULL};
- pEffectorCache *ec;
Base *base;
- unsigned int layer= obsrc->lay;
+ unsigned int layer= ob_src->lay;
+ ListBase *effectors = NULL;
- if(group) {
+ if(weights->group) {
GroupObject *go;
- for(go= group->gobject.first; go; go= go->next) {
- if( (go->ob->lay & layer) && go->ob->pd && go->ob!=obsrc) {
- add_to_effectorcache(&listb, scene, go->ob, obsrc);
+ for(go= weights->group->gobject.first; go; go= go->next) {
+ if( (go->ob->lay & layer) ) {
+ if( go->ob->pd && go->ob->pd->forcefield )
+ add_object_to_effectors(&effectors, scene, weights, go->ob, ob_src);
+
+ if( go->ob->particlesystem.first ) {
+ ParticleSystem *psys= go->ob->particlesystem.first;
+
+ for( ; psys; psys=psys->next )
+ add_particles_to_effectors(&effectors, scene, weights, go->ob, psys, psys_src);
+ }
}
}
}
else {
for(base = scene->base.first; base; base= base->next) {
- if( (base->lay & layer) && base->object->pd && base->object!=obsrc) {
- add_to_effectorcache(&listb, scene, base->object, obsrc);
+ if( (base->lay & layer) ) {
+ if( base->object->pd && base->object->pd->forcefield )
+ add_object_to_effectors(&effectors, scene, weights, base->object, ob_src);
+
+ if( base->object->particlesystem.first ) {
+ ParticleSystem *psys= base->object->particlesystem.first;
+
+ for( ; psys; psys=psys->next )
+ add_particles_to_effectors(&effectors, scene, weights, base->object, psys, psys_src);
+ }
}
}
}
-
- /* make a full copy */
- for(ec= listb.first; ec; ec= ec->next) {
- ec->obcopy= *(ec->ob);
- }
-
- if(listb.first)
- return &listb;
-
- return NULL;
+ return effectors;
}
-void pdEndEffectors(ListBase *lb)
+void pdEndEffectors(ListBase **effectors)
{
- if(lb) {
- pEffectorCache *ec;
- /* restore full copy */
- for(ec= lb->first; ec; ec= ec->next)
- {
- if(ec->ob->pd && (ec->ob->pd->forcefield == PFIELD_WIND))
- rng_free(ec->ob->pd->rng);
-
- *(ec->ob)= ec->obcopy;
+ if(*effectors) {
+ EffectorCache *eff = (*effectors)->first;
+
+ for(; eff; eff=eff->next) {
+ if(eff->guide_data)
+ MEM_freeN(eff->guide_data);
}
- BLI_freelistN(lb);
+ BLI_freelistN(*effectors);
+ MEM_freeN(*effectors);
+ *effectors = NULL;
}
}
+void pd_point_from_particle(ParticleSimulationData *sim, ParticleData *pa, ParticleKey *state, EffectedPoint *point)
+{
+ point->loc = state->co;
+ point->vel = state->vel;
+ point->index = pa - sim->psys->particles;
+ point->size = pa->size;
+ /* TODO: point->charge */
+ point->charge = 1.0f;
+
+ point->vel_to_sec = 1.0f;
+ point->vel_to_frame = psys_get_timestep(sim);
+
+ point->flag = 0;
+
+ if(sim->psys->part->flag & PART_ROT_DYN) {
+ point->ave = state->ave;
+ point->rot = state->rot;
+ }
+ else
+ point->ave = point->rot = NULL;
+
+ point->psys = sim->psys;
+}
+
+void pd_point_from_loc(Scene *scene, float *loc, float *vel, int index, EffectedPoint *point)
+{
+ point->loc = loc;
+ point->vel = vel;
+ point->index = index;
+ point->size = 0.0f;
+
+ point->vel_to_sec = (float)scene->r.frs_sec;
+ point->vel_to_frame = 1.0f;
+
+ point->flag = 0;
+
+ point->ave = point->rot = NULL;
+ point->psys = NULL;
+}
+void pd_point_from_soft(Scene *scene, float *loc, float *vel, int index, EffectedPoint *point)
+{
+ point->loc = loc;
+ point->vel = vel;
+ point->index = index;
+ point->size = 0.0f;
+
+ point->vel_to_sec = (float)scene->r.frs_sec;
+ point->vel_to_frame = 1.0f;
+
+ point->flag = PE_WIND_AS_SPEED;
+
+ point->ave = point->rot = NULL;
+
+ point->psys = NULL;
+}
/************************************************/
/* Effectors */
/************************************************/
@@ -256,27 +416,33 @@ static void eff_tri_ray_hit(void *userdata, int index, const BVHTreeRay *ray, BV
}
// get visibility of a wind ray
-static float eff_calc_visibility(Scene *scene, Object *ob, float *co, float *dir)
+static float eff_calc_visibility(ListBase *colliders, EffectorCache *eff, EffectorData *efd, EffectedPoint *point)
{
- Object **collobjs = NULL;
- int numcollobj = 0, i;
+ ListBase *colls = colliders;
+ ColliderCache *col;
float norm[3], len = 0.0;
float visibility = 1.0, absorption = 0.0;
- collobjs = get_collisionobjects(scene, ob, &numcollobj);
-
- if(!collobjs)
- return 0;
+ if(!(eff->pd->flag & PFIELD_VISIBILITY))
+ return visibility;
+
+ if(!colls)
+ colls = get_collider_cache(eff->scene, NULL);
+
+ if(!colls)
+ return visibility;
- VECCOPY(norm, dir);
+ VECCOPY(norm, efd->vec_to_point);
VecNegf(norm);
len = Normalize(norm);
// check all collision objects
- for(i = 0; i < numcollobj; i++)
+ for(col = colls->first; col; col = col->next)
{
- Object *collob= collobjs[i];
- CollisionModifierData *collmd = (CollisionModifierData*)modifiers_findByType(collob, eModifierType_Collision);
+ CollisionModifierData *collmd = col->collmd;
+
+ if(col->ob == eff->ob)
+ continue;
if(collmd->bvhtree)
{
@@ -286,9 +452,9 @@ static float eff_calc_visibility(Scene *scene, Object *ob, float *co, float *dir
hit.dist = len + FLT_EPSILON;
// check if the way is blocked
- if(BLI_bvhtree_ray_cast(collmd->bvhtree, co, norm, 0.0f, &hit, eff_tri_ray_hit, NULL)>=0)
+ if(BLI_bvhtree_ray_cast(collmd->bvhtree, point->loc, norm, 0.0f, &hit, eff_tri_ray_hit, NULL)>=0)
{
- absorption= (collob->pd)? collob->pd->absorption: 0.0f;
+ absorption= col->ob->pd->absorption;
// visibility is only between 0 and 1, calculated from 1-absorption
visibility *= CLAMPIS(1.0f-absorption, 0.0f, 1.0f);
@@ -298,8 +464,9 @@ static float eff_calc_visibility(Scene *scene, Object *ob, float *co, float *dir
}
}
}
-
- MEM_freeN(collobjs);
+
+ if(!colliders)
+ free_collider_cache(&colls);
return visibility;
}
@@ -347,43 +514,39 @@ static float falloff_func_rad(PartDeflect *pd, float fac)
return falloff_func(fac, pd->flag&PFIELD_USEMINR, pd->minrad, pd->flag&PFIELD_USEMAXR, pd->maxrad, pd->f_power_r);
}
-float effector_falloff(PartDeflect *pd, float *eff_velocity, float *vec_to_part)
+float effector_falloff(EffectorCache *eff, EffectorData *efd, EffectedPoint *point, EffectorWeights *weights)
{
- float eff_dir[3], temp[3];
- float falloff=1.0, fac, r_fac;
+ float temp[3];
+ float falloff = weights ? weights->weight[0] * weights->weight[eff->pd->forcefield] : 1.0f;
+ float fac, r_fac;
- if(pd->forcefield==PFIELD_LENNARDJ)
- return falloff; /* Lennard-Jones field has it's own falloff built in */
+ fac = Inpf(efd->nor, efd->vec_to_point2);
- VecCopyf(eff_dir,eff_velocity);
- Normalize(eff_dir);
-
- if(pd->flag & PFIELD_POSZ && Inpf(eff_dir,vec_to_part)<0.0f)
+ if(eff->pd->zdir == PFIELD_Z_POS && fac < 0.0f)
+ falloff=0.0f;
+ else if(eff->pd->zdir == PFIELD_Z_NEG && fac > 0.0f)
falloff=0.0f;
- else switch(pd->falloff){
+ else switch(eff->pd->falloff){
case PFIELD_FALL_SPHERE:
- fac=VecLength(vec_to_part);
- falloff= falloff_func_dist(pd, fac);
+ falloff*= falloff_func_dist(eff->pd, efd->distance);
break;
case PFIELD_FALL_TUBE:
- fac=Inpf(vec_to_part,eff_dir);
- falloff= falloff_func_dist(pd, ABS(fac));
+ falloff*= falloff_func_dist(eff->pd, ABS(fac));
if(falloff == 0.0f)
break;
- VECADDFAC(temp,vec_to_part,eff_dir,-fac);
- r_fac=VecLength(temp);
- falloff*= falloff_func_rad(pd, r_fac);
+ VECADDFAC(temp, efd->vec_to_point, efd->nor, -fac);
+ r_fac= VecLength(temp);
+ falloff*= falloff_func_rad(eff->pd, r_fac);
break;
case PFIELD_FALL_CONE:
- fac=Inpf(vec_to_part,eff_dir);
- falloff= falloff_func_dist(pd, ABS(fac));
+ falloff*= falloff_func_dist(eff->pd, ABS(fac));
if(falloff == 0.0f)
break;
- r_fac=saacos(fac/VecLength(vec_to_part))*180.0f/(float)M_PI;
- falloff*= falloff_func_rad(pd, r_fac);
+ r_fac=saacos(fac/VecLength(efd->vec_to_point))*180.0f/(float)M_PI;
+ falloff*= falloff_func_rad(eff->pd, r_fac);
break;
}
@@ -391,127 +554,396 @@ float effector_falloff(PartDeflect *pd, float *eff_velocity, float *vec_to_part)
return falloff;
}
-void do_physical_effector(Scene *scene, Object *ob, float *opco, short type, float force_val, float distance, float falloff, float size, float damp, float *eff_velocity, float *vec_to_part, float *velocity, float *field, int planar, struct RNG *rng, float noise_factor, float charge, float pa_size)
+int closest_point_on_surface(SurfaceModifierData *surmd, float *co, float *surface_co, float *surface_nor, float *surface_vel)
{
- float mag_vec[3]={0,0,0};
- float temp[3], temp2[3];
- float eff_vel[3];
- float noise = 0, visibility;
-
- // calculate visibility
- visibility = eff_calc_visibility(scene, ob, opco, vec_to_part);
- if(visibility <= 0.0)
- return;
- falloff *= visibility;
+ BVHTreeNearest nearest;
- VecCopyf(eff_vel,eff_velocity);
- Normalize(eff_vel);
+ nearest.index = -1;
+ nearest.dist = FLT_MAX;
- switch(type){
- case PFIELD_WIND:
- VECCOPY(mag_vec,eff_vel);
-
- // add wind noise here, only if we have wind
- if((noise_factor > 0.0f) && (force_val > FLT_EPSILON))
- noise = wind_func(rng, noise_factor);
+ BLI_bvhtree_find_nearest(surmd->bvhtree->tree, co, &nearest, surmd->bvhtree->nearest_callback, surmd->bvhtree);
+
+ if(nearest.index != -1) {
+ VECCOPY(surface_co, nearest.co);
+
+ if(surface_nor) {
+ VECCOPY(surface_nor, nearest.no);
+ }
+
+ if(surface_vel) {
+ MFace *mface = CDDM_get_face(surmd->dm, nearest.index);
- VecMulf(mag_vec,(force_val+noise)*falloff);
- VecAddf(field,field,mag_vec);
- break;
+ VECCOPY(surface_vel, surmd->v[mface->v1].co);
+ VecAddf(surface_vel, surface_vel, surmd->v[mface->v2].co);
+ VecAddf(surface_vel, surface_vel, surmd->v[mface->v3].co);
+ if(mface->v4)
+ VecAddf(surface_vel, surface_vel, surmd->v[mface->v4].co);
- case PFIELD_FORCE:
- if(planar)
- Projf(mag_vec,vec_to_part,eff_vel);
- else
- VecCopyf(mag_vec,vec_to_part);
+ VecMulf(surface_vel, mface->v4 ? 0.25f : 0.333f);
+ }
+ return 1;
+ }
- Normalize(mag_vec);
+ return 0;
+}
+int get_effector_data(EffectorCache *eff, EffectorData *efd, EffectedPoint *point, int real_velocity)
+{
+ float cfra = eff->scene->r.cfra;
+ int ret = 0;
- VecMulf(mag_vec,force_val*falloff);
- VecAddf(field,field,mag_vec);
- break;
+ if(eff->pd->shape==PFIELD_SHAPE_SURFACE && eff->surmd) {
+ /* closest point in the object surface is an effector */
+ float vec[3];
- case PFIELD_VORTEX:
- Crossf(mag_vec,eff_vel,vec_to_part);
+ /* using velocity corrected location allows for easier sliding over effector surface */
+ VecCopyf(vec, point->vel);
+ VecMulf(vec, point->vel_to_frame);
+ VecAddf(vec, vec, point->loc);
- Normalize(mag_vec);
+ ret = closest_point_on_surface(eff->surmd, vec, efd->loc, efd->nor, real_velocity ? efd->vel : NULL);
- VecMulf(mag_vec,force_val*distance*falloff);
- VecAddf(field,field,mag_vec);
+ efd->size = 0.0f;
+ }
+ else if(eff->pd->shape==PFIELD_SHAPE_POINTS) {
- break;
- case PFIELD_MAGNET:
- if(planar)
- VecCopyf(temp,eff_vel);
- else
- /* magnetic field of a moving charge */
- Crossf(temp,eff_vel,vec_to_part);
+ if(eff->ob->derivedFinal) {
+ DerivedMesh *dm = eff->ob->derivedFinal;
- Normalize(temp);
+ dm->getVertCo(dm, *efd->index, efd->loc);
+ dm->getVertNo(dm, *efd->index, efd->nor);
- Crossf(temp2,velocity,temp);
- VecAddf(mag_vec,mag_vec,temp2);
+ Mat4MulVecfl(eff->ob->obmat, efd->loc);
+ Mat4Mul3Vecfl(eff->ob->obmat, efd->nor);
- VecMulf(mag_vec,force_val*falloff);
- VecAddf(field,field,mag_vec);
- break;
- case PFIELD_HARMONIC:
- if(planar)
- Projf(mag_vec,vec_to_part,eff_vel);
- else
- VecCopyf(mag_vec,vec_to_part);
+ Normalize(efd->nor);
- VecMulf(mag_vec,force_val*falloff);
- VecSubf(field,field,mag_vec);
+ efd->size = 0.0f;
- VecCopyf(mag_vec,velocity);
- VecMulf(mag_vec,damp*2.0f*(float)sqrt(force_val));
- VecSubf(field,field,mag_vec);
- break;
- case PFIELD_CHARGE:
- if(planar)
- Projf(mag_vec,vec_to_part,eff_vel);
- else
- VecCopyf(mag_vec,vec_to_part);
+ /**/
+ ret = 1;
+ }
+ }
+ else if(eff->psys) {
+ ParticleSimulationData sim = {eff->scene, eff->ob, eff->psys, NULL, NULL};
+ ParticleData *pa = eff->psys->particles + *efd->index;
+ ParticleKey state;
+
+ /* exclude the particle itself for self effecting particles */
+ if(eff->psys == point->psys && *efd->index == point->index)
+ ;
+ else {
+ /* TODO: time from actual previous calculated frame (step might not be 1) */
+ state.time = cfra - 1.0;
+ ret = psys_get_particle_state(&sim, *efd->index, &state, 0);
+
+ /* TODO */
+ //if(eff->pd->forcefiled == PFIELD_HARMONIC && ret==0) {
+ // if(pa->dietime < eff->psys->cfra)
+ // eff->flag |= PE_VELOCITY_TO_IMPULSE;
+ //}
+
+ VECCOPY(efd->loc, state.co);
+ VECCOPY(efd->nor, state.vel);
+ if(real_velocity) {
+ VECCOPY(efd->vel, state.vel);
+ }
- Normalize(mag_vec);
+ efd->size = pa->size;
+ }
+ }
+ else {
+ /* use center of object for distance calculus */
+ Object *ob = eff->ob;
+ Object obcopy = *ob;
+
+ where_is_object_time(eff->scene, ob, cfra);
+
+ /* use z-axis as normal*/
+ VECCOPY(efd->nor, ob->obmat[2]);
+ Normalize(efd->nor);
+
+ /* for vortex the shape chooses between old / new force */
+ if(eff->pd->shape == PFIELD_SHAPE_PLANE) {
+ /* efd->loc is closes point on effector xy-plane */
+ float temp[3];
+ VecSubf(temp, point->loc, ob->obmat[3]);
+ Projf(efd->loc, temp, efd->nor);
+ VecSubf(efd->loc, point->loc, efd->loc);
+ }
+ else {
+ VECCOPY(efd->loc, ob->obmat[3]);
+ }
- VecMulf(mag_vec,charge*force_val*falloff);
- VecAddf(field,field,mag_vec);
- break;
- case PFIELD_LENNARDJ:
- {
- float fac;
+ if(real_velocity) {
+ VECCOPY(efd->vel, ob->obmat[3]);
+
+ where_is_object_time(eff->scene, ob, cfra - 1.0);
+
+ VecSubf(efd->vel, efd->vel, ob->obmat[3]);
+ }
+
+ *eff->ob = obcopy;
+
+ efd->size = 0.0f;
+
+ ret = 1;
+ }
+
+ if(ret) {
+ VecSubf(efd->vec_to_point, point->loc, efd->loc);
+ efd->distance = VecLength(efd->vec_to_point);
+
+ if(eff->flag & PE_USE_NORMAL_DATA) {
+ VECCOPY(efd->vec_to_point2, efd->vec_to_point);
+ VECCOPY(efd->nor2, efd->nor);
+ }
+ else {
+ /* for some effectors we need the object center every time */
+ VecSubf(efd->vec_to_point2, point->loc, eff->ob->obmat[3]);
+ VECCOPY(efd->nor2, eff->ob->obmat[2]);
+ Normalize(efd->nor2);
+ }
+ }
+
+ return ret;
+}
+static void get_effector_tot(EffectorCache *eff, EffectorData *efd, EffectedPoint *point, int *tot, int *p)
+{
+ if(eff->pd->shape == PFIELD_SHAPE_POINTS) {
+ efd->index = p;
+
+ *p = 0;
+ *tot = eff->ob->derivedFinal ? eff->ob->derivedFinal->numVertData : 1;
+
+ if(*tot && eff->pd->forcefield == PFIELD_HARMONIC && point->index >= 0) {
+ *p = point->index % *tot;
+ *tot = *p+1;
+ }
+ }
+ else if(eff->psys) {
+ efd->index = p;
+
+ *p = 0;
+ *tot = eff->psys->totpart;
+
+ if(eff->pd->forcefield == PFIELD_CHARGE) {
+ /* Only the charge of the effected particle is used for
+ interaction, not fall-offs. If the fall-offs aren't the
+ same this will be unphysical, but for animation this
+ could be the wanted behavior. If you want physical
+ correctness the fall-off should be spherical 2.0 anyways.
+ */
+ efd->charge = eff->pd->f_strength;
+ }
+ else if(eff->pd->forcefield == PFIELD_HARMONIC) {
+ /* every particle is mapped to only one harmonic effector particle */
+ *p= point->index % eff->psys->totpart;
+ *tot= *p + 1;
+ }
+ }
+ else {
+ *p = 0;
+ *tot = 1;
+ }
+}
+static void do_texture_effector(EffectorCache *eff, EffectorData *efd, EffectedPoint *point, float *total_force)
+{
+ TexResult result[4];
+ float tex_co[3], strength, force[3];
+ float nabla = eff->pd->tex_nabla;
+ int hasrgb;
+ short mode = eff->pd->tex_mode;
+
+ if(!eff->pd->tex)
+ return;
+
+ result[0].nor = result[1].nor = result[2].nor = result[3].nor = 0;
+
+ strength= eff->pd->f_strength * efd->falloff;
+
+ VECCOPY(tex_co,point->loc);
+
+ if(eff->pd->flag & PFIELD_TEX_2D) {
+ float fac=-Inpf(tex_co, efd->nor);
+ VECADDFAC(tex_co, tex_co, efd->nor, fac);
+ }
+
+ if(eff->pd->flag & PFIELD_TEX_OBJECT) {
+ Mat4Mul3Vecfl(eff->ob->obmat, tex_co);
+ }
+
+ hasrgb = multitex_ext(eff->pd->tex, tex_co, NULL,NULL, 1, result);
+
+ if(hasrgb && mode==PFIELD_TEX_RGB) {
+ force[0] = (0.5f - result->tr) * strength;
+ force[1] = (0.5f - result->tg) * strength;
+ force[2] = (0.5f - result->tb) * strength;
+ }
+ else {
+ strength/=nabla;
+
+ tex_co[0] += nabla;
+ multitex_ext(eff->pd->tex, tex_co, NULL, NULL, 1, result+1);
- if(planar) {
- Projf(mag_vec,vec_to_part,eff_vel);
- distance = VecLength(mag_vec);
+ tex_co[0] -= nabla;
+ tex_co[1] += nabla;
+ multitex_ext(eff->pd->tex, tex_co, NULL, NULL, 1, result+2);
+
+ tex_co[1] -= nabla;
+ tex_co[2] += nabla;
+ multitex_ext(eff->pd->tex, tex_co, NULL, NULL, 1, result+3);
+
+ if(mode == PFIELD_TEX_GRAD || !hasrgb) { /* if we dont have rgb fall back to grad */
+ force[0] = (result[0].tin - result[1].tin) * strength;
+ force[1] = (result[0].tin - result[2].tin) * strength;
+ force[2] = (result[0].tin - result[3].tin) * strength;
+ }
+ else { /*PFIELD_TEX_CURL*/
+ float dbdy, dgdz, drdz, dbdx, dgdx, drdy;
+
+ dbdy = result[2].tb - result[0].tb;
+ dgdz = result[3].tg - result[0].tg;
+ drdz = result[3].tr - result[0].tr;
+ dbdx = result[1].tb - result[0].tb;
+ dgdx = result[1].tg - result[0].tg;
+ drdy = result[2].tr - result[0].tr;
+
+ force[0] = (dbdy - dgdz) * strength;
+ force[1] = (drdz - dbdx) * strength;
+ force[2] = (dgdx - drdy) * strength;
+ }
+ }
+
+ if(eff->pd->flag & PFIELD_TEX_2D){
+ float fac = -Inpf(force, efd->nor);
+ VECADDFAC(force, force, efd->nor, fac);
+ }
+
+ VecAddf(total_force, total_force, force);
+}
+void do_physical_effector(EffectorCache *eff, EffectorData *efd, EffectedPoint *point, float *total_force)
+{
+ PartDeflect *pd = eff->pd;
+ RNG *rng = pd->rng;
+ float force[3]={0,0,0};
+ float temp[3];
+ float fac;
+ float strength = pd->f_strength;
+ float damp = pd->f_damp;
+ float noise_factor = pd->f_noise;
+
+ if(noise_factor > 0.0f) {
+ strength += wind_func(rng, noise_factor);
+
+ if(ELEM(pd->forcefield, PFIELD_HARMONIC, PFIELD_DRAG))
+ damp += wind_func(rng, noise_factor);
+ }
+
+ VECCOPY(force, efd->vec_to_point);
+
+ switch(pd->forcefield){
+ case PFIELD_WIND:
+ VECCOPY(force, efd->nor);
+ VecMulf(force, strength * efd->falloff);
+ break;
+ case PFIELD_FORCE:
+ Normalize(force);
+ VecMulf(force, strength * efd->falloff);
+ break;
+ case PFIELD_VORTEX:
+ /* old vortex force */
+ if(pd->shape == PFIELD_SHAPE_POINT) {
+ Crossf(force, efd->nor, efd->vec_to_point);
+ Normalize(force);
+ VecMulf(force, strength * efd->distance * efd->falloff);
+ }
+ else {
+ /* new vortex force */
+ Crossf(temp, efd->nor2, efd->vec_to_point2);
+ VecMulf(temp, strength * efd->falloff);
+
+ Crossf(force, efd->nor2, temp);
+ VecMulf(force, strength * efd->falloff);
+
+ VECADDFAC(temp, temp, point->vel, -point->vel_to_sec);
+ VecAddf(force, force, temp);
}
+ break;
+ case PFIELD_MAGNET:
+ if(eff->pd->shape == PFIELD_SHAPE_POINT)
+ /* magnetic field of a moving charge */
+ Crossf(temp, efd->nor, efd->vec_to_point);
else
- VecCopyf(mag_vec,vec_to_part);
-
- /* at this distance the field is 60 times weaker than maximum */
- if(distance > 2.22 * (size+pa_size))
- break;
+ VecCopyf(temp, efd->nor);
- fac = pow((size+pa_size)/distance,6.0);
+ Normalize(temp);
+ VecMulf(temp, strength * efd->falloff);
+ Crossf(force, point->vel, temp);
+ VecMulf(force, point->vel_to_sec);
+ break;
+ case PFIELD_HARMONIC:
+ VecMulf(force, -strength * efd->falloff);
+ VecCopyf(temp, point->vel);
+ VecMulf(temp, -damp * 2.0f * (float)sqrt(fabs(strength)) * point->vel_to_sec);
+ VecAddf(force, force, temp);
+ break;
+ case PFIELD_CHARGE:
+ VecMulf(force, point->charge * strength * efd->falloff);
+ break;
+ case PFIELD_LENNARDJ:
+ fac = pow((efd->size + point->size) / efd->distance, 6.0);
- fac = - fac * (1.0 - fac) / distance;
+ fac = - fac * (1.0 - fac) / efd->distance;
/* limit the repulsive term drastically to avoid huge forces */
fac = ((fac>2.0) ? 2.0 : fac);
- /* 0.003715 is the fac value at 2.22 times (size+pa_size),
- substracted to avoid discontinuity at the border
- */
- VecMulf(mag_vec, force_val * (fac-0.0037315));
- VecAddf(field,field,mag_vec);
+ VecMulf(force, strength * fac);
break;
- }
case PFIELD_BOID:
/* Boid field is handled completely in boids code. */
+ return;
+ case PFIELD_TURBULENCE:
+ if(pd->flag & PFIELD_GLOBAL_CO) {
+ VECCOPY(temp, point->loc);
+ }
+ else {
+ VECADD(temp, efd->vec_to_point2, efd->nor2);
+ }
+ force[0] = -1.0f + 2.0f * BLI_gTurbulence(pd->f_size, temp[0], temp[1], temp[2], 2,0,2);
+ force[1] = -1.0f + 2.0f * BLI_gTurbulence(pd->f_size, temp[1], temp[2], temp[0], 2,0,2);
+ force[2] = -1.0f + 2.0f * BLI_gTurbulence(pd->f_size, temp[2], temp[0], temp[1], 2,0,2);
+ VecMulf(force, strength * efd->falloff);
+ break;
+ case PFIELD_DRAG:
+ VECCOPY(force, point->vel);
+ fac = Normalize(force) * point->vel_to_sec;
+
+ strength = MIN2(strength, 2.0f);
+ damp = MIN2(damp, 2.0f);
+
+ VecMulf(force, -efd->falloff * fac * (strength * fac + damp));
break;
}
+
+ if(pd->flag & PFIELD_DO_LOCATION) {
+ VECADDFAC(total_force, total_force, force, 1.0f/point->vel_to_sec);
+
+ if(ELEM(pd->forcefield, PFIELD_HARMONIC, PFIELD_DRAG)==0 && pd->f_flow != 0.0f) {
+ VECADDFAC(total_force, total_force, point->vel, -pd->f_flow * efd->falloff);
+ }
+ }
+
+ if(pd->flag & PFIELD_DO_ROTATION && point->ave && point->rot) {
+ float xvec[3] = {1.0f, 0.0f, 0.0f};
+ float dave[3];
+ QuatMulVecf(point->rot, xvec);
+ Crossf(dave, xvec, force);
+ if(pd->f_flow != 0.0f) {
+ VECADDFAC(dave, dave, point->ave, -pd->f_flow * efd->falloff);
+ }
+ VecAddf(point->ave, point->ave, dave);
+ }
}
/* -------- pdDoEffectors() --------
@@ -528,7 +960,7 @@ void do_physical_effector(Scene *scene, Object *ob, float *opco, short type, flo
guide = old speed of particle
*/
-void pdDoEffectors(Scene *scene, ListBase *lb, float *opco, float *force, float *speed, float cur_time, float loc_time, unsigned int flags)
+void pdDoEffectors(ListBase *effectors, ListBase *colliders, EffectorWeights *weights, EffectedPoint *point, float *force, float *impulse)
{
/*
Modifies the force on a particle according to its
@@ -543,43 +975,45 @@ void pdDoEffectors(Scene *scene, ListBase *lb, float *opco, float *force, float
(particles are guided along a curve bezier or old nurbs)
(is independent of other effectors)
*/
- Object *ob;
- pEffectorCache *ec;
- PartDeflect *pd;
-
- float distance, vec_to_part[3];
- float falloff;
+ EffectorCache *eff;
+ EffectorData efd;
+ int p=0, tot = 1;
/* Cycle through collected objects, get total of (1/(gravity_strength * dist^gravity_power)) */
/* Check for min distance here? (yes would be cool to add that, ton) */
- for(ec = lb->first; ec; ec= ec->next) {
+ if(effectors) for(eff = effectors->first; eff; eff=eff->next) {
/* object effectors were fully checked to be OK to evaluate! */
- ob= ec->ob;
- pd= ob->pd;
-
- /* Get IPO force strength and fall off values here */
- where_is_object_time(scene, ob, cur_time);
-
- /* use center of object for distance calculus */
- VecSubf(vec_to_part, opco, ob->obmat[3]);
- distance = VecLength(vec_to_part);
- falloff=effector_falloff(pd,ob->obmat[2],vec_to_part);
-
- if(falloff<=0.0f)
- ; /* don't do anything */
- else {
- float field[3]={0,0,0}, tmp[3];
- VECCOPY(field, force);
- do_physical_effector(scene, ob, opco, pd->forcefield,pd->f_strength,distance,
- falloff, pd->f_dist, pd->f_damp, ob->obmat[2], vec_to_part,
- speed,force, pd->flag&PFIELD_PLANAR, pd->rng, pd->f_noise, 0.0f, 0.0f);
-
- // for softbody backward compatibility
- if(flags & PE_WIND_AS_SPEED){
- VECSUB(tmp, force, field);
- VECSUB(speed, speed, tmp);
+ get_effector_tot(eff, &efd, point, &tot, &p);
+
+ for(; p<tot; p++) {
+ if(get_effector_data(eff, &efd, point, 0)) {
+ efd.falloff= effector_falloff(eff, &efd, point, weights);
+
+ if(efd.falloff > 0.0f)
+ efd.falloff *= eff_calc_visibility(colliders, eff, &efd, point);
+
+ if(efd.falloff <= 0.0f)
+ ; /* don't do anything */
+ else if(eff->pd->forcefield == PFIELD_TEXTURE)
+ do_texture_effector(eff, &efd, point, force);
+ else {
+ float temp1[3]={0,0,0}, temp2[3];
+ VECCOPY(temp1, force);
+
+ do_physical_effector(eff, &efd, point, force);
+
+ // for softbody backward compatibility
+ if(point->flag & PE_WIND_AS_SPEED && impulse){
+ VECSUB(temp2, force, temp1);
+ VECSUB(impulse, impulse, temp2);
+ }
+ }
+ }
+ else if(eff->flag & PE_VELOCITY_TO_IMPULSE && impulse) {
+ /* special case for harmonic effector */
+ VECADD(impulse, impulse, efd.vel);
}
}
}