Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'source/blender/blenkernel/intern/mball.c')
-rw-r--r--source/blender/blenkernel/intern/mball.c1540
1 files changed, 1540 insertions, 0 deletions
diff --git a/source/blender/blenkernel/intern/mball.c b/source/blender/blenkernel/intern/mball.c
new file mode 100644
index 00000000000..9f09191f9d2
--- /dev/null
+++ b/source/blender/blenkernel/intern/mball.c
@@ -0,0 +1,1540 @@
+/* mball.c MIXED MODEL
+ *
+ * mei 95
+ *
+ *
+ *
+ * METABALLS ontstaan vanuit een Object (naam zonder nr), hier zit de DispList en boundbox,
+ * alle objecten met zelfde naam (en een nr) worden hieraan toegevoegd.
+ *
+ * De texture coordinaten zitten als loos element in de displist.
+ *
+ * $Id$
+ *
+ * ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version. The Blender
+ * Foundation also sells licenses for use in proprietary software under
+ * the Blender License. See http://www.blender.org/BL/ for information
+ * about this.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+ *
+ * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
+ * All rights reserved.
+ *
+ * The Original Code is: all of this file.
+ *
+ * Contributor(s): none yet.
+ *
+ * ***** END GPL/BL DUAL LICENSE BLOCK *****
+ */
+
+#include <stdio.h>
+#include <string.h>
+#include <math.h>
+#include <stdlib.h>
+#include "MEM_guardedalloc.h"
+
+#include "DNA_material_types.h"
+#include "DNA_object_types.h"
+#include "DNA_meta_types.h"
+#include "DNA_scene_types.h"
+#include "DNA_mesh_types.h"
+
+
+#include "BLI_blenlib.h"
+#include "BLI_arithb.h"
+
+#include "BKE_utildefines.h"
+#include "BKE_bad_level_calls.h"
+
+#include "BKE_global.h"
+#include "BKE_main.h"
+
+/* #include "BKE_object.h" */
+#include "BKE_scene.h"
+#include "BKE_blender.h"
+#include "BKE_library.h"
+#include "BKE_displist.h"
+#include "BKE_mball.h"
+
+/* Functions */
+
+
+
+void unlink_mball(MetaBall *mb)
+{
+ int a;
+
+ for(a=0; a<mb->totcol; a++) {
+ if(mb->mat[a]) mb->mat[a]->id.us--;
+ mb->mat[a]= 0;
+ }
+
+
+}
+
+
+/* niet mball zelf vrijgeven */
+void free_mball(MetaBall *mb)
+{
+
+ unlink_mball(mb);
+
+ if(mb->mat) MEM_freeN(mb->mat);
+ if(mb->bb) MEM_freeN(mb->bb);
+ BLI_freelistN(&mb->elems);
+ if(mb->disp.first) freedisplist(&mb->disp);
+}
+
+MetaBall *add_mball()
+{
+ MetaBall *mb;
+
+ mb= alloc_libblock(&G.main->mball, ID_MB, "Meta");
+
+ mb->size[0]= mb->size[1]= mb->size[2]= 1.0;
+ mb->texflag= AUTOSPACE;
+
+ mb->wiresize= 0.4f;
+ mb->rendersize= 0.2f;
+ mb->thresh= 0.6f;
+
+ return mb;
+}
+
+MetaBall *copy_mball(MetaBall *mb)
+{
+ MetaBall *mbn;
+ int a;
+
+ mbn= copy_libblock(mb);
+
+ duplicatelist(&mbn->elems, &mb->elems);
+
+ mbn->mat= MEM_dupallocN(mb->mat);
+ for(a=0; a<mbn->totcol; a++) {
+ id_us_plus((ID *)mbn->mat[a]);
+ }
+ mbn->bb= MEM_dupallocN(mb->bb);
+
+ return mbn;
+}
+
+void make_local_mball(MetaBall *mb)
+{
+ Object *ob;
+ MetaBall *mbn;
+ int local=0, lib=0;
+
+ /* - zijn er alleen lib users: niet doen
+ * - zijn er alleen locale users: flag zetten
+ * - mixed: copy
+ */
+
+ if(mb->id.lib==0) return;
+ if(mb->id.us==1) {
+ mb->id.lib= 0;
+ mb->id.flag= LIB_LOCAL;
+ return;
+ }
+
+ ob= G.main->object.first;
+ while(ob) {
+ if(ob->data==mb) {
+ if(ob->id.lib) lib= 1;
+ else local= 1;
+ }
+ ob= ob->id.next;
+ }
+
+ if(local && lib==0) {
+ mb->id.lib= 0;
+ mb->id.flag= LIB_LOCAL;
+ }
+ else if(local && lib) {
+ mbn= copy_mball(mb);
+ mbn->id.us= 0;
+
+ ob= G.main->object.first;
+ while(ob) {
+ if(ob->data==mb) {
+
+ if(ob->id.lib==0) {
+ ob->data= mbn;
+ mbn->id.us++;
+ mb->id.us--;
+ }
+ }
+ ob= ob->id.next;
+ }
+ }
+}
+
+
+void tex_space_mball(Object *ob)
+{
+ DispList *dl;
+ BoundBox *bb;
+ float *data, min[3], max[3], loc[3], size[3];
+ int tot, doit=0;
+
+ if(ob->bb==0) ob->bb= MEM_callocN(sizeof(BoundBox), "mb boundbox");
+ bb= ob->bb;
+
+ /* Weird one, this. */
+/* INIT_MINMAX(min, max); */
+ (min)[0]= (min)[1]= (min)[2]= 1.0e30f;
+ (max)[0]= (max)[1]= (max)[2]= -1.0e30f;
+
+ dl= ob->disp.first;
+ while(dl) {
+ tot= dl->nr;
+ if(tot) doit= 1;
+ data= dl->verts;
+ while(tot--) {
+ /* Also weird... but longer. From utildefines. */
+ DO_MINMAX(data, min, max);
+ data+= 3;
+ }
+ dl= dl->next;
+ }
+
+ if(doit) {
+ loc[0]= (min[0]+max[0])/2.0f;
+ loc[1]= (min[1]+max[1])/2.0f;
+ loc[2]= (min[2]+max[2])/2.0f;
+
+ size[0]= (max[0]-min[0])/2.0f;
+ size[1]= (max[1]-min[1])/2.0f;
+ size[2]= (max[2]-min[2])/2.0f;
+ }
+ else {
+ loc[0]= loc[1]= loc[2]= 0.0f;
+ size[0]= size[1]= size[2]= 1.0f;
+ }
+
+ bb->vec[0][0]=bb->vec[1][0]=bb->vec[2][0]=bb->vec[3][0]= loc[0]-size[0];
+ bb->vec[4][0]=bb->vec[5][0]=bb->vec[6][0]=bb->vec[7][0]= loc[0]+size[0];
+
+ bb->vec[0][1]=bb->vec[1][1]=bb->vec[4][1]=bb->vec[5][1]= loc[1]-size[1];
+ bb->vec[2][1]=bb->vec[3][1]=bb->vec[6][1]=bb->vec[7][1]= loc[1]+size[1];
+
+ bb->vec[0][2]=bb->vec[3][2]=bb->vec[4][2]=bb->vec[7][2]= loc[2]-size[2];
+ bb->vec[1][2]=bb->vec[2][2]=bb->vec[5][2]=bb->vec[6][2]= loc[2]+size[2];
+
+}
+
+void make_orco_mball(Object *ob)
+{
+ BoundBox *bb;
+ DispList *dl;
+ float *data;
+ float loc[3], size[3];
+ int a;
+
+ /* size en loc restoren */
+ bb= ob->bb;
+ loc[0]= (bb->vec[0][0]+bb->vec[4][0])/2.0f;
+ size[0]= bb->vec[4][0]-loc[0];
+ loc[1]= (bb->vec[0][1]+bb->vec[2][1])/2.0f;
+ size[1]= bb->vec[2][1]-loc[1];
+ loc[2]= (bb->vec[0][2]+bb->vec[1][2])/2.0f;
+ size[2]= bb->vec[1][2]-loc[2];
+
+ dl= ob->disp.first;
+ data= dl->verts;
+ a= dl->nr;
+ while(a--) {
+ data[0]= (data[0]-loc[0])/size[0];
+ data[1]= (data[1]-loc[1])/size[1];
+ data[2]= (data[2]-loc[2])/size[2];
+
+ data+= 3;
+ }
+}
+
+
+Object *find_basis_mball(Object *basis)
+{
+ Base *base;
+ int basisnr;
+ char basisname[32];
+
+ splitIDname(basis->id.name+2, basisname, &basisnr);
+
+ for (base= G.scene->base.first; base && basisnr; base= base->next) {
+ Object *ob= base->object;
+
+ if (ob!=basis && ob->type==OB_MBALL) {
+ char obname[32];
+ int obnr;
+
+ splitIDname(ob->id.name+2, obname, &obnr);
+
+ if ((strcmp(obname, basisname)==0) && obnr<basisnr) {
+ basis= ob;
+ basisnr= obnr;
+ }
+ }
+ }
+
+ return basis;
+}
+
+
+/* ******************** ARITH ************************* */
+
+/* DANKBAAR GEBRUIK GEMAAKT VAN (EN COMPLEET VERANDERD) :
+ * C code from the article
+ * "An Implicit Surface Polygonizer"
+ * by Jules Bloomenthal, jbloom@beauty.gmu.edu
+ * in "Graphics Gems IV", Academic Press, 1994
+
+ * Authored by Jules Bloomenthal, Xerox PARC.
+ * Copyright (c) Xerox Corporation, 1991. All rights reserved.
+ * Permission is granted to reproduce, use and distribute this code for
+ * any and all purposes, provided that this notice appears in all copies. */
+
+#define RES 12 /* # converge iterations */
+
+#define L 0 /* left direction: -x, -i */
+#define R 1 /* right direction: +x, +i */
+#define B 2 /* bottom direction: -y, -j */
+#define T 3 /* top direction: +y, +j */
+#define N 4 /* near direction: -z, -k */
+#define F 5 /* far direction: +z, +k */
+#define LBN 0 /* left bottom near corner */
+#define LBF 1 /* left bottom far corner */
+#define LTN 2 /* left top near corner */
+#define LTF 3 /* left top far corner */
+#define RBN 4 /* right bottom near corner */
+#define RBF 5 /* right bottom far corner */
+#define RTN 6 /* right top near corner */
+#define RTF 7 /* right top far corner */
+
+/* the LBN corner of cube (i, j, k), corresponds with location
+ * (start.x+(i-0.5)*size, start.y+(j-0.5)*size, start.z+(k-0.5)*size) */
+
+#define HASHBIT (5)
+#define HASHSIZE (size_t)(1<<(3*HASHBIT)) /* hash table size (32768) */
+
+#define HASH(i,j,k) ((((( (i) & 31)<<5) | ( (j) & 31))<<5 ) | ( (k) & 31) )
+
+#define MB_BIT(i, bit) (((i)>>(bit))&1)
+#define FLIP(i,bit) ((i)^1<<(bit)) /* flip the given bit of i */
+
+typedef struct point { /* a three-dimensional point */
+ float x, y, z; /* its coordinates */
+} MB_POINT;
+
+typedef struct vertex { /* surface vertex */
+ MB_POINT position, normal; /* position and surface normal */
+} VERTEX;
+
+typedef struct vertices { /* list of vertices in polygonization */
+ int count, max; /* # vertices, max # allowed */
+ VERTEX *ptr; /* dynamically allocated */
+} VERTICES;
+
+typedef struct corner { /* corner of a cube */
+ int i, j, k; /* (i, j, k) is index within lattice */
+ float x, y, z, value; /* location and function value */
+ struct corner *next;
+} CORNER;
+
+typedef struct cube { /* partitioning cell (cube) */
+ int i, j, k; /* lattice location of cube */
+ CORNER *corners[8]; /* eight corners */
+} CUBE;
+
+typedef struct cubes { /* linked list of cubes acting as stack */
+ CUBE cube; /* a single cube */
+ struct cubes *next; /* remaining elements */
+} CUBES;
+
+typedef struct centerlist { /* list of cube locations */
+ int i, j, k; /* cube location */
+ struct centerlist *next; /* remaining elements */
+} CENTERLIST;
+
+typedef struct edgelist { /* list of edges */
+ int i1, j1, k1, i2, j2, k2; /* edge corner ids */
+ int vid; /* vertex id */
+ struct edgelist *next; /* remaining elements */
+} EDGELIST;
+
+typedef struct intlist { /* list of integers */
+ int i; /* an integer */
+ struct intlist *next; /* remaining elements */
+} INTLIST;
+
+typedef struct intlists { /* list of list of integers */
+ INTLIST *list; /* a list of integers */
+ struct intlists *next; /* remaining elements */
+} INTLISTS;
+
+typedef struct process { /* parameters, function, storage */
+ /* what happens here? floats, I think. */
+ /* float (*function)(void); */ /* implicit surface function */
+ float (*function)(float, float, float);
+ float size, delta; /* cube size, normal delta */
+ int bounds; /* cube range within lattice */
+ MB_POINT start; /* start point on surface */
+ CUBES *cubes; /* active cubes */
+ VERTICES vertices; /* surface vertices */
+ CENTERLIST **centers; /* cube center hash table */
+ CORNER **corners; /* corner value hash table */
+ EDGELIST **edges; /* edge and vertex id hash table */
+} PROCESS;
+
+/* Some declarations are in order !!! */
+
+/* these should go into a header ! But the compiler doesn't like that,
+ * for some reason */
+
+void freepolygonize(PROCESS *p);
+void docube(CUBE *cube, PROCESS *p);
+void testface(int i, int j, int k, CUBE* old,
+ int bit, int c1, int c2, int c3, int c4, PROCESS *p);
+CORNER *setcorner (PROCESS* p, int i, int j, int k);
+int vertid (CORNER *c1, CORNER *c2, PROCESS *p);
+int setcenter(CENTERLIST *table[], int i, int j, int k);
+int otherface (int edge, int face);
+void makecubetable (void);
+void setedge (EDGELIST *table[],
+ int i1, int j1,
+ int k1, int i2,
+ int j2, int k2,
+ int vid);
+int getedge (EDGELIST *table[],
+ int i1, int j1, int k1,
+ int i2, int j2, int k2);
+void addtovertices (VERTICES *vertices, VERTEX v);
+void vnormal (MB_POINT *point, PROCESS *p, MB_POINT *v);
+void converge (MB_POINT *p1, MB_POINT *p2, float v,
+ float (*function)(float, float, float), MB_POINT *p);
+void polygonize(PROCESS *mbproc);
+float init_meta(Object *ob);
+
+/* **************** METABALL ************************ */
+
+/* void converge (MB_POINT *p1, MB_POINT *p2, float v, float (*function)(void), MB_POINT *p); */
+
+void calc_mballco(MetaElem *ml, float *vec)
+{
+ if(ml->mat) {
+ Mat4MulVecfl(ml->mat, vec);
+ }
+}
+
+
+float thresh= 0.6f;
+int totelem=0;
+MetaElem **mainb;
+
+float densfunc(MetaElem *ball, float x, float y, float z)
+{
+ float dist2 = 0.0, dx, dy, dz;
+ float vec[3];
+
+ if(ball->imat) {
+ vec[0]= x;
+ vec[1]= y;
+ vec[2]= z;
+ Mat4MulVecfl(ball->imat, vec);
+ dx= ball->x - vec[0];
+ dy= ball->y - vec[1];
+ dz= ball->z - vec[2];
+ }
+ else {
+ dx= ball->x - x;
+ dy= ball->y - y;
+ dz= ball->z - z;
+ }
+
+ if(ball->type==MB_BALL) {
+ dist2= (dx*dx + dy*dy + dz*dz);
+ }
+ else if(ball->type & MB_TUBEZ) {
+ if(ball->type==MB_TUBEZ) {
+ if( dz > ball->len) dz-= ball->len;
+ else if(dz< -ball->len) dz+= ball->len;
+ else dz= 0.0;
+ }
+ else if(ball->type==MB_TUBEY) {
+ if( dy > ball->len) dy-= ball->len;
+ else if(dy< -ball->len) dy+= ball->len;
+ else dy= 0.0;
+ }
+ else {
+ if( dx > ball->len) dx-= ball->len;
+ else if(dx< -ball->len) dx+= ball->len;
+ else dx= 0.0;
+ }
+ dist2= (dx*dx + dy*dy + dz*dz);
+ }
+ /* else if(ball->type==MB_CIRCLE) { */
+ /* dist2= 0.5-dz; */
+ /* } */
+
+ if(ball->flag & MB_NEGATIVE) {
+
+ dist2= 1.0f-(dist2/ball->rad2);
+ if(dist2 < 0.0) return 0.5f;
+
+ return 0.5f-ball->s*dist2*dist2*dist2;
+
+ }
+ else {
+ dist2= 1.0f-(dist2/ball->rad2);
+ if(dist2 < 0.0) return -0.5f;
+
+ return ball->s*dist2*dist2*dist2 -0.5f;
+
+ /* return ball->s*sin( dist2); */
+
+ }
+
+}
+
+
+float metaball(float x, float y, float z)
+/* float x, y, z; */
+{
+ float dens=0;
+ int a;
+
+ for(a=0; a<totelem; a++) {
+ dens+= densfunc( mainb[a], x, y, z);
+ }
+
+ return thresh - dens;
+}
+
+/* ******************************************** */
+
+int *indices=0;
+int totindex, curindex;
+
+
+void accum_mballfaces(int i1, int i2, int i3, int i4)
+{
+ int *newi, *cur;
+ /* static int i=0; I would like to delete altogether, but I don't dare to, yet */
+
+ if(totindex==curindex) {
+ totindex+= 256;
+ newi= MEM_mallocN(4*sizeof(int)*totindex, "vertindex");
+
+ if(indices) {
+ memcpy(newi, indices, 4*sizeof(int)*(totindex-256));
+ MEM_freeN(indices);
+ }
+ indices= newi;
+ }
+
+ cur= indices+4*curindex;
+
+ /* voorkomen dat nulcodes voorkomen */
+ if(i3==0) {
+ if(i4) {
+ i3= i4;
+ i4= i1;
+ i1= i2;
+ i2= 0;
+ }
+ else {
+ i3= i2;
+ i2= i1;
+ i1= 0;
+ }
+ }
+
+ cur[0]= i1;
+ cur[1]= i2;
+ cur[2]= i3;
+ cur[3]= i4;
+
+ curindex++;
+
+}
+
+/* ******************* MEMORY MANAGEMENT *********************** */
+
+struct pgn_elements {
+ struct pgn_elements *next, *prev;
+ char *data;
+
+};
+
+void *new_pgn_element(int size)
+{
+ /* gedurende het polygonizeren worden duizenden elementen aangemaakt en
+ * nooit (tussendoor) vrijgegeven. Alleen op eind is vrijgeven nodig.
+ */
+ int blocksize= 16384;
+ static int offs= 0; /* het huidige vrije adres */
+ static struct pgn_elements *cur= 0;
+ static ListBase lb= {0, 0};
+ void *adr;
+
+ if(size>10000 || size==0) {
+ printf("incorrect use of new_pgn_element\n");
+ /* exit(0); */
+ }
+ else if(size== -1) {
+ cur= lb.first;
+ while(cur) {
+ MEM_freeN(cur->data);
+ cur= cur->next;
+ }
+ BLI_freelistN(&lb);
+
+ return NULL;
+ }
+
+ size= 4*( (size+3)/4 );
+
+ if(cur) {
+ if(size+offs < blocksize) {
+ adr= (void *) (cur->data+offs);
+ offs+= size;
+ return adr;
+ }
+ }
+
+ cur= MEM_callocN( sizeof(struct pgn_elements), "newpgn");
+ cur->data= MEM_callocN(blocksize, "newpgn");
+ BLI_addtail(&lb, cur);
+
+ offs= size;
+ return cur->data;
+}
+
+void freepolygonize(PROCESS *p)
+{
+ MEM_freeN(p->corners);
+ MEM_freeN(p->edges);
+ MEM_freeN(p->centers);
+
+ new_pgn_element(-1);
+
+ if(p->vertices.ptr) MEM_freeN(p->vertices.ptr);
+}
+
+/**** Cubical Polygonization (optional) ****/
+
+
+#define LB 0 /* left bottom edge */
+#define LT 1 /* left top edge */
+#define LN 2 /* left near edge */
+#define LF 3 /* left far edge */
+#define RB 4 /* right bottom edge */
+#define RT 5 /* right top edge */
+#define RN 6 /* right near edge */
+#define RF 7 /* right far edge */
+#define BN 8 /* bottom near edge */
+#define BF 9 /* bottom far edge */
+#define TN 10 /* top near edge */
+#define TF 11 /* top far edge */
+
+static INTLISTS *cubetable[256];
+
+/* edge: LB, LT, LN, LF, RB, RT, RN, RF, BN, BF, TN, TF */
+static int corner1[12] = {
+ LBN,LTN,LBN,LBF,RBN,RTN,RBN,RBF,LBN,LBF,LTN,LTF};
+static int corner2[12] = {
+ LBF,LTF,LTN,LTF,RBF,RTF,RTN,RTF,RBN,RBF,RTN,RTF};
+static int leftface[12] = {
+ B, L, L, F, R, T, N, R, N, B, T, F};
+/* face on left when going corner1 to corner2 */
+static int rightface[12] = {
+ L, T, N, L, B, R, R, F, B, F, N, T};
+/* face on right when going corner1 to corner2 */
+
+
+/* docube: triangulate the cube directly, without decomposition */
+
+void docube(CUBE *cube, PROCESS *p)
+{
+ INTLISTS *polys;
+ CORNER *c1, *c2;
+ int i, index = 0, count, indexar[8];
+
+ for (i = 0; i < 8; i++) if (cube->corners[i]->value > 0.0) index += (1<<i);
+
+ for (polys = cubetable[index]; polys; polys = polys->next) {
+ INTLIST *edges;
+
+ count = 0;
+
+ for (edges = polys->list; edges; edges = edges->next) {
+ c1 = cube->corners[corner1[edges->i]];
+ c2 = cube->corners[corner2[edges->i]];
+
+ indexar[count] = vertid(c1, c2, p);
+ count++;
+ }
+ if(count>2) {
+ switch(count) {
+ case 3:
+ accum_mballfaces(indexar[2], indexar[1], indexar[0], 0);
+ break;
+ case 4:
+ if(indexar[0]==0) accum_mballfaces(indexar[0], indexar[3], indexar[2], indexar[1]);
+ else accum_mballfaces(indexar[3], indexar[2], indexar[1], indexar[0]);
+ break;
+ case 5:
+ if(indexar[0]==0) accum_mballfaces(indexar[0], indexar[3], indexar[2], indexar[1]);
+ else accum_mballfaces(indexar[3], indexar[2], indexar[1], indexar[0]);
+
+ accum_mballfaces(indexar[4], indexar[3], indexar[0], 0);
+ break;
+ case 6:
+ if(indexar[0]==0) {
+ accum_mballfaces(indexar[0], indexar[3], indexar[2], indexar[1]);
+ accum_mballfaces(indexar[0], indexar[5], indexar[4], indexar[3]);
+ }
+ else {
+ accum_mballfaces(indexar[3], indexar[2], indexar[1], indexar[0]);
+ accum_mballfaces(indexar[5], indexar[4], indexar[3], indexar[0]);
+ }
+ break;
+ case 7:
+ if(indexar[0]==0) {
+ accum_mballfaces(indexar[0], indexar[3], indexar[2], indexar[1]);
+ accum_mballfaces(indexar[0], indexar[5], indexar[4], indexar[3]);
+ }
+ else {
+ accum_mballfaces(indexar[3], indexar[2], indexar[1], indexar[0]);
+ accum_mballfaces(indexar[5], indexar[4], indexar[3], indexar[0]);
+ }
+
+ accum_mballfaces(indexar[6], indexar[5], indexar[0], 0);
+
+ break;
+ }
+ }
+ }
+}
+
+
+/* testface: given cube at lattice (i, j, k), and four corners of face,
+ * if surface crosses face, compute other four corners of adjacent cube
+ * and add new cube to cube stack */
+
+void testface(int i, int j, int k, CUBE* old, int bit, int c1, int c2, int c3, int c4, PROCESS *p)
+/* CUBE *old; */
+/* PROCESS *p; */
+/* int i, j, k, bit, c1, c2, c3, c4; */
+{
+ CUBE newc;
+ CUBES *oldcubes = p->cubes;
+ CORNER *corn1, *corn2, *corn3, *corn4;
+ int n, pos;
+
+ corn1= old->corners[c1];
+ corn2= old->corners[c2];
+ corn3= old->corners[c3];
+ corn4= old->corners[c4];
+
+ pos = corn1->value > 0.0 ? 1 : 0;
+
+ /* test if no surface crossing */
+ if( (corn2->value > 0) == pos && (corn3->value > 0) == pos && (corn4->value > 0) == pos) return;
+ /* test if cube out of bounds */
+ if ( abs(i) > p->bounds || abs(j) > p->bounds || abs(k) > p->bounds) return;
+ /* test if already visited (always as last) */
+ if (setcenter(p->centers, i, j, k)) return;
+
+
+ /* create new cube and add cube to top of stack: */
+ p->cubes = (CUBES *) new_pgn_element(sizeof(CUBES));
+ p->cubes->next = oldcubes;
+
+ newc.i = i;
+ newc.j = j;
+ newc.k = k;
+ for (n = 0; n < 8; n++) newc.corners[n] = NULL;
+
+ newc.corners[FLIP(c1, bit)] = corn1;
+ newc.corners[FLIP(c2, bit)] = corn2;
+ newc.corners[FLIP(c3, bit)] = corn3;
+ newc.corners[FLIP(c4, bit)] = corn4;
+
+ if(newc.corners[0]==0) newc.corners[0] = setcorner(p, i, j, k);
+ if(newc.corners[1]==0) newc.corners[1] = setcorner(p, i, j, k+1);
+ if(newc.corners[2]==0) newc.corners[2] = setcorner(p, i, j+1, k);
+ if(newc.corners[3]==0) newc.corners[3] = setcorner(p, i, j+1, k+1);
+ if(newc.corners[4]==0) newc.corners[4] = setcorner(p, i+1, j, k);
+ if(newc.corners[5]==0) newc.corners[5] = setcorner(p, i+1, j, k+1);
+ if(newc.corners[6]==0) newc.corners[6] = setcorner(p, i+1, j+1, k);
+ if(newc.corners[7]==0) newc.corners[7] = setcorner(p, i+1, j+1, k+1);
+
+ p->cubes->cube= newc;
+}
+
+/* setcorner: return corner with the given lattice location
+ set (and cache) its function value */
+
+CORNER *setcorner (PROCESS* p, int i, int j, int k)
+/* int i, j, k; */
+/* PROCESS *p; */
+{
+ /* for speed, do corner value caching here */
+ CORNER *c;
+ int index;
+
+ /* bestaat corner al? */
+ index = HASH(i, j, k);
+ c = p->corners[index];
+
+ for (; c != NULL; c = c->next) {
+ if (c->i == i && c->j == j && c->k == k) {
+ return c;
+ }
+ }
+
+ c = (CORNER *) new_pgn_element(sizeof(CORNER));
+
+ c->i = i;
+ c->x = p->start.x+((float)i-0.5f)*p->size;
+ c->j = j;
+ c->y = p->start.y+((float)j-0.5f)*p->size;
+ c->k = k;
+ c->z = p->start.z+((float)k-0.5f)*p->size;
+ c->value = p->function(c->x, c->y, c->z);
+
+ c->next = p->corners[index];
+ p->corners[index] = c;
+
+ return c;
+}
+
+
+/* nextcwedge: return next clockwise edge from given edge around given face */
+
+int nextcwedge (int edge, int face)
+{
+ switch (edge) {
+ case LB:
+ return (face == L)? LF : BN;
+ case LT:
+ return (face == L)? LN : TF;
+ case LN:
+ return (face == L)? LB : TN;
+ case LF:
+ return (face == L)? LT : BF;
+ case RB:
+ return (face == R)? RN : BF;
+ case RT:
+ return (face == R)? RF : TN;
+ case RN:
+ return (face == R)? RT : BN;
+ case RF:
+ return (face == R)? RB : TF;
+ case BN:
+ return (face == B)? RB : LN;
+ case BF:
+ return (face == B)? LB : RF;
+ case TN:
+ return (face == T)? LT : RN;
+ case TF:
+ return (face == T)? RT : LF;
+ }
+ return 0;
+}
+
+
+/* otherface: return face adjoining edge that is not the given face */
+
+int otherface (int edge, int face)
+/* int edge, face; */
+{
+ int other = leftface[edge];
+ return face == other? rightface[edge] : other;
+}
+
+
+/* makecubetable: create the 256 entry table for cubical polygonization */
+
+void makecubetable (void)
+{
+ static int isdone= 0;
+ int i, e, c, done[12], pos[8];
+
+ if(isdone) return;
+ isdone= 1;
+
+ for (i = 0; i < 256; i++) {
+ for (e = 0; e < 12; e++) done[e] = 0;
+ for (c = 0; c < 8; c++) pos[c] = MB_BIT(i, c);
+ for (e = 0; e < 12; e++)
+ if (!done[e] && (pos[corner1[e]] != pos[corner2[e]])) {
+ INTLIST *ints = 0;
+ INTLISTS *lists = (INTLISTS *) MEM_callocN(sizeof(INTLISTS), "mball_intlist");
+ int start = e, edge = e;
+
+ /* get face that is to right of edge from pos to neg corner: */
+ int face = pos[corner1[e]]? rightface[e] : leftface[e];
+
+ while (1) {
+ edge = nextcwedge(edge, face);
+ done[edge] = 1;
+ if (pos[corner1[edge]] != pos[corner2[edge]]) {
+ INTLIST *tmp = ints;
+
+ ints = (INTLIST *) MEM_callocN(sizeof(INTLIST), "mball_intlist");
+ ints->i = edge;
+ ints->next = tmp; /* add edge to head of list */
+
+ if (edge == start) break;
+ face = otherface(edge, face);
+ }
+ }
+ lists->list = ints; /* add ints to head of table entry */
+ lists->next = cubetable[i];
+ cubetable[i] = lists;
+ }
+ }
+}
+
+void BKE_freecubetable(void)
+{
+ int i;
+ INTLISTS *lists, *nlists;
+ INTLIST *ints, *nints;
+
+ for (i = 0; i < 256; i++) {
+ lists= cubetable[i];
+ while(lists) {
+ nlists= lists->next;
+
+ ints= lists->list;
+ while(ints) {
+ nints= ints->next;
+ MEM_freeN(ints);
+ ints= nints;
+ }
+
+ MEM_freeN(lists);
+ lists= nlists;
+ }
+ cubetable[i]= 0;
+ }
+}
+
+/**** Storage ****/
+
+/* setcenter: set (i,j,k) entry of table[]
+ * return 1 if already set; otherwise, set and return 0 */
+
+int setcenter(CENTERLIST *table[], int i, int j, int k)
+/* CENTERLIST *table[]; */
+/* int i, j, k; */
+{
+ int index;
+ CENTERLIST *newc, *l, *q;
+
+ index= HASH(i, j, k);
+ q= table[index];
+
+ for (l = q; l != NULL; l = l->next) {
+ if (l->i == i && l->j == j && l->k == k) return 1;
+ }
+
+ newc = (CENTERLIST *) new_pgn_element(sizeof(CENTERLIST));
+ newc->i = i;
+ newc->j = j;
+ newc->k = k;
+ newc->next = q;
+ table[index] = newc;
+
+ return 0;
+}
+
+
+/* setedge: set vertex id for edge */
+
+void setedge (EDGELIST *table[],
+ int i1, int j1,
+ int k1, int i2,
+ int j2, int k2,
+ int vid)
+/* EDGELIST *table[]; */
+/* int i1, j1, k1, i2, j2, k2, vid; */
+{
+ unsigned int index;
+ EDGELIST *newe;
+
+ if (i1>i2 || (i1==i2 && (j1>j2 || (j1==j2 && k1>k2)))) {
+ int t=i1;
+ i1=i2;
+ i2=t;
+ t=j1;
+ j1=j2;
+ j2=t;
+ t=k1;
+ k1=k2;
+ k2=t;
+ }
+ index = HASH(i1, j1, k1) + HASH(i2, j2, k2);
+ newe = (EDGELIST *) new_pgn_element(sizeof(EDGELIST));
+ newe->i1 = i1;
+ newe->j1 = j1;
+ newe->k1 = k1;
+ newe->i2 = i2;
+ newe->j2 = j2;
+ newe->k2 = k2;
+ newe->vid = vid;
+ newe->next = table[index];
+ table[index] = newe;
+}
+
+
+/* getedge: return vertex id for edge; return -1 if not set */
+
+int getedge (EDGELIST *table[],
+ int i1, int j1, int k1,
+ int i2, int j2, int k2)
+/* EDGELIST *table[]; */
+/* int i1, j1, k1, i2, j2, k2; */
+{
+ EDGELIST *q;
+
+ if (i1>i2 || (i1==i2 && (j1>j2 || (j1==j2 && k1>k2)))) {
+ int t=i1;
+ i1=i2;
+ i2=t;
+ t=j1;
+ j1=j2;
+ j2=t;
+ t=k1;
+ k1=k2;
+ k2=t;
+ }
+ q = table[HASH(i1, j1, k1)+HASH(i2, j2, k2)];
+ for (; q != NULL; q = q->next)
+ if (q->i1 == i1 && q->j1 == j1 && q->k1 == k1 &&
+ q->i2 == i2 && q->j2 == j2 && q->k2 == k2)
+ return q->vid;
+ return -1;
+}
+
+
+/**** Vertices ****/
+
+#undef R
+
+
+
+/* vertid: return index for vertex on edge:
+ * c1->value and c2->value are presumed of different sign
+ * return saved index if any; else compute vertex and save */
+
+/* addtovertices: add v to sequence of vertices */
+
+void addtovertices (VERTICES *vertices, VERTEX v)
+/* VERTICES *vertices; */
+/* VERTEX v; */
+{
+ if (vertices->count == vertices->max) {
+ int i;
+ VERTEX *newv;
+ vertices->max = vertices->count == 0 ? 10 : 2*vertices->count;
+ newv = (VERTEX *) MEM_callocN(vertices->max * sizeof(VERTEX), "addtovertices");
+
+ for (i = 0; i < vertices->count; i++) newv[i] = vertices->ptr[i];
+
+ if (vertices->ptr != NULL) MEM_freeN(vertices->ptr);
+ vertices->ptr = newv;
+ }
+ vertices->ptr[vertices->count++] = v;
+}
+
+/* vnormal: compute unit length surface normal at point */
+
+void vnormal (MB_POINT *point, PROCESS *p, MB_POINT *v)
+/* MB_POINT *point, *v; */
+/* PROCESS *p; */
+{
+ float delta= 0.2f*p->delta;
+ float f = p->function(point->x, point->y, point->z);
+
+ v->x = p->function(point->x+delta, point->y, point->z)-f;
+ v->y = p->function(point->x, point->y+delta, point->z)-f;
+ v->z = p->function(point->x, point->y, point->z+delta)-f;
+ f = (float)sqrt(v->x*v->x + v->y*v->y + v->z*v->z);
+
+ if (f != 0.0) {
+ v->x /= f;
+ v->y /= f;
+ v->z /= f;
+ }
+
+ if(FALSE) {
+ /* if(R.flag & R_RENDERING) { */
+ MB_POINT temp;
+
+ delta*= 2.0;
+
+ f = p->function(point->x, point->y, point->z);
+
+ temp.x = p->function(point->x+delta, point->y, point->z)-f;
+ temp.y = p->function(point->x, point->y+delta, point->z)-f;
+ temp.z = p->function(point->x, point->y, point->z+delta)-f;
+ f = (float)sqrt(temp.x*temp.x + temp.y*temp.y + temp.z*temp.z);
+
+ if (f != 0.0) {
+ temp.x /= f;
+ temp.y /= f;
+ temp.z /= f;
+
+ v->x+= temp.x;
+ v->y+= temp.y;
+ v->z+= temp.z;
+
+ f = (float)sqrt(v->x*v->x + v->y*v->y + v->z*v->z);
+
+ if (f != 0.0) {
+ v->x /= f;
+ v->y /= f;
+ v->z /= f;
+ }
+ }
+ }
+
+}
+
+
+int vertid (CORNER *c1, CORNER *c2, PROCESS *p)
+/* CORNER *c1, *c2; */
+/* PROCESS *p; */
+{
+ VERTEX v;
+ MB_POINT a, b;
+ int vid = getedge(p->edges, c1->i, c1->j, c1->k, c2->i, c2->j, c2->k);
+
+ if (vid != -1) return vid; /* previously computed */
+ a.x = c1->x;
+ a.y = c1->y;
+ a.z = c1->z;
+ b.x = c2->x;
+ b.y = c2->y;
+ b.z = c2->z;
+
+ converge(&a, &b, c1->value, p->function, &v.position); /* position */
+ vnormal(&v.position, p, &v.normal);
+
+ addtovertices(&p->vertices, v); /* save vertex */
+ vid = p->vertices.count-1;
+ setedge(p->edges, c1->i, c1->j, c1->k, c2->i, c2->j, c2->k, vid);
+
+ return vid;
+}
+
+
+
+
+/* converge: from two points of differing sign, converge to zero crossing */
+/* watch it: p1 and p2 are used to calculate */
+
+void converge (MB_POINT *p1, MB_POINT *p2, float v,
+ float (*function)(float, float, float), MB_POINT *p)
+{
+ int i = 0;
+ MB_POINT *pos, *neg;
+
+ if (v < 0) {
+ pos= p2;
+ neg= p1;
+ }
+ else {
+ pos= p1;
+ neg= p2;
+ }
+ while (1) {
+ p->x = 0.5f*(pos->x + neg->x);
+ p->y = 0.5f*(pos->y + neg->y);
+ p->z = 0.5f*(pos->z + neg->z);
+
+ if (i++ == RES) return;
+
+ if ((function(p->x, p->y, p->z)) > 0.0) {
+ pos->x = p->x;
+ pos->y = p->y;
+ pos->z = p->z;
+ }
+ else {
+ neg->x = p->x;
+ neg->y = p->y;
+ neg->z = p->z;
+ }
+ }
+}
+
+/* ************************************** */
+
+
+void polygonize(PROCESS *mbproc)
+{
+ MB_POINT in, out;
+ CUBE c;
+ CUBES *ncube;
+/* CORNER *setcorner(); */
+ int a, n, i, j, k;
+
+ mbproc->vertices.count = mbproc->vertices.max = 0;
+ mbproc->vertices.ptr = NULL;
+
+ /* allocate hash tables and build cube polygon table: */
+ mbproc->centers = MEM_callocN(HASHSIZE * sizeof(CENTERLIST *), "mbproc->centers");
+ mbproc->corners = MEM_callocN(HASHSIZE * sizeof(CORNER *), "mbproc->corners");
+ mbproc->edges = MEM_callocN(2*HASHSIZE * sizeof(EDGELIST *), "mbproc->edges");
+ makecubetable();
+
+ /* find first point on balls */
+ for(a=0; a<totelem; a++) {
+
+ in.x= mainb[a]->x;
+ in.y= mainb[a]->y;
+ in.z= mainb[a]->z;
+ calc_mballco(mainb[a], (float *)&in);
+
+ /* added factor 2.0 to be sure it always finds the ball... still unsure why! */
+
+ out.x= in.x + 2.0f*mainb[a]->rad;
+ out.y= in.y + 2.0f*mainb[a]->rad;
+ out.z= in.z + 2.0f*mainb[a]->rad;
+ calc_mballco(mainb[a], (float *)&out);
+
+ converge(&in, &out, -1.0, mbproc->function, &mbproc->start);
+
+ /* NEW1: zorg voor correcte uitgangspositie */
+ i= (int)floor(mbproc->start.x/mbproc->size );
+ j= (int)floor(mbproc->start.y/mbproc->size );
+ k= (int)floor(mbproc->start.z/mbproc->size );
+
+ mbproc->start.x= mbproc->start.y= mbproc->start.z= 0.0;
+
+/* dit gaat niet altijd goed: soms wordt een bal niet gevonden. waarom? */
+
+ /* test if cube has been found before */
+ if( setcenter(mbproc->centers, i, j, k)==0 ) {
+
+ /* push cube on stack: */
+ ncube= (CUBES *) new_pgn_element(sizeof(CUBES));
+ ncube->next= mbproc->cubes;
+ mbproc->cubes= ncube;
+
+ ncube->cube.i= i;
+ ncube->cube.j= j;
+ ncube->cube.k= k;
+
+ /* set corners of initial cube: */
+ for (n = 0; n < 8; n++)
+ ncube->cube.corners[n] = setcorner(mbproc, i+MB_BIT(n,2), j+MB_BIT(n,1), k+MB_BIT(n,0));
+ }
+
+ /* we do a triple test and add a cube if necessary */
+ i++;
+
+ /* test if cube has been found before */
+ if( setcenter(mbproc->centers, i, j, k)==0 ) {
+
+ /* push cube on stack: */
+ ncube= (CUBES *) new_pgn_element(sizeof(CUBES));
+ ncube->next= mbproc->cubes;
+ mbproc->cubes= ncube;
+
+ ncube->cube.i= i;
+ ncube->cube.j= j;
+ ncube->cube.k= k;
+
+ /* set corners of initial cube: */
+ for (n = 0; n < 8; n++)
+ ncube->cube.corners[n] = setcorner(mbproc, i+MB_BIT(n,2), j+MB_BIT(n,1), k+MB_BIT(n,0));
+ }
+
+ i--;
+ j++;
+
+ /* test if cube has been found before */
+ if( setcenter(mbproc->centers, i, j, k)==0 ) {
+
+ /* push cube on stack: */
+ ncube= (CUBES *) new_pgn_element(sizeof(CUBES));
+ ncube->next= mbproc->cubes;
+ mbproc->cubes= ncube;
+
+ ncube->cube.i= i;
+ ncube->cube.j= j;
+ ncube->cube.k= k;
+
+ /* set corners of initial cube: */
+ for (n = 0; n < 8; n++)
+ ncube->cube.corners[n] = setcorner(mbproc, i+MB_BIT(n,2), j+MB_BIT(n,1), k+MB_BIT(n,0));
+ }
+
+ j--;
+ k++;
+
+ /* test if cube has been found before */
+ if( setcenter(mbproc->centers, i, j, k)==0 ) {
+
+ /* push cube on stack: */
+ ncube= (CUBES *) new_pgn_element(sizeof(CUBES));
+ ncube->next= mbproc->cubes;
+ mbproc->cubes= ncube;
+
+ ncube->cube.i= i;
+ ncube->cube.j= j;
+ ncube->cube.k= k;
+
+ /* set corners of initial cube: */
+ for (n = 0; n < 8; n++)
+ ncube->cube.corners[n] = setcorner(mbproc, i+MB_BIT(n,2), j+MB_BIT(n,1), k+MB_BIT(n,0));
+ }
+
+ i++;
+ j++;
+
+ /* test if cube has been found before */
+ if( setcenter(mbproc->centers, i, j, k)==0 ) {
+
+ /* push cube on stack: */
+ ncube= (CUBES *) new_pgn_element(sizeof(CUBES));
+ ncube->next= mbproc->cubes;
+ mbproc->cubes= ncube;
+
+ ncube->cube.i= i;
+ ncube->cube.j= j;
+ ncube->cube.k= k;
+
+ /* set corners of initial cube: */
+ for (n = 0; n < 8; n++)
+ ncube->cube.corners[n] = setcorner(mbproc, i+MB_BIT(n,2), j+MB_BIT(n,1), k+MB_BIT(n,0));
+ }
+ }
+
+ while (mbproc->cubes != NULL) { /* process active cubes till none left */
+ c = mbproc->cubes->cube;
+
+ /* polygonize the cube directly: */
+ docube(&c, mbproc);
+
+ /* pop current cube from stack */
+ mbproc->cubes = mbproc->cubes->next;
+
+ /* test six face directions, maybe add to stack: */
+ testface(c.i-1, c.j, c.k, &c, 2, LBN, LBF, LTN, LTF, mbproc);
+ testface(c.i+1, c.j, c.k, &c, 2, RBN, RBF, RTN, RTF, mbproc);
+ testface(c.i, c.j-1, c.k, &c, 1, LBN, LBF, RBN, RBF, mbproc);
+ testface(c.i, c.j+1, c.k, &c, 1, LTN, LTF, RTN, RTF, mbproc);
+ testface(c.i, c.j, c.k-1, &c, 0, LBN, LTN, RBN, RTN, mbproc);
+ testface(c.i, c.j, c.k+1, &c, 0, LBF, LTF, RBF, RTF, mbproc);
+ }
+
+}
+
+float init_meta(Object *ob) /* return totsize */
+{
+ Base *base;
+ Object *bob;
+ MetaBall *mb;
+ MetaElem *ml;
+ float size, totsize, (*mat)[4] = NULL, (*imat)[4] = NULL, obinv[4][4], vec[3];
+ int a, obnr;
+ char obname[32];
+
+ Mat4Invert(obinv, ob->obmat);
+ totelem= 0;
+
+ splitIDname(ob->id.name+2, obname, &obnr);
+
+ /* hoofdarray maken */
+
+ next_object(0, 0, 0);
+ while(next_object(1, &base, &bob)) {
+
+ if(bob->type==OB_MBALL) {
+ ml= 0;
+ if(bob==ob) {
+ mat= imat= 0;
+ mb= ob->data;
+
+ if(ob==G.obedit) ml= editelems.first;
+ else if(G.obedit && G.obedit->type==OB_MBALL && G.obedit->data==mb) ml= editelems.first;
+ else ml= mb->elems.first;
+ }
+ else {
+ char name[32];
+ int nr;
+
+ splitIDname(bob->id.name+2, name, &nr);
+ if( strcmp(obname, name)==0 ) {
+ mb= bob->data;
+
+ if(G.obedit && G.obedit->type==OB_MBALL && G.obedit->data==mb)
+ ml= editelems.first;
+ else ml= mb->elems.first;
+
+ /* mat is de matrix om van deze mball in de basis-mbal te komen */
+ mat= new_pgn_element(4*4*sizeof(float));
+ Mat4MulMat4(mat, bob->obmat, obinv);
+
+ imat= new_pgn_element(4*4*sizeof(float));
+ Mat4Invert(imat, mat);
+
+ }
+ }
+ while(ml && totelem<MB_MAXELEM) {
+ a= totelem;
+
+ /* kopie maken i.v.m. duplicates */
+ mainb[a]= new_pgn_element(sizeof(MetaElem));
+ *(mainb[a])= *ml;
+
+ /* if(mainb[a]->flag & MB_NEGATIVE) mainb[a]->s= 1.0-mainb[a]->s; */
+ mainb[a]->rad2= mainb[a]->rad*mainb[a]->rad;
+
+ mainb[a]->mat= (float*) mat;
+ mainb[a]->imat= (float*) imat;
+
+ ml= ml->next;
+ totelem++;
+
+ }
+ }
+ }
+
+ /* totsize (= 'manhattan' straal) berekenen */
+ totsize= 0.0;
+ for(a=0; a<totelem; a++) {
+
+ vec[0]= mainb[a]->x + mainb[a]->rad;
+ vec[1]= mainb[a]->y + mainb[a]->rad;
+ vec[2]= mainb[a]->z + mainb[a]->rad;
+
+ if(mainb[a]->type==MB_TUBEX) vec[0]+= mainb[a]->len;
+ if(mainb[a]->type==MB_TUBEY) vec[1]+= mainb[a]->len;
+ if(mainb[a]->type==MB_TUBEZ) vec[2]+= mainb[a]->len;
+
+ calc_mballco(mainb[a], vec);
+
+ size= (float)fabs( vec[0] );
+ if( size > totsize ) totsize= size;
+ size= (float)fabs( vec[1] );
+ if( size > totsize ) totsize= size;
+ size= (float)fabs( vec[2] );
+ if( size > totsize ) totsize= size;
+
+ vec[0]= mainb[a]->x - mainb[a]->rad;
+ vec[1]= mainb[a]->y - mainb[a]->rad;
+ vec[2]= mainb[a]->z - mainb[a]->rad;
+
+ calc_mballco(mainb[a], vec);
+
+ size= (float)fabs( vec[0] );
+ if( size > totsize ) totsize= size;
+ size= (float)fabs( vec[1] );
+ if( size > totsize ) totsize= size;
+ size= (float)fabs( vec[2] );
+ if( size > totsize ) totsize= size;
+ }
+
+ for(a=0; a<totelem; a++) {
+ thresh+= densfunc( mainb[a], 2.0f*totsize, 2.0f*totsize, 2.0f*totsize);
+ }
+
+ return totsize;
+}
+
+void metaball_polygonize(Object *ob)
+{
+ PROCESS mbproc;
+ MetaBall *mb;
+ DispList *dl;
+ int a, nr_cubes;
+ float *ve, *no, totsize, width;
+
+ mb= ob->data;
+
+ freedisplist(&ob->disp);
+ curindex= totindex= 0;
+ indices= 0;
+ thresh= mb->thresh;
+
+ if(G.moving && mb->flag==MB_UPDATE_FAST) return;
+
+ mainb= MEM_mallocN(sizeof(void *)*MB_MAXELEM, "mainb");
+
+ totsize= init_meta(ob);
+ if(totelem==0) {
+ MEM_freeN(mainb);
+ return;
+ }
+
+ /* width is afmeting per polygoniseerkubus */
+ if(R.flag & R_RENDERING) width= mb->rendersize;
+ else {
+ width= mb->wiresize;
+ if(G.moving && mb->flag==MB_UPDATE_HALFRES) width*= 2;
+ }
+ /* nr_cubes is voor de veiligheid, minmaal de totsize */
+ nr_cubes= (int)(0.5+totsize/width);
+
+ /* init process */
+ mbproc.function = metaball;
+ mbproc.size = width;
+ mbproc.bounds = nr_cubes;
+ mbproc.cubes= 0;
+ mbproc.delta = width/(float)(RES*RES);
+
+ polygonize(&mbproc);
+
+ MEM_freeN(mainb);
+
+ if(curindex) {
+
+ dl= MEM_callocN(sizeof(DispList), "mbaldisp");
+ BLI_addtail(&ob->disp, dl);
+ dl->type= DL_INDEX4;
+ dl->nr= mbproc.vertices.count;
+ dl->parts= curindex;
+
+ dl->index= indices;
+ indices= 0;
+
+ a= mbproc.vertices.count;
+ dl->verts= ve= MEM_mallocN(sizeof(float)*3*a, "mballverts");
+ dl->nors= no= MEM_mallocN(sizeof(float)*3*a, "mballnors");
+
+ for(a=0; a<mbproc.vertices.count; a++, no+=3, ve+=3) {
+ ve[0]= mbproc.vertices.ptr[a].position.x;
+ ve[1]= mbproc.vertices.ptr[a].position.y;
+ ve[2]= mbproc.vertices.ptr[a].position.z;
+
+ no[0]= mbproc.vertices.ptr[a].normal.x;
+ no[1]= mbproc.vertices.ptr[a].normal.y;
+ no[2]= mbproc.vertices.ptr[a].normal.z;
+ }
+ }
+
+ freepolygonize(&mbproc);
+
+}
+
+