Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'source/blender/compositor/realtime_compositor/intern')
-rw-r--r--source/blender/compositor/realtime_compositor/intern/compile_state.cc168
-rw-r--r--source/blender/compositor/realtime_compositor/intern/context.cc36
-rw-r--r--source/blender/compositor/realtime_compositor/intern/conversion_operation.cc239
-rw-r--r--source/blender/compositor/realtime_compositor/intern/domain.cc38
-rw-r--r--source/blender/compositor/realtime_compositor/intern/evaluator.cc170
-rw-r--r--source/blender/compositor/realtime_compositor/intern/input_single_value_operation.cc59
-rw-r--r--source/blender/compositor/realtime_compositor/intern/node_operation.cc67
-rw-r--r--source/blender/compositor/realtime_compositor/intern/operation.cc206
-rw-r--r--source/blender/compositor/realtime_compositor/intern/realize_on_domain_operation.cc130
-rw-r--r--source/blender/compositor/realtime_compositor/intern/reduce_to_single_value_operation.cc67
-rw-r--r--source/blender/compositor/realtime_compositor/intern/result.cc257
-rw-r--r--source/blender/compositor/realtime_compositor/intern/scheduler.cc314
-rw-r--r--source/blender/compositor/realtime_compositor/intern/shader_node.cc157
-rw-r--r--source/blender/compositor/realtime_compositor/intern/shader_operation.cc526
-rw-r--r--source/blender/compositor/realtime_compositor/intern/simple_operation.cc55
-rw-r--r--source/blender/compositor/realtime_compositor/intern/static_shader_manager.cc24
-rw-r--r--source/blender/compositor/realtime_compositor/intern/texture_pool.cc88
-rw-r--r--source/blender/compositor/realtime_compositor/intern/utilities.cc134
18 files changed, 2735 insertions, 0 deletions
diff --git a/source/blender/compositor/realtime_compositor/intern/compile_state.cc b/source/blender/compositor/realtime_compositor/intern/compile_state.cc
new file mode 100644
index 00000000000..5fa2fc9d544
--- /dev/null
+++ b/source/blender/compositor/realtime_compositor/intern/compile_state.cc
@@ -0,0 +1,168 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+
+#include <limits>
+
+#include "BLI_math_vec_types.hh"
+
+#include "DNA_node_types.h"
+
+#include "NOD_derived_node_tree.hh"
+
+#include "COM_compile_state.hh"
+#include "COM_domain.hh"
+#include "COM_input_descriptor.hh"
+#include "COM_node_operation.hh"
+#include "COM_result.hh"
+#include "COM_scheduler.hh"
+#include "COM_shader_operation.hh"
+#include "COM_utilities.hh"
+
+namespace blender::realtime_compositor {
+
+using namespace nodes::derived_node_tree_types;
+
+CompileState::CompileState(const Schedule &schedule) : schedule_(schedule)
+{
+}
+
+const Schedule &CompileState::get_schedule()
+{
+ return schedule_;
+}
+
+void CompileState::map_node_to_node_operation(DNode node, NodeOperation *operations)
+{
+ return node_operations_.add_new(node, operations);
+}
+
+void CompileState::map_node_to_shader_operation(DNode node, ShaderOperation *operations)
+{
+ return shader_operations_.add_new(node, operations);
+}
+
+Result &CompileState::get_result_from_output_socket(DOutputSocket output)
+{
+ /* The output belongs to a node that was compiled into a standard node operation, so return a
+ * reference to the result from that operation using the output identifier. */
+ if (node_operations_.contains(output.node())) {
+ NodeOperation *operation = node_operations_.lookup(output.node());
+ return operation->get_result(output->identifier);
+ }
+
+ /* Otherwise, the output belongs to a node that was compiled into a shader operation, so
+ * retrieve the internal identifier of that output and return a reference to the result from
+ * that operation using the retrieved identifier. */
+ ShaderOperation *operation = shader_operations_.lookup(output.node());
+ return operation->get_result(operation->get_output_identifier_from_output_socket(output));
+}
+
+void CompileState::add_node_to_shader_compile_unit(DNode node)
+{
+ shader_compile_unit_.add_new(node);
+
+ /* If the domain of the shader compile unit is not yet determined or was determined to be
+ * an identity domain, update it to be the computed domain of the node. */
+ if (shader_compile_unit_domain_ == Domain::identity()) {
+ shader_compile_unit_domain_ = compute_shader_node_domain(node);
+ }
+}
+
+ShaderCompileUnit &CompileState::get_shader_compile_unit()
+{
+ return shader_compile_unit_;
+}
+
+void CompileState::reset_shader_compile_unit()
+{
+ return shader_compile_unit_.clear();
+}
+
+bool CompileState::should_compile_shader_compile_unit(DNode node)
+{
+ /* If the shader compile unit is empty, then it can't be compiled yet. */
+ if (shader_compile_unit_.is_empty()) {
+ return false;
+ }
+
+ /* If the node is not a shader node, then it can't be added to the shader compile unit and the
+ * shader compile unit is considered complete and should be compiled. */
+ if (!is_shader_node(node)) {
+ return true;
+ }
+
+ /* If the computed domain of the node doesn't matches the domain of the shader compile unit, then
+ * it can't be added to the shader compile unit and the shader compile unit is considered
+ * complete and should be compiled. Identity domains are an exception as they are always
+ * compatible because they represents single values. */
+ if (shader_compile_unit_domain_ != Domain::identity() &&
+ shader_compile_unit_domain_ != compute_shader_node_domain(node)) {
+ return true;
+ }
+
+ /* Otherwise, the node is compatible and can be added to the compile unit and it shouldn't be
+ * compiled just yet. */
+ return false;
+}
+
+Domain CompileState::compute_shader_node_domain(DNode node)
+{
+ /* Default to an identity domain in case no domain input was found, most likely because all
+ * inputs are single values. */
+ Domain node_domain = Domain::identity();
+ int current_domain_priority = std::numeric_limits<int>::max();
+
+ /* Go over the inputs and find the domain of the non single value input with the highest domain
+ * priority. */
+ for (const bNodeSocket *input : node->input_sockets()) {
+ const DInputSocket dinput{node.context(), input};
+
+ /* Get the output linked to the input. If it is null, that means the input is unlinked, so skip
+ * it. */
+ const DOutputSocket output = get_output_linked_to_input(dinput);
+ if (!output) {
+ continue;
+ }
+
+ const InputDescriptor input_descriptor = input_descriptor_from_input_socket(input);
+
+ /* If the output belongs to a node that is part of the shader compile unit, then the domain of
+ * the input is the domain of the compile unit itself. */
+ if (shader_compile_unit_.contains(output.node())) {
+ /* Single value inputs can't be domain inputs. */
+ if (shader_compile_unit_domain_.size == int2(1)) {
+ continue;
+ }
+
+ /* Notice that the lower the domain priority value is, the higher the priority is, hence the
+ * less than comparison. */
+ if (input_descriptor.domain_priority < current_domain_priority) {
+ node_domain = shader_compile_unit_domain_;
+ current_domain_priority = input_descriptor.domain_priority;
+ }
+ continue;
+ }
+
+ const Result &result = get_result_from_output_socket(output);
+
+ /* A single value input can't be a domain input. */
+ if (result.is_single_value() || input_descriptor.expects_single_value) {
+ continue;
+ }
+
+ /* An input that skips realization can't be a domain input. */
+ if (input_descriptor.skip_realization) {
+ continue;
+ }
+
+ /* Notice that the lower the domain priority value is, the higher the priority is, hence the
+ * less than comparison. */
+ if (input_descriptor.domain_priority < current_domain_priority) {
+ node_domain = result.domain();
+ current_domain_priority = input_descriptor.domain_priority;
+ }
+ }
+
+ return node_domain;
+}
+
+} // namespace blender::realtime_compositor
diff --git a/source/blender/compositor/realtime_compositor/intern/context.cc b/source/blender/compositor/realtime_compositor/intern/context.cc
new file mode 100644
index 00000000000..64ac29af3d1
--- /dev/null
+++ b/source/blender/compositor/realtime_compositor/intern/context.cc
@@ -0,0 +1,36 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+
+#include "COM_context.hh"
+#include "COM_static_shader_manager.hh"
+#include "COM_texture_pool.hh"
+
+namespace blender::realtime_compositor {
+
+Context::Context(TexturePool &texture_pool) : texture_pool_(texture_pool)
+{
+}
+
+int Context::get_frame_number() const
+{
+ return get_scene()->r.cfra;
+}
+
+float Context::get_time() const
+{
+ const float frame_number = static_cast<float>(get_frame_number());
+ const float frame_rate = static_cast<float>(get_scene()->r.frs_sec) /
+ static_cast<float>(get_scene()->r.frs_sec_base);
+ return frame_number / frame_rate;
+}
+
+TexturePool &Context::texture_pool()
+{
+ return texture_pool_;
+}
+
+StaticShaderManager &Context::shader_manager()
+{
+ return shader_manager_;
+}
+
+} // namespace blender::realtime_compositor
diff --git a/source/blender/compositor/realtime_compositor/intern/conversion_operation.cc b/source/blender/compositor/realtime_compositor/intern/conversion_operation.cc
new file mode 100644
index 00000000000..3743b9bba87
--- /dev/null
+++ b/source/blender/compositor/realtime_compositor/intern/conversion_operation.cc
@@ -0,0 +1,239 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+
+#include "BLI_math_vec_types.hh"
+
+#include "GPU_shader.h"
+
+#include "COM_context.hh"
+#include "COM_conversion_operation.hh"
+#include "COM_input_descriptor.hh"
+#include "COM_result.hh"
+#include "COM_utilities.hh"
+
+namespace blender::realtime_compositor {
+
+/* -------------------------------------------------------------------- */
+/** \name Conversion Operation
+ * \{ */
+
+void ConversionOperation::execute()
+{
+ Result &result = get_result();
+ const Result &input = get_input();
+
+ if (input.is_single_value()) {
+ result.allocate_single_value();
+ execute_single(input, result);
+ return;
+ }
+
+ result.allocate_texture(input.domain());
+
+ GPUShader *shader = get_conversion_shader();
+ GPU_shader_bind(shader);
+
+ input.bind_as_texture(shader, "input_tx");
+ result.bind_as_image(shader, "output_img");
+
+ compute_dispatch_threads_at_least(shader, input.domain().size);
+
+ input.unbind_as_texture();
+ result.unbind_as_image();
+ GPU_shader_unbind();
+}
+
+SimpleOperation *ConversionOperation::construct_if_needed(Context &context,
+ const Result &input_result,
+ const InputDescriptor &input_descriptor)
+{
+ ResultType result_type = input_result.type();
+ ResultType expected_type = input_descriptor.type;
+
+ /* If the result type differs from the expected type, return an instance of an appropriate
+ * conversion operation. Otherwise, return a null pointer. */
+
+ if (result_type == ResultType::Float && expected_type == ResultType::Vector) {
+ return new ConvertFloatToVectorOperation(context);
+ }
+
+ if (result_type == ResultType::Float && expected_type == ResultType::Color) {
+ return new ConvertFloatToColorOperation(context);
+ }
+
+ if (result_type == ResultType::Color && expected_type == ResultType::Float) {
+ return new ConvertColorToFloatOperation(context);
+ }
+
+ if (result_type == ResultType::Color && expected_type == ResultType::Vector) {
+ return new ConvertColorToVectorOperation(context);
+ }
+
+ if (result_type == ResultType::Vector && expected_type == ResultType::Float) {
+ return new ConvertVectorToFloatOperation(context);
+ }
+
+ if (result_type == ResultType::Vector && expected_type == ResultType::Color) {
+ return new ConvertVectorToColorOperation(context);
+ }
+
+ return nullptr;
+}
+
+/** \} */
+
+/* -------------------------------------------------------------------- */
+/** \name Convert Float to Vector Operation
+ * \{ */
+
+ConvertFloatToVectorOperation::ConvertFloatToVectorOperation(Context &context)
+ : ConversionOperation(context)
+{
+ InputDescriptor input_descriptor;
+ input_descriptor.type = ResultType::Float;
+ declare_input_descriptor(input_descriptor);
+ populate_result(Result(ResultType::Vector, texture_pool()));
+}
+
+void ConvertFloatToVectorOperation::execute_single(const Result &input, Result &output)
+{
+ output.set_vector_value(float3(input.get_float_value()));
+}
+
+GPUShader *ConvertFloatToVectorOperation::get_conversion_shader() const
+{
+ return shader_manager().get("compositor_convert_float_to_vector");
+}
+
+/** \} */
+
+/* -------------------------------------------------------------------- */
+/** \name Convert Float to Color Operation
+ * \{ */
+
+ConvertFloatToColorOperation::ConvertFloatToColorOperation(Context &context)
+ : ConversionOperation(context)
+{
+ InputDescriptor input_descriptor;
+ input_descriptor.type = ResultType::Float;
+ declare_input_descriptor(input_descriptor);
+ populate_result(Result(ResultType::Color, texture_pool()));
+}
+
+void ConvertFloatToColorOperation::execute_single(const Result &input, Result &output)
+{
+ float4 color = float4(input.get_float_value());
+ color[3] = 1.0f;
+ output.set_color_value(color);
+}
+
+GPUShader *ConvertFloatToColorOperation::get_conversion_shader() const
+{
+ return shader_manager().get("compositor_convert_float_to_color");
+}
+
+/** \} */
+
+/* -------------------------------------------------------------------- */
+/** \name Convert Color to Float Operation
+ * \{ */
+
+ConvertColorToFloatOperation::ConvertColorToFloatOperation(Context &context)
+ : ConversionOperation(context)
+{
+ InputDescriptor input_descriptor;
+ input_descriptor.type = ResultType::Color;
+ declare_input_descriptor(input_descriptor);
+ populate_result(Result(ResultType::Float, texture_pool()));
+}
+
+void ConvertColorToFloatOperation::execute_single(const Result &input, Result &output)
+{
+ float4 color = input.get_color_value();
+ output.set_float_value((color[0] + color[1] + color[2]) / 3.0f);
+}
+
+GPUShader *ConvertColorToFloatOperation::get_conversion_shader() const
+{
+ return shader_manager().get("compositor_convert_color_to_float");
+}
+
+/** \} */
+
+/* -------------------------------------------------------------------- */
+/** \name Convert Color to Vector Operation
+ * \{ */
+
+ConvertColorToVectorOperation::ConvertColorToVectorOperation(Context &context)
+ : ConversionOperation(context)
+{
+ InputDescriptor input_descriptor;
+ input_descriptor.type = ResultType::Color;
+ declare_input_descriptor(input_descriptor);
+ populate_result(Result(ResultType::Vector, texture_pool()));
+}
+
+void ConvertColorToVectorOperation::execute_single(const Result &input, Result &output)
+{
+ float4 color = input.get_color_value();
+ output.set_vector_value(float3(color));
+}
+
+GPUShader *ConvertColorToVectorOperation::get_conversion_shader() const
+{
+ return shader_manager().get("compositor_convert_color_to_vector");
+}
+
+/** \} */
+
+/* -------------------------------------------------------------------- */
+/** \name Convert Vector to Float Operation
+ * \{ */
+
+ConvertVectorToFloatOperation::ConvertVectorToFloatOperation(Context &context)
+ : ConversionOperation(context)
+{
+ InputDescriptor input_descriptor;
+ input_descriptor.type = ResultType::Vector;
+ declare_input_descriptor(input_descriptor);
+ populate_result(Result(ResultType::Float, texture_pool()));
+}
+
+void ConvertVectorToFloatOperation::execute_single(const Result &input, Result &output)
+{
+ float3 vector = input.get_vector_value();
+ output.set_float_value((vector[0] + vector[1] + vector[2]) / 3.0f);
+}
+
+GPUShader *ConvertVectorToFloatOperation::get_conversion_shader() const
+{
+ return shader_manager().get("compositor_convert_vector_to_float");
+}
+
+/** \} */
+
+/* -------------------------------------------------------------------- */
+/** \name Convert Vector to Color Operation
+ * \{ */
+
+ConvertVectorToColorOperation::ConvertVectorToColorOperation(Context &context)
+ : ConversionOperation(context)
+{
+ InputDescriptor input_descriptor;
+ input_descriptor.type = ResultType::Vector;
+ declare_input_descriptor(input_descriptor);
+ populate_result(Result(ResultType::Color, texture_pool()));
+}
+
+void ConvertVectorToColorOperation::execute_single(const Result &input, Result &output)
+{
+ output.set_color_value(float4(input.get_vector_value(), 1.0f));
+}
+
+GPUShader *ConvertVectorToColorOperation::get_conversion_shader() const
+{
+ return shader_manager().get("compositor_convert_vector_to_color");
+}
+
+/** \} */
+
+} // namespace blender::realtime_compositor
diff --git a/source/blender/compositor/realtime_compositor/intern/domain.cc b/source/blender/compositor/realtime_compositor/intern/domain.cc
new file mode 100644
index 00000000000..31b297c212e
--- /dev/null
+++ b/source/blender/compositor/realtime_compositor/intern/domain.cc
@@ -0,0 +1,38 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+
+#include "BLI_float3x3.hh"
+#include "BLI_math_vec_types.hh"
+
+#include "COM_domain.hh"
+
+namespace blender::realtime_compositor {
+
+Domain::Domain(int2 size) : size(size), transformation(float3x3::identity())
+{
+}
+
+Domain::Domain(int2 size, float3x3 transformation) : size(size), transformation(transformation)
+{
+}
+
+void Domain::transform(const float3x3 &input_transformation)
+{
+ transformation = input_transformation * transformation;
+}
+
+Domain Domain::identity()
+{
+ return Domain(int2(1), float3x3::identity());
+}
+
+bool operator==(const Domain &a, const Domain &b)
+{
+ return a.size == b.size && a.transformation == b.transformation;
+}
+
+bool operator!=(const Domain &a, const Domain &b)
+{
+ return !(a == b);
+}
+
+} // namespace blender::realtime_compositor
diff --git a/source/blender/compositor/realtime_compositor/intern/evaluator.cc b/source/blender/compositor/realtime_compositor/intern/evaluator.cc
new file mode 100644
index 00000000000..48457bec199
--- /dev/null
+++ b/source/blender/compositor/realtime_compositor/intern/evaluator.cc
@@ -0,0 +1,170 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+
+#include <string>
+
+#include "DNA_node_types.h"
+
+#include "NOD_derived_node_tree.hh"
+
+#include "COM_compile_state.hh"
+#include "COM_context.hh"
+#include "COM_evaluator.hh"
+#include "COM_input_single_value_operation.hh"
+#include "COM_node_operation.hh"
+#include "COM_operation.hh"
+#include "COM_result.hh"
+#include "COM_scheduler.hh"
+#include "COM_shader_operation.hh"
+#include "COM_utilities.hh"
+
+namespace blender::realtime_compositor {
+
+using namespace nodes::derived_node_tree_types;
+
+Evaluator::Evaluator(Context &context, bNodeTree &node_tree)
+ : context_(context), node_tree_(node_tree)
+{
+}
+
+void Evaluator::evaluate()
+{
+ context_.texture_pool().reset();
+
+ if (!is_compiled_) {
+ compile_and_evaluate();
+ is_compiled_ = true;
+ return;
+ }
+
+ for (const std::unique_ptr<Operation> &operation : operations_stream_) {
+ operation->evaluate();
+ }
+}
+
+void Evaluator::reset()
+{
+ operations_stream_.clear();
+ derived_node_tree_.reset();
+
+ is_compiled_ = false;
+}
+
+bool Evaluator::validate_node_tree()
+{
+ if (derived_node_tree_->has_link_cycles()) {
+ context_.set_info_message("Compositor node tree has cyclic links!");
+ return false;
+ }
+
+ if (derived_node_tree_->has_undefined_nodes_or_sockets()) {
+ context_.set_info_message("Compositor node tree has undefined nodes or sockets!");
+ return false;
+ }
+
+ return true;
+}
+
+void Evaluator::compile_and_evaluate()
+{
+ derived_node_tree_ = std::make_unique<DerivedNodeTree>(node_tree_);
+
+ if (!validate_node_tree()) {
+ return;
+ }
+
+ const Schedule schedule = compute_schedule(*derived_node_tree_);
+
+ CompileState compile_state(schedule);
+
+ for (const DNode &node : schedule) {
+ if (compile_state.should_compile_shader_compile_unit(node)) {
+ compile_and_evaluate_shader_compile_unit(compile_state);
+ }
+
+ if (is_shader_node(node)) {
+ compile_state.add_node_to_shader_compile_unit(node);
+ }
+ else {
+ compile_and_evaluate_node(node, compile_state);
+ }
+ }
+}
+
+void Evaluator::compile_and_evaluate_node(DNode node, CompileState &compile_state)
+{
+ NodeOperation *operation = node->typeinfo->get_compositor_operation(context_, node);
+
+ compile_state.map_node_to_node_operation(node, operation);
+
+ map_node_operation_inputs_to_their_results(node, operation, compile_state);
+
+ /* This has to be done after input mapping because the method may add Input Single Value
+ * Operations to the operations stream, which needs to be evaluated before the operation itself
+ * is evaluated. */
+ operations_stream_.append(std::unique_ptr<Operation>(operation));
+
+ operation->compute_results_reference_counts(compile_state.get_schedule());
+
+ operation->evaluate();
+}
+
+void Evaluator::map_node_operation_inputs_to_their_results(DNode node,
+ NodeOperation *operation,
+ CompileState &compile_state)
+{
+ for (const bNodeSocket *input : node->input_sockets()) {
+ const DInputSocket dinput{node.context(), input};
+
+ DSocket dorigin = get_input_origin_socket(dinput);
+
+ /* The origin socket is an output, which means the input is linked. So map the input to the
+ * result we get from the output. */
+ if (dorigin->is_output()) {
+ Result &result = compile_state.get_result_from_output_socket(DOutputSocket(dorigin));
+ operation->map_input_to_result(input->identifier, &result);
+ continue;
+ }
+
+ /* Otherwise, the origin socket is an input, which either means the input is unlinked and the
+ * origin is the input socket itself or the input is connected to an unlinked input of a group
+ * input node and the origin is the input of the group input node. So map the input to the
+ * result of a newly created Input Single Value Operation. */
+ auto *input_operation = new InputSingleValueOperation(context_, DInputSocket(dorigin));
+ operation->map_input_to_result(input->identifier, &input_operation->get_result());
+
+ operations_stream_.append(std::unique_ptr<InputSingleValueOperation>(input_operation));
+
+ input_operation->evaluate();
+ }
+}
+
+void Evaluator::compile_and_evaluate_shader_compile_unit(CompileState &compile_state)
+{
+ ShaderCompileUnit &compile_unit = compile_state.get_shader_compile_unit();
+ ShaderOperation *operation = new ShaderOperation(context_, compile_unit);
+
+ for (DNode node : compile_unit) {
+ compile_state.map_node_to_shader_operation(node, operation);
+ }
+
+ map_shader_operation_inputs_to_their_results(operation, compile_state);
+
+ operations_stream_.append(std::unique_ptr<Operation>(operation));
+
+ operation->compute_results_reference_counts(compile_state.get_schedule());
+
+ operation->evaluate();
+
+ compile_state.reset_shader_compile_unit();
+}
+
+void Evaluator::map_shader_operation_inputs_to_their_results(ShaderOperation *operation,
+ CompileState &compile_state)
+{
+ for (const auto &item : operation->get_inputs_to_linked_outputs_map().items()) {
+ Result &result = compile_state.get_result_from_output_socket(item.value);
+ operation->map_input_to_result(item.key, &result);
+ }
+}
+
+} // namespace blender::realtime_compositor
diff --git a/source/blender/compositor/realtime_compositor/intern/input_single_value_operation.cc b/source/blender/compositor/realtime_compositor/intern/input_single_value_operation.cc
new file mode 100644
index 00000000000..b3cc86b5f79
--- /dev/null
+++ b/source/blender/compositor/realtime_compositor/intern/input_single_value_operation.cc
@@ -0,0 +1,59 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+
+#include "BLI_math_vec_types.hh"
+
+#include "COM_input_single_value_operation.hh"
+#include "COM_operation.hh"
+#include "COM_result.hh"
+#include "COM_utilities.hh"
+
+namespace blender::realtime_compositor {
+
+const StringRef InputSingleValueOperation::output_identifier_ = StringRef("Output");
+
+InputSingleValueOperation::InputSingleValueOperation(Context &context, DInputSocket input_socket)
+ : Operation(context), input_socket_(input_socket)
+{
+ const ResultType result_type = get_node_socket_result_type(input_socket_.bsocket());
+ Result result = Result(result_type, texture_pool());
+
+ /* The result of an input single value operation is guaranteed to have a single user. */
+ result.set_initial_reference_count(1);
+
+ populate_result(result);
+}
+
+void InputSingleValueOperation::execute()
+{
+ /* Allocate a single value for the result. */
+ Result &result = get_result();
+ result.allocate_single_value();
+
+ const bNodeSocket *bsocket = input_socket_.bsocket();
+
+ /* Set the value of the result to the default value of the input socket. */
+ switch (result.type()) {
+ case ResultType::Float:
+ result.set_float_value(bsocket->default_value_typed<bNodeSocketValueFloat>()->value);
+ break;
+ case ResultType::Vector:
+ result.set_vector_value(
+ float3(bsocket->default_value_typed<bNodeSocketValueVector>()->value));
+ break;
+ case ResultType::Color:
+ result.set_color_value(float4(bsocket->default_value_typed<bNodeSocketValueRGBA>()->value));
+ break;
+ }
+}
+
+Result &InputSingleValueOperation::get_result()
+{
+ return Operation::get_result(output_identifier_);
+}
+
+void InputSingleValueOperation::populate_result(Result result)
+{
+ Operation::populate_result(output_identifier_, result);
+}
+
+} // namespace blender::realtime_compositor
diff --git a/source/blender/compositor/realtime_compositor/intern/node_operation.cc b/source/blender/compositor/realtime_compositor/intern/node_operation.cc
new file mode 100644
index 00000000000..1c20c967ddb
--- /dev/null
+++ b/source/blender/compositor/realtime_compositor/intern/node_operation.cc
@@ -0,0 +1,67 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+
+#include <memory>
+
+#include "BLI_map.hh"
+#include "BLI_string_ref.hh"
+#include "BLI_vector.hh"
+
+#include "DNA_node_types.h"
+
+#include "NOD_derived_node_tree.hh"
+#include "NOD_node_declaration.hh"
+
+#include "COM_context.hh"
+#include "COM_input_descriptor.hh"
+#include "COM_node_operation.hh"
+#include "COM_operation.hh"
+#include "COM_result.hh"
+#include "COM_scheduler.hh"
+#include "COM_utilities.hh"
+
+namespace blender::realtime_compositor {
+
+using namespace nodes::derived_node_tree_types;
+
+NodeOperation::NodeOperation(Context &context, DNode node) : Operation(context), node_(node)
+{
+ for (const bNodeSocket *output : node->output_sockets()) {
+ const ResultType result_type = get_node_socket_result_type(output);
+ const Result result = Result(result_type, texture_pool());
+ populate_result(output->identifier, result);
+ }
+
+ for (const bNodeSocket *input : node->input_sockets()) {
+ const InputDescriptor input_descriptor = input_descriptor_from_input_socket(input);
+ declare_input_descriptor(input->identifier, input_descriptor);
+ }
+}
+
+void NodeOperation::compute_results_reference_counts(const Schedule &schedule)
+{
+ for (const bNodeSocket *output : this->node()->output_sockets()) {
+ const DOutputSocket doutput{node().context(), output};
+
+ const int reference_count = number_of_inputs_linked_to_output_conditioned(
+ doutput, [&](DInputSocket input) { return schedule.contains(input.node()); });
+
+ get_result(doutput->identifier).set_initial_reference_count(reference_count);
+ }
+}
+
+const DNode &NodeOperation::node() const
+{
+ return node_;
+}
+
+const bNode &NodeOperation::bnode() const
+{
+ return *node_;
+}
+
+bool NodeOperation::should_compute_output(StringRef identifier)
+{
+ return get_result(identifier).should_compute();
+}
+
+} // namespace blender::realtime_compositor
diff --git a/source/blender/compositor/realtime_compositor/intern/operation.cc b/source/blender/compositor/realtime_compositor/intern/operation.cc
new file mode 100644
index 00000000000..832196cc5ef
--- /dev/null
+++ b/source/blender/compositor/realtime_compositor/intern/operation.cc
@@ -0,0 +1,206 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+
+#include <limits>
+#include <memory>
+
+#include "BLI_map.hh"
+#include "BLI_string_ref.hh"
+#include "BLI_vector.hh"
+
+#include "COM_context.hh"
+#include "COM_conversion_operation.hh"
+#include "COM_domain.hh"
+#include "COM_input_descriptor.hh"
+#include "COM_operation.hh"
+#include "COM_realize_on_domain_operation.hh"
+#include "COM_reduce_to_single_value_operation.hh"
+#include "COM_result.hh"
+#include "COM_simple_operation.hh"
+#include "COM_static_shader_manager.hh"
+#include "COM_texture_pool.hh"
+
+namespace blender::realtime_compositor {
+
+Operation::Operation(Context &context) : context_(context)
+{
+}
+
+Operation::~Operation() = default;
+
+void Operation::evaluate()
+{
+ evaluate_input_processors();
+
+ reset_results();
+
+ execute();
+
+ release_inputs();
+}
+
+Result &Operation::get_result(StringRef identifier)
+{
+ return results_.lookup(identifier);
+}
+
+void Operation::map_input_to_result(StringRef identifier, Result *result)
+{
+ results_mapped_to_inputs_.add_new(identifier, result);
+}
+
+Domain Operation::compute_domain()
+{
+ /* Default to an identity domain in case no domain input was found, most likely because all
+ * inputs are single values. */
+ Domain operation_domain = Domain::identity();
+ int current_domain_priority = std::numeric_limits<int>::max();
+
+ /* Go over the inputs and find the domain of the non single value input with the highest domain
+ * priority. */
+ for (StringRef identifier : input_descriptors_.keys()) {
+ const Result &result = get_input(identifier);
+ const InputDescriptor &descriptor = get_input_descriptor(identifier);
+
+ /* A single value input can't be a domain input. */
+ if (result.is_single_value() || descriptor.expects_single_value) {
+ continue;
+ }
+
+ /* An input that skips realization can't be a domain input. */
+ if (descriptor.skip_realization) {
+ continue;
+ }
+
+ /* Notice that the lower the domain priority value is, the higher the priority is, hence the
+ * less than comparison. */
+ if (descriptor.domain_priority < current_domain_priority) {
+ operation_domain = result.domain();
+ current_domain_priority = descriptor.domain_priority;
+ }
+ }
+
+ return operation_domain;
+}
+
+void Operation::add_and_evaluate_input_processors()
+{
+ /* Each input processor type is added to all inputs entirely before the next type. This is done
+ * because the construction of the input processors may depend on the result of previous input
+ * processors for all inputs. For instance, the realize on domain input processor considers the
+ * value of all inputs, so previous input processors for all inputs needs to be added and
+ * evaluated first. */
+
+ for (const StringRef &identifier : results_mapped_to_inputs_.keys()) {
+ SimpleOperation *single_value = ReduceToSingleValueOperation::construct_if_needed(
+ context(), get_input(identifier));
+ add_and_evaluate_input_processor(identifier, single_value);
+ }
+
+ for (const StringRef &identifier : results_mapped_to_inputs_.keys()) {
+ SimpleOperation *conversion = ConversionOperation::construct_if_needed(
+ context(), get_input(identifier), get_input_descriptor(identifier));
+ add_and_evaluate_input_processor(identifier, conversion);
+ }
+
+ for (const StringRef &identifier : results_mapped_to_inputs_.keys()) {
+ SimpleOperation *realize_on_domain = RealizeOnDomainOperation::construct_if_needed(
+ context(), get_input(identifier), get_input_descriptor(identifier), compute_domain());
+ add_and_evaluate_input_processor(identifier, realize_on_domain);
+ }
+}
+
+void Operation::add_and_evaluate_input_processor(StringRef identifier, SimpleOperation *processor)
+{
+ /* Allow null inputs to facilitate construct_if_needed pattern of addition. For instance, see the
+ * implementation of the add_and_evaluate_input_processors method. */
+ if (!processor) {
+ return;
+ }
+
+ ProcessorsVector &processors = input_processors_.lookup_or_add_default(identifier);
+
+ /* Get the result that should serve as the input for the processor. This is either the result
+ * mapped to the input or the result of the last processor depending on whether this is the first
+ * processor or not. */
+ Result &result = processors.is_empty() ? get_input(identifier) : processors.last()->get_result();
+
+ /* Map the input result of the processor and add it to the processors vector. */
+ processor->map_input_to_result(&result);
+ processors.append(std::unique_ptr<SimpleOperation>(processor));
+
+ /* Switch the result mapped to the input to be the output result of the processor. */
+ switch_result_mapped_to_input(identifier, &processor->get_result());
+
+ processor->evaluate();
+}
+
+Result &Operation::get_input(StringRef identifier) const
+{
+ return *results_mapped_to_inputs_.lookup(identifier);
+}
+
+void Operation::switch_result_mapped_to_input(StringRef identifier, Result *result)
+{
+ results_mapped_to_inputs_.lookup(identifier) = result;
+}
+
+void Operation::populate_result(StringRef identifier, Result result)
+{
+ results_.add_new(identifier, result);
+}
+
+void Operation::declare_input_descriptor(StringRef identifier, InputDescriptor descriptor)
+{
+ input_descriptors_.add_new(identifier, descriptor);
+}
+
+InputDescriptor &Operation::get_input_descriptor(StringRef identifier)
+{
+ return input_descriptors_.lookup(identifier);
+}
+
+Context &Operation::context()
+{
+ return context_;
+}
+
+TexturePool &Operation::texture_pool() const
+{
+ return context_.texture_pool();
+}
+
+StaticShaderManager &Operation::shader_manager() const
+{
+ return context_.shader_manager();
+}
+
+void Operation::evaluate_input_processors()
+{
+ if (!input_processors_added_) {
+ add_and_evaluate_input_processors();
+ input_processors_added_ = true;
+ return;
+ }
+
+ for (const ProcessorsVector &processors : input_processors_.values()) {
+ for (const std::unique_ptr<SimpleOperation> &processor : processors) {
+ processor->evaluate();
+ }
+ }
+}
+
+void Operation::reset_results()
+{
+ for (Result &result : results_.values()) {
+ result.reset();
+ }
+}
+
+void Operation::release_inputs()
+{
+ for (Result *result : results_mapped_to_inputs_.values()) {
+ result->release();
+ }
+}
+
+} // namespace blender::realtime_compositor
diff --git a/source/blender/compositor/realtime_compositor/intern/realize_on_domain_operation.cc b/source/blender/compositor/realtime_compositor/intern/realize_on_domain_operation.cc
new file mode 100644
index 00000000000..817293c0fa6
--- /dev/null
+++ b/source/blender/compositor/realtime_compositor/intern/realize_on_domain_operation.cc
@@ -0,0 +1,130 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+
+#include "BLI_float3x3.hh"
+#include "BLI_math_vec_types.hh"
+#include "BLI_utildefines.h"
+
+#include "GPU_shader.h"
+#include "GPU_texture.h"
+
+#include "COM_context.hh"
+#include "COM_domain.hh"
+#include "COM_input_descriptor.hh"
+#include "COM_realize_on_domain_operation.hh"
+#include "COM_result.hh"
+#include "COM_utilities.hh"
+
+namespace blender::realtime_compositor {
+
+RealizeOnDomainOperation::RealizeOnDomainOperation(Context &context,
+ Domain domain,
+ ResultType type)
+ : SimpleOperation(context), domain_(domain)
+{
+ InputDescriptor input_descriptor;
+ input_descriptor.type = type;
+ declare_input_descriptor(input_descriptor);
+ populate_result(Result(type, texture_pool()));
+}
+
+void RealizeOnDomainOperation::execute()
+{
+ Result &input = get_input();
+ Result &result = get_result();
+
+ result.allocate_texture(domain_);
+
+ GPUShader *shader = get_realization_shader();
+ GPU_shader_bind(shader);
+
+ /* Transform the input space into the domain space. */
+ const float3x3 local_transformation = input.domain().transformation *
+ domain_.transformation.inverted();
+
+ /* Set the origin of the transformation to be the center of the domain. */
+ const float3x3 transformation = float3x3::from_origin_transformation(
+ local_transformation, float2(domain_.size) / 2.0f);
+
+ /* Invert the transformation because the shader transforms the domain coordinates instead of the
+ * input image itself and thus expect the inverse. */
+ const float3x3 inverse_transformation = transformation.inverted();
+
+ GPU_shader_uniform_mat3_as_mat4(shader, "inverse_transformation", inverse_transformation.ptr());
+
+ /* The texture sampler should use bilinear interpolation for both the bilinear and bicubic
+ * cases, as the logic used by the bicubic realization shader expects textures to use bilinear
+ * interpolation. */
+ const bool use_bilinear = ELEM(input.get_realization_options().interpolation,
+ Interpolation::Bilinear,
+ Interpolation::Bicubic);
+ GPU_texture_filter_mode(input.texture(), use_bilinear);
+
+ /* Make out-of-bound texture access return zero by clamping to border color. And make texture
+ * wrap appropriately if the input repeats. */
+ const bool repeats = input.get_realization_options().repeat_x ||
+ input.get_realization_options().repeat_y;
+ GPU_texture_wrap_mode(input.texture(), repeats, false);
+
+ input.bind_as_texture(shader, "input_tx");
+ result.bind_as_image(shader, "domain_img");
+
+ compute_dispatch_threads_at_least(shader, domain_.size);
+
+ input.unbind_as_texture();
+ result.unbind_as_image();
+ GPU_shader_unbind();
+}
+
+GPUShader *RealizeOnDomainOperation::get_realization_shader()
+{
+ switch (get_result().type()) {
+ case ResultType::Color:
+ return shader_manager().get("compositor_realize_on_domain_color");
+ case ResultType::Vector:
+ return shader_manager().get("compositor_realize_on_domain_vector");
+ case ResultType::Float:
+ return shader_manager().get("compositor_realize_on_domain_float");
+ }
+
+ BLI_assert_unreachable();
+ return nullptr;
+}
+
+Domain RealizeOnDomainOperation::compute_domain()
+{
+ return domain_;
+}
+
+SimpleOperation *RealizeOnDomainOperation::construct_if_needed(
+ Context &context,
+ const Result &input_result,
+ const InputDescriptor &input_descriptor,
+ const Domain &operation_domain)
+{
+ /* This input wants to skip realization, the operation is not needed. */
+ if (input_descriptor.skip_realization) {
+ return nullptr;
+ }
+
+ /* The input expects a single value and if no single value is provided, it will be ignored and a
+ * default value will be used, so no need to realize it and the operation is not needed. */
+ if (input_descriptor.expects_single_value) {
+ return nullptr;
+ }
+
+ /* Input result is a single value and does not need realization, the operation is not needed. */
+ if (input_result.is_single_value()) {
+ return nullptr;
+ }
+
+ /* The input have an identical domain to the operation domain, so no need to realize it and the
+ * operation is not needed. */
+ if (input_result.domain() == operation_domain) {
+ return nullptr;
+ }
+
+ /* Otherwise, realization is needed. */
+ return new RealizeOnDomainOperation(context, operation_domain, input_descriptor.type);
+}
+
+} // namespace blender::realtime_compositor
diff --git a/source/blender/compositor/realtime_compositor/intern/reduce_to_single_value_operation.cc b/source/blender/compositor/realtime_compositor/intern/reduce_to_single_value_operation.cc
new file mode 100644
index 00000000000..acc9b4ab7d6
--- /dev/null
+++ b/source/blender/compositor/realtime_compositor/intern/reduce_to_single_value_operation.cc
@@ -0,0 +1,67 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+
+#include "GPU_state.h"
+#include "GPU_texture.h"
+
+#include "MEM_guardedalloc.h"
+
+#include "COM_context.hh"
+#include "COM_input_descriptor.hh"
+#include "COM_reduce_to_single_value_operation.hh"
+#include "COM_result.hh"
+
+namespace blender::realtime_compositor {
+
+ReduceToSingleValueOperation::ReduceToSingleValueOperation(Context &context, ResultType type)
+ : SimpleOperation(context)
+{
+ InputDescriptor input_descriptor;
+ input_descriptor.type = type;
+ declare_input_descriptor(input_descriptor);
+ populate_result(Result(type, texture_pool()));
+}
+
+void ReduceToSingleValueOperation::execute()
+{
+ /* Make sure any prior writes to the texture are reflected before downloading it. */
+ GPU_memory_barrier(GPU_BARRIER_TEXTURE_UPDATE);
+
+ const Result &input = get_input();
+ float *pixel = static_cast<float *>(GPU_texture_read(input.texture(), GPU_DATA_FLOAT, 0));
+
+ Result &result = get_result();
+ result.allocate_single_value();
+ switch (result.type()) {
+ case ResultType::Color:
+ result.set_color_value(pixel);
+ break;
+ case ResultType::Vector:
+ result.set_vector_value(pixel);
+ break;
+ case ResultType::Float:
+ result.set_float_value(*pixel);
+ break;
+ }
+
+ MEM_freeN(pixel);
+}
+
+SimpleOperation *ReduceToSingleValueOperation::construct_if_needed(Context &context,
+ const Result &input_result)
+{
+ /* Input result is already a single value, the operation is not needed. */
+ if (input_result.is_single_value()) {
+ return nullptr;
+ }
+
+ /* The input is a full sized texture and can't be reduced to a single value, the operation is not
+ * needed. */
+ if (input_result.domain().size != int2(1)) {
+ return nullptr;
+ }
+
+ /* The input is a texture of a single pixel and can be reduced to a single value. */
+ return new ReduceToSingleValueOperation(context, input_result.type());
+}
+
+} // namespace blender::realtime_compositor
diff --git a/source/blender/compositor/realtime_compositor/intern/result.cc b/source/blender/compositor/realtime_compositor/intern/result.cc
new file mode 100644
index 00000000000..8059367d211
--- /dev/null
+++ b/source/blender/compositor/realtime_compositor/intern/result.cc
@@ -0,0 +1,257 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+
+#include "BLI_float3x3.hh"
+#include "BLI_math_vec_types.hh"
+
+#include "GPU_shader.h"
+#include "GPU_state.h"
+#include "GPU_texture.h"
+
+#include "COM_domain.hh"
+#include "COM_result.hh"
+#include "COM_texture_pool.hh"
+
+namespace blender::realtime_compositor {
+
+Result::Result(ResultType type, TexturePool &texture_pool)
+ : type_(type), texture_pool_(&texture_pool)
+{
+}
+
+void Result::allocate_texture(Domain domain)
+{
+ is_single_value_ = false;
+ switch (type_) {
+ case ResultType::Float:
+ texture_ = texture_pool_->acquire_float(domain.size);
+ break;
+ case ResultType::Vector:
+ texture_ = texture_pool_->acquire_vector(domain.size);
+ break;
+ case ResultType::Color:
+ texture_ = texture_pool_->acquire_color(domain.size);
+ break;
+ }
+ domain_ = domain;
+}
+
+void Result::allocate_single_value()
+{
+ is_single_value_ = true;
+ /* Single values are stored in 1x1 textures as well as the single value members. */
+ const int2 texture_size{1, 1};
+ switch (type_) {
+ case ResultType::Float:
+ texture_ = texture_pool_->acquire_float(texture_size);
+ break;
+ case ResultType::Vector:
+ texture_ = texture_pool_->acquire_vector(texture_size);
+ break;
+ case ResultType::Color:
+ texture_ = texture_pool_->acquire_color(texture_size);
+ break;
+ }
+ domain_ = Domain::identity();
+}
+
+void Result::allocate_invalid()
+{
+ allocate_single_value();
+ switch (type_) {
+ case ResultType::Float:
+ set_float_value(0.0f);
+ break;
+ case ResultType::Vector:
+ set_vector_value(float3(0.0f));
+ break;
+ case ResultType::Color:
+ set_color_value(float4(0.0f));
+ break;
+ }
+}
+
+void Result::bind_as_texture(GPUShader *shader, const char *texture_name) const
+{
+ /* Make sure any prior writes to the texture are reflected before reading from it. */
+ GPU_memory_barrier(GPU_BARRIER_TEXTURE_FETCH);
+
+ const int texture_image_unit = GPU_shader_get_texture_binding(shader, texture_name);
+ GPU_texture_bind(texture_, texture_image_unit);
+}
+
+void Result::bind_as_image(GPUShader *shader, const char *image_name) const
+{
+ const int image_unit = GPU_shader_get_texture_binding(shader, image_name);
+ GPU_texture_image_bind(texture_, image_unit);
+}
+
+void Result::unbind_as_texture() const
+{
+ GPU_texture_unbind(texture_);
+}
+
+void Result::unbind_as_image() const
+{
+ GPU_texture_image_unbind(texture_);
+}
+
+void Result::pass_through(Result &target)
+{
+ /* Increment the reference count of the master by the original reference count of the target. */
+ increment_reference_count(target.reference_count());
+
+ /* Make the target an exact copy of this result, but keep the initial reference count, as this is
+ * a property of the original result and is needed for correctly resetting the result before the
+ * next evaluation. */
+ const int initial_reference_count = target.initial_reference_count_;
+ target = *this;
+ target.initial_reference_count_ = initial_reference_count;
+
+ target.master_ = this;
+}
+
+void Result::transform(const float3x3 &transformation)
+{
+ domain_.transform(transformation);
+}
+
+RealizationOptions &Result::get_realization_options()
+{
+ return domain_.realization_options;
+}
+
+float Result::get_float_value() const
+{
+ return float_value_;
+}
+
+float3 Result::get_vector_value() const
+{
+ return vector_value_;
+}
+
+float4 Result::get_color_value() const
+{
+ return color_value_;
+}
+
+float Result::get_float_value_default(float default_value) const
+{
+ if (is_single_value()) {
+ return get_float_value();
+ }
+ return default_value;
+}
+
+float3 Result::get_vector_value_default(const float3 &default_value) const
+{
+ if (is_single_value()) {
+ return get_vector_value();
+ }
+ return default_value;
+}
+
+float4 Result::get_color_value_default(const float4 &default_value) const
+{
+ if (is_single_value()) {
+ return get_color_value();
+ }
+ return default_value;
+}
+
+void Result::set_float_value(float value)
+{
+ float_value_ = value;
+ GPU_texture_update(texture_, GPU_DATA_FLOAT, &float_value_);
+}
+
+void Result::set_vector_value(const float3 &value)
+{
+ vector_value_ = value;
+ GPU_texture_update(texture_, GPU_DATA_FLOAT, vector_value_);
+}
+
+void Result::set_color_value(const float4 &value)
+{
+ color_value_ = value;
+ GPU_texture_update(texture_, GPU_DATA_FLOAT, color_value_);
+}
+
+void Result::set_initial_reference_count(int count)
+{
+ initial_reference_count_ = count;
+}
+
+void Result::reset()
+{
+ master_ = nullptr;
+ reference_count_ = initial_reference_count_;
+}
+
+void Result::increment_reference_count(int count)
+{
+ /* If there is a master result, increment its reference count instead. */
+ if (master_) {
+ master_->increment_reference_count(count);
+ return;
+ }
+
+ reference_count_ += count;
+}
+
+void Result::release()
+{
+ /* If there is a master result, release it instead. */
+ if (master_) {
+ master_->release();
+ return;
+ }
+
+ /* Decrement the reference count, and if it reaches zero, release the texture back into the
+ * texture pool. */
+ reference_count_--;
+ if (reference_count_ == 0) {
+ texture_pool_->release(texture_);
+ }
+}
+
+bool Result::should_compute()
+{
+ return initial_reference_count_ != 0;
+}
+
+ResultType Result::type() const
+{
+ return type_;
+}
+
+bool Result::is_texture() const
+{
+ return !is_single_value_;
+}
+
+bool Result::is_single_value() const
+{
+ return is_single_value_;
+}
+
+GPUTexture *Result::texture() const
+{
+ return texture_;
+}
+
+int Result::reference_count() const
+{
+ /* If there is a master result, return its reference count instead. */
+ if (master_) {
+ return master_->reference_count();
+ }
+ return reference_count_;
+}
+
+const Domain &Result::domain() const
+{
+ return domain_;
+}
+
+} // namespace blender::realtime_compositor
diff --git a/source/blender/compositor/realtime_compositor/intern/scheduler.cc b/source/blender/compositor/realtime_compositor/intern/scheduler.cc
new file mode 100644
index 00000000000..ac5cc55a73f
--- /dev/null
+++ b/source/blender/compositor/realtime_compositor/intern/scheduler.cc
@@ -0,0 +1,314 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+
+#include "BLI_map.hh"
+#include "BLI_set.hh"
+#include "BLI_stack.hh"
+#include "BLI_vector.hh"
+#include "BLI_vector_set.hh"
+
+#include "NOD_derived_node_tree.hh"
+
+#include "BKE_node_runtime.hh"
+
+#include "COM_scheduler.hh"
+#include "COM_utilities.hh"
+
+namespace blender::realtime_compositor {
+
+using namespace nodes::derived_node_tree_types;
+
+/* Compute the output node whose result should be computed. The output node is the node marked as
+ * NODE_DO_OUTPUT. If multiple types of output nodes are marked, then the preference will be
+ * CMP_NODE_COMPOSITE > CMP_NODE_VIEWER > CMP_NODE_SPLITVIEWER. If no output node exists, a null
+ * node will be returned. */
+static DNode compute_output_node(DerivedNodeTree &tree)
+{
+ const bNodeTree &root_tree = tree.root_context().btree();
+
+ for (const bNode *node : root_tree.nodes_by_type("CompositorNodeComposite")) {
+ if (node->flag & NODE_DO_OUTPUT) {
+ return DNode(&tree.root_context(), node);
+ }
+ }
+
+ for (const bNode *node : root_tree.nodes_by_type("CompositorNodeViewer")) {
+ if (node->flag & NODE_DO_OUTPUT) {
+ return DNode(&tree.root_context(), node);
+ }
+ }
+
+ for (const bNode *node : root_tree.nodes_by_type("CompositorNodeSplitViewer")) {
+ if (node->flag & NODE_DO_OUTPUT) {
+ return DNode(&tree.root_context(), node);
+ }
+ }
+
+ /* No output node found, return a null node. */
+ return DNode();
+}
+
+/* A type representing a mapping that associates each node with a heuristic estimation of the
+ * number of intermediate buffers needed to compute it and all of its dependencies. See the
+ * compute_number_of_needed_buffers function for more information. */
+using NeededBuffers = Map<DNode, int>;
+
+/* Compute a heuristic estimation of the number of intermediate buffers needed to compute each node
+ * and all of its dependencies for all nodes that the given node depends on. The output is a map
+ * that maps each node with the number of intermediate buffers needed to compute it and all of its
+ * dependencies.
+ *
+ * Consider a node that takes n number of buffers as an input from a number of node dependencies,
+ * which we shall call the input nodes. The node also computes and outputs m number of buffers.
+ * In order for the node to compute its output, a number of intermediate buffers will be needed.
+ * Since the node takes n buffers and outputs m buffers, then the number of buffers directly
+ * needed by the node is (n + m). But each of the input buffers are computed by a node that, in
+ * turn, needs a number of buffers to compute its output. So the total number of buffers needed
+ * to compute the output of the node is max(n + m, d) where d is the number of buffers needed by
+ * the input node that needs the largest number of buffers. We only consider the input node that
+ * needs the largest number of buffers, because those buffers can be reused by any input node
+ * that needs a lesser number of buffers.
+ *
+ * Shader nodes, however, are a special case because links between two shader nodes inside the same
+ * shader operation don't pass a buffer, but a single value in the compiled shader. So for shader
+ * nodes, only inputs and outputs linked to nodes that are not shader nodes should be considered.
+ * Note that this might not actually be true, because the compiler may decide to split a shader
+ * operation into multiples ones that will pass buffers, but this is not something that can be
+ * known at scheduling-time. See the discussion in COM_compile_state.hh, COM_evaluator.hh, and
+ * COM_shader_operation.hh for more information. In the node tree shown below, node 4 will have
+ * exactly the same number of needed buffers by node 3, because its inputs and outputs are all
+ * internally linked in the shader operation.
+ *
+ * Shader Operation
+ * +------------------------------------------------------+
+ * .------------. | .------------. .------------. .------------. | .------------.
+ * | Node 1 | | | Node 3 | | Node 4 | | Node 5 | | | Node 6 |
+ * | |----|--| |--| |------| |--|--| |
+ * | | .-|--| | | | .---| | | | |
+ * '------------' | | '------------' '------------' | '------------' | '------------'
+ * | +----------------------------------|-------------------+
+ * .------------. | |
+ * | Node 2 | | |
+ * | |--'------------------------------------'
+ * | |
+ * '------------'
+ *
+ * Note that the computed output is not guaranteed to be accurate, and will not be in most cases.
+ * The computation is merely a heuristic estimation that works well in most cases. This is due to a
+ * number of reasons:
+ * - The node tree is actually a graph that allows output sharing, which is not something that was
+ * taken into consideration in this implementation because it is difficult to correctly consider.
+ * - Each node may allocate any number of internal buffers, which is not taken into account in this
+ * implementation because it rarely affects the output and is done by very few nodes.
+ * - The compiler may decide to compiler the schedule differently depending on runtime information
+ * which we can merely speculate at scheduling-time as described above. */
+static NeededBuffers compute_number_of_needed_buffers(DNode output_node)
+{
+ NeededBuffers needed_buffers;
+
+ /* A stack of nodes used to traverse the node tree starting from the output node. */
+ Stack<DNode> node_stack = {output_node};
+
+ /* Traverse the node tree in a post order depth first manner and compute the number of needed
+ * buffers for each node. Post order traversal guarantee that all the node dependencies of each
+ * node are computed before it. This is done by pushing all the uncomputed node dependencies to
+ * the node stack first and only popping and computing the node when all its node dependencies
+ * were computed. */
+ while (!node_stack.is_empty()) {
+ /* Do not pop the node immediately, as it may turn out that we can't compute its number of
+ * needed buffers just yet because its dependencies weren't computed, it will be popped later
+ * when needed. */
+ DNode &node = node_stack.peek();
+
+ /* Go over the node dependencies connected to the inputs of the node and push them to the node
+ * stack if they were not computed already. */
+ Set<DNode> pushed_nodes;
+ for (const bNodeSocket *input : node->input_sockets()) {
+ const DInputSocket dinput{node.context(), input};
+
+ /* Get the output linked to the input. If it is null, that means the input is unlinked and
+ * has no dependency node. */
+ const DOutputSocket doutput = get_output_linked_to_input(dinput);
+ if (!doutput) {
+ continue;
+ }
+
+ /* The node dependency was already computed or pushed before, so skip it. */
+ if (needed_buffers.contains(doutput.node()) || pushed_nodes.contains(doutput.node())) {
+ continue;
+ }
+
+ /* The output node needs to be computed, push the node dependency to the node stack and
+ * indicate that it was pushed. */
+ node_stack.push(doutput.node());
+ pushed_nodes.add_new(doutput.node());
+ }
+
+ /* If any of the node dependencies were pushed, that means that not all of them were computed
+ * and consequently we can't compute the number of needed buffers for this node just yet. */
+ if (!pushed_nodes.is_empty()) {
+ continue;
+ }
+
+ /* We don't need to store the result of the pop because we already peeked at it before. */
+ node_stack.pop();
+
+ /* Compute the number of buffers that the node takes as an input as well as the number of
+ * buffers needed to compute the most demanding of the node dependencies. */
+ int number_of_input_buffers = 0;
+ int buffers_needed_by_dependencies = 0;
+ for (const bNodeSocket *input : node->input_sockets()) {
+ const DInputSocket dinput{node.context(), input};
+
+ /* Get the output linked to the input. If it is null, that means the input is unlinked.
+ * Unlinked inputs do not take a buffer, so skip those inputs. */
+ const DOutputSocket doutput = get_output_linked_to_input(dinput);
+ if (!doutput) {
+ continue;
+ }
+
+ /* Since this input is linked, if the link is not between two shader nodes, it means that the
+ * node takes a buffer through this input and so we increment the number of input buffers. */
+ if (!is_shader_node(node) || !is_shader_node(doutput.node())) {
+ number_of_input_buffers++;
+ }
+
+ /* If the number of buffers needed by the node dependency is more than the total number of
+ * buffers needed by the dependencies, then update the latter to be the former. This is
+ * computing the "d" in the aforementioned equation "max(n + m, d)". */
+ const int buffers_needed_by_dependency = needed_buffers.lookup(doutput.node());
+ if (buffers_needed_by_dependency > buffers_needed_by_dependencies) {
+ buffers_needed_by_dependencies = buffers_needed_by_dependency;
+ }
+ }
+
+ /* Compute the number of buffers that will be computed/output by this node. */
+ int number_of_output_buffers = 0;
+ for (const bNodeSocket *output : node->output_sockets()) {
+ const DOutputSocket doutput{node.context(), output};
+
+ /* The output is not linked, it outputs no buffer. */
+ if (!output->is_logically_linked()) {
+ continue;
+ }
+
+ /* If any of the links is not between two shader nodes, it means that the node outputs
+ * a buffer through this output and so we increment the number of output buffers. */
+ if (!is_output_linked_to_node_conditioned(doutput, is_shader_node) ||
+ !is_shader_node(node)) {
+ number_of_output_buffers++;
+ }
+ }
+
+ /* Compute the heuristic estimation of the number of needed intermediate buffers to compute
+ * this node and all of its dependencies. This is computing the aforementioned equation
+ * "max(n + m, d)". */
+ const int total_buffers = MAX2(number_of_input_buffers + number_of_output_buffers,
+ buffers_needed_by_dependencies);
+ needed_buffers.add(node, total_buffers);
+ }
+
+ return needed_buffers;
+}
+
+/* There are multiple different possible orders of evaluating a node graph, each of which needs
+ * to allocate a number of intermediate buffers to store its intermediate results. It follows
+ * that we need to find the evaluation order which uses the least amount of intermediate buffers.
+ * For instance, consider a node that takes two input buffers A and B. Each of those buffers is
+ * computed through a number of nodes constituting a sub-graph whose root is the node that
+ * outputs that buffer. Suppose the number of intermediate buffers needed to compute A and B are
+ * N(A) and N(B) respectively and N(A) > N(B). Then evaluating the sub-graph computing A would be
+ * a better option than that of B, because had B was computed first, its outputs will need to be
+ * stored in extra buffers in addition to the buffers needed by A. The number of buffers needed by
+ * each node is estimated as described in the compute_number_of_needed_buffers function.
+ *
+ * This is a heuristic generalization of the Sethi–Ullman algorithm, a generalization that
+ * doesn't always guarantee an optimal evaluation order, as the optimal evaluation order is very
+ * difficult to compute, however, this method works well in most cases. Moreover it assumes that
+ * all buffers will have roughly the same size, which may not always be the case. */
+Schedule compute_schedule(DerivedNodeTree &tree)
+{
+ Schedule schedule;
+
+ /* Compute the output node whose result should be computed. */
+ const DNode output_node = compute_output_node(tree);
+
+ /* No output node, the node tree has no effect, return an empty schedule. */
+ if (!output_node) {
+ return schedule;
+ }
+
+ /* Compute the number of buffers needed by each node connected to the output. */
+ const NeededBuffers needed_buffers = compute_number_of_needed_buffers(output_node);
+
+ /* A stack of nodes used to traverse the node tree starting from the output node. */
+ Stack<DNode> node_stack = {output_node};
+
+ /* Traverse the node tree in a post order depth first manner, scheduling the nodes in an order
+ * informed by the number of buffers needed by each node. Post order traversal guarantee that all
+ * the node dependencies of each node are scheduled before it. This is done by pushing all the
+ * unscheduled node dependencies to the node stack first and only popping and scheduling the node
+ * when all its node dependencies were scheduled. */
+ while (!node_stack.is_empty()) {
+ /* Do not pop the node immediately, as it may turn out that we can't schedule it just yet
+ * because its dependencies weren't scheduled, it will be popped later when needed. */
+ DNode &node = node_stack.peek();
+
+ /* Compute the nodes directly connected to the node inputs sorted by their needed buffers such
+ * that the node with the lowest number of needed buffers comes first. Note that we actually
+ * want the node with the highest number of needed buffers to be schedule first, but since
+ * those are pushed to the traversal stack, we need to push them in reverse order. */
+ Vector<DNode> sorted_dependency_nodes;
+ for (const bNodeSocket *input : node->input_sockets()) {
+ const DInputSocket dinput{node.context(), input};
+
+ /* Get the output linked to the input. If it is null, that means the input is unlinked and
+ * has no dependency node, so skip it. */
+ const DOutputSocket doutput = get_output_linked_to_input(dinput);
+ if (!doutput) {
+ continue;
+ }
+
+ /* The dependency node was added before, so skip it. The number of dependency nodes is very
+ * small, typically less than 3, so a linear search is okay. */
+ if (sorted_dependency_nodes.contains(doutput.node())) {
+ continue;
+ }
+
+ /* The dependency node was already schedule, so skip it. */
+ if (schedule.contains(doutput.node())) {
+ continue;
+ }
+
+ /* Sort in ascending order on insertion, the number of dependency nodes is very small,
+ * typically less than 3, so insertion sort is okay. */
+ int insertion_position = 0;
+ for (int i = 0; i < sorted_dependency_nodes.size(); i++) {
+ if (needed_buffers.lookup(doutput.node()) >
+ needed_buffers.lookup(sorted_dependency_nodes[i])) {
+ insertion_position++;
+ }
+ else {
+ break;
+ }
+ }
+ sorted_dependency_nodes.insert(insertion_position, doutput.node());
+ }
+
+ /* Push the sorted dependency nodes to the node stack in order. */
+ for (const DNode &dependency_node : sorted_dependency_nodes) {
+ node_stack.push(dependency_node);
+ }
+
+ /* If there are no sorted dependency nodes, that means they were all already scheduled or that
+ * none exists in the first place, so we can pop and schedule the node now. */
+ if (sorted_dependency_nodes.is_empty()) {
+ /* The node might have already been scheduled, so we don't use add_new here and simply don't
+ * add it if it was already scheduled. */
+ schedule.add(node_stack.pop());
+ }
+ }
+
+ return schedule;
+}
+
+} // namespace blender::realtime_compositor
diff --git a/source/blender/compositor/realtime_compositor/intern/shader_node.cc b/source/blender/compositor/realtime_compositor/intern/shader_node.cc
new file mode 100644
index 00000000000..96dd50790c3
--- /dev/null
+++ b/source/blender/compositor/realtime_compositor/intern/shader_node.cc
@@ -0,0 +1,157 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+
+#include "BLI_assert.h"
+#include "BLI_math_vector.h"
+#include "BLI_string_ref.hh"
+
+#include "DNA_node_types.h"
+
+#include "NOD_derived_node_tree.hh"
+
+#include "GPU_material.h"
+
+#include "COM_shader_node.hh"
+#include "COM_utilities.hh"
+
+namespace blender::realtime_compositor {
+
+using namespace nodes::derived_node_tree_types;
+
+ShaderNode::ShaderNode(DNode node) : node_(node)
+{
+ populate_inputs();
+ populate_outputs();
+}
+
+GPUNodeStack *ShaderNode::get_inputs_array()
+{
+ return inputs_.data();
+}
+
+GPUNodeStack *ShaderNode::get_outputs_array()
+{
+ return outputs_.data();
+}
+
+GPUNodeStack &ShaderNode::get_input(StringRef identifier)
+{
+ return inputs_[node_.input_by_identifier(identifier)->index()];
+}
+
+GPUNodeStack &ShaderNode::get_output(StringRef identifier)
+{
+ return outputs_[node_.output_by_identifier(identifier)->index()];
+}
+
+GPUNodeLink *ShaderNode::get_input_link(StringRef identifier)
+{
+ GPUNodeStack &input = get_input(identifier);
+ if (input.link) {
+ return input.link;
+ }
+ return GPU_uniform(input.vec);
+}
+
+const DNode &ShaderNode::node() const
+{
+ return node_;
+}
+
+const bNode &ShaderNode::bnode() const
+{
+ return *node_;
+}
+
+static eGPUType gpu_type_from_socket_type(eNodeSocketDatatype type)
+{
+ switch (type) {
+ case SOCK_FLOAT:
+ return GPU_FLOAT;
+ case SOCK_VECTOR:
+ return GPU_VEC3;
+ case SOCK_RGBA:
+ return GPU_VEC4;
+ default:
+ BLI_assert_unreachable();
+ return GPU_NONE;
+ }
+}
+
+static void gpu_stack_vector_from_socket(float *vector, const bNodeSocket *socket)
+{
+ switch (socket->type) {
+ case SOCK_FLOAT:
+ vector[0] = socket->default_value_typed<bNodeSocketValueFloat>()->value;
+ return;
+ case SOCK_VECTOR:
+ copy_v3_v3(vector, socket->default_value_typed<bNodeSocketValueVector>()->value);
+ return;
+ case SOCK_RGBA:
+ copy_v4_v4(vector, socket->default_value_typed<bNodeSocketValueRGBA>()->value);
+ return;
+ default:
+ BLI_assert_unreachable();
+ }
+}
+
+static void populate_gpu_node_stack(DSocket socket, GPUNodeStack &stack)
+{
+ /* Make sure this stack is not marked as the end of the stack array. */
+ stack.end = false;
+ /* This will be initialized later by the GPU material compiler or the compile method. */
+ stack.link = nullptr;
+
+ stack.sockettype = socket->type;
+ stack.type = gpu_type_from_socket_type((eNodeSocketDatatype)socket->type);
+
+ if (socket->is_input()) {
+ const DInputSocket input(socket);
+
+ DSocket origin = get_input_origin_socket(input);
+
+ /* The input is linked if the origin socket is an output socket. Had it been an input socket,
+ * then it is an unlinked input of a group input node. */
+ stack.hasinput = origin->is_output();
+
+ /* Get the socket value from the origin if it is an input, because then it would either be an
+ * unlinked input or an unlinked input of a group input node that the socket is linked to,
+ * otherwise, get the value from the socket itself. */
+ if (origin->is_input()) {
+ gpu_stack_vector_from_socket(stack.vec, origin.bsocket());
+ }
+ else {
+ gpu_stack_vector_from_socket(stack.vec, socket.bsocket());
+ }
+ }
+ else {
+ stack.hasoutput = socket->is_logically_linked();
+ }
+}
+
+void ShaderNode::populate_inputs()
+{
+ /* Reserve a stack for each input in addition to an extra stack at the end to mark the end of the
+ * array, as this is what the GPU module functions expect. */
+ const int num_input_sockets = node_->input_sockets().size();
+ inputs_.resize(num_input_sockets + 1);
+ inputs_.last().end = true;
+
+ for (int i = 0; i < num_input_sockets; i++) {
+ populate_gpu_node_stack(node_.input(i), inputs_[i]);
+ }
+}
+
+void ShaderNode::populate_outputs()
+{
+ /* Reserve a stack for each output in addition to an extra stack at the end to mark the end of
+ * the array, as this is what the GPU module functions expect. */
+ const int num_output_sockets = node_->output_sockets().size();
+ outputs_.resize(num_output_sockets + 1);
+ outputs_.last().end = true;
+
+ for (int i = 0; i < num_output_sockets; i++) {
+ populate_gpu_node_stack(node_.output(i), outputs_[i]);
+ }
+}
+
+} // namespace blender::realtime_compositor
diff --git a/source/blender/compositor/realtime_compositor/intern/shader_operation.cc b/source/blender/compositor/realtime_compositor/intern/shader_operation.cc
new file mode 100644
index 00000000000..8e52baf63ec
--- /dev/null
+++ b/source/blender/compositor/realtime_compositor/intern/shader_operation.cc
@@ -0,0 +1,526 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+
+#include <memory>
+#include <string>
+
+#include "BLI_listbase.h"
+#include "BLI_map.hh"
+#include "BLI_string_ref.hh"
+#include "BLI_utildefines.h"
+
+#include "DNA_customdata_types.h"
+
+#include "GPU_material.h"
+#include "GPU_shader.h"
+#include "GPU_texture.h"
+#include "GPU_uniform_buffer.h"
+
+#include "gpu_shader_create_info.hh"
+
+#include "NOD_derived_node_tree.hh"
+#include "NOD_node_declaration.hh"
+
+#include "COM_context.hh"
+#include "COM_operation.hh"
+#include "COM_result.hh"
+#include "COM_scheduler.hh"
+#include "COM_shader_node.hh"
+#include "COM_shader_operation.hh"
+#include "COM_utilities.hh"
+
+namespace blender::realtime_compositor {
+
+using namespace nodes::derived_node_tree_types;
+
+ShaderOperation::ShaderOperation(Context &context, ShaderCompileUnit &compile_unit)
+ : Operation(context), compile_unit_(compile_unit)
+{
+ material_ = GPU_material_from_callbacks(&construct_material, &generate_code, this);
+ GPU_material_status_set(material_, GPU_MAT_QUEUED);
+ GPU_material_compile(material_);
+}
+
+ShaderOperation::~ShaderOperation()
+{
+ GPU_material_free_single(material_);
+}
+
+void ShaderOperation::execute()
+{
+ const Domain domain = compute_domain();
+ for (StringRef identifier : output_sockets_to_output_identifiers_map_.values()) {
+ Result &result = get_result(identifier);
+ result.allocate_texture(domain);
+ }
+
+ GPUShader *shader = GPU_material_get_shader(material_);
+ GPU_shader_bind(shader);
+
+ bind_material_resources(shader);
+ bind_inputs(shader);
+ bind_outputs(shader);
+
+ compute_dispatch_threads_at_least(shader, domain.size);
+
+ GPU_texture_unbind_all();
+ GPU_texture_image_unbind_all();
+ GPU_uniformbuf_unbind_all();
+ GPU_shader_unbind();
+}
+
+StringRef ShaderOperation::get_output_identifier_from_output_socket(DOutputSocket output_socket)
+{
+ return output_sockets_to_output_identifiers_map_.lookup(output_socket);
+}
+
+Map<std::string, DOutputSocket> &ShaderOperation::get_inputs_to_linked_outputs_map()
+{
+ return inputs_to_linked_outputs_map_;
+}
+
+void ShaderOperation::compute_results_reference_counts(const Schedule &schedule)
+{
+ for (const auto &item : output_sockets_to_output_identifiers_map_.items()) {
+ const int reference_count = number_of_inputs_linked_to_output_conditioned(
+ item.key, [&](DInputSocket input) { return schedule.contains(input.node()); });
+
+ get_result(item.value).set_initial_reference_count(reference_count);
+ }
+}
+
+void ShaderOperation::bind_material_resources(GPUShader *shader)
+{
+ /* Bind the uniform buffer of the material if it exists. It may not exist if the GPU material has
+ * no uniforms. */
+ GPUUniformBuf *ubo = GPU_material_uniform_buffer_get(material_);
+ if (ubo) {
+ GPU_uniformbuf_bind(ubo, GPU_shader_get_uniform_block_binding(shader, GPU_UBO_BLOCK_NAME));
+ }
+
+ /* Bind color band textures needed by curve and ramp nodes. */
+ ListBase textures = GPU_material_textures(material_);
+ LISTBASE_FOREACH (GPUMaterialTexture *, texture, &textures) {
+ if (texture->colorband) {
+ const int texture_image_unit = GPU_shader_get_texture_binding(shader, texture->sampler_name);
+ GPU_texture_bind(*texture->colorband, texture_image_unit);
+ }
+ }
+}
+
+void ShaderOperation::bind_inputs(GPUShader *shader)
+{
+ /* Attributes represents the inputs of the operation and their names match those of the inputs of
+ * the operation as well as the corresponding texture samples in the shader. */
+ ListBase attributes = GPU_material_attributes(material_);
+ LISTBASE_FOREACH (GPUMaterialAttribute *, attribute, &attributes) {
+ get_input(attribute->name).bind_as_texture(shader, attribute->name);
+ }
+}
+
+void ShaderOperation::bind_outputs(GPUShader *shader)
+{
+ for (StringRefNull output_identifier : output_sockets_to_output_identifiers_map_.values()) {
+ get_result(output_identifier).bind_as_image(shader, output_identifier.c_str());
+ }
+}
+
+void ShaderOperation::construct_material(void *thunk, GPUMaterial *material)
+{
+ ShaderOperation *operation = static_cast<ShaderOperation *>(thunk);
+ for (DNode node : operation->compile_unit_) {
+ ShaderNode *shader_node = node->typeinfo->get_compositor_shader_node(node);
+ operation->shader_nodes_.add_new(node, std::unique_ptr<ShaderNode>(shader_node));
+
+ operation->link_node_inputs(node, material);
+
+ shader_node->compile(material);
+
+ operation->populate_results_for_node(node, material);
+ }
+}
+
+void ShaderOperation::link_node_inputs(DNode node, GPUMaterial *material)
+{
+ for (const bNodeSocket *input : node->input_sockets()) {
+ const DInputSocket dinput{node.context(), input};
+
+ /* Get the output linked to the input. If it is null, that means the input is unlinked.
+ * Unlinked inputs are linked by the node compile method, so skip this here. */
+ const DOutputSocket doutput = get_output_linked_to_input(dinput);
+ if (!doutput) {
+ continue;
+ }
+
+ /* If the origin node is part of the shader operation, then the link is internal to the GPU
+ * material graph and is linked appropriately. */
+ if (compile_unit_.contains(doutput.node())) {
+ link_node_input_internal(dinput, doutput);
+ continue;
+ }
+
+ /* Otherwise, the origin node is not part of the shader operation, then the link is external to
+ * the GPU material graph and an input to the shader operation must be declared and linked to
+ * the node input. */
+ link_node_input_external(dinput, doutput, material);
+ }
+}
+
+void ShaderOperation::link_node_input_internal(DInputSocket input_socket,
+ DOutputSocket output_socket)
+{
+ ShaderNode &output_node = *shader_nodes_.lookup(output_socket.node());
+ GPUNodeStack &output_stack = output_node.get_output(output_socket->identifier);
+
+ ShaderNode &input_node = *shader_nodes_.lookup(input_socket.node());
+ GPUNodeStack &input_stack = input_node.get_input(input_socket->identifier);
+
+ input_stack.link = output_stack.link;
+}
+
+void ShaderOperation::link_node_input_external(DInputSocket input_socket,
+ DOutputSocket output_socket,
+ GPUMaterial *material)
+{
+
+ ShaderNode &node = *shader_nodes_.lookup(input_socket.node());
+ GPUNodeStack &stack = node.get_input(input_socket->identifier);
+
+ /* An input was already declared for that same output socket, so no need to declare it again. */
+ if (!output_to_material_attribute_map_.contains(output_socket)) {
+ declare_operation_input(input_socket, output_socket, material);
+ }
+
+ /* Link the attribute representing the shader operation input corresponding to the given output
+ * socket. */
+ stack.link = output_to_material_attribute_map_.lookup(output_socket);
+}
+
+static const char *get_set_function_name(ResultType type)
+{
+ switch (type) {
+ case ResultType::Float:
+ return "set_value";
+ case ResultType::Vector:
+ return "set_rgb";
+ case ResultType::Color:
+ return "set_rgba";
+ }
+
+ BLI_assert_unreachable();
+ return nullptr;
+}
+
+void ShaderOperation::declare_operation_input(DInputSocket input_socket,
+ DOutputSocket output_socket,
+ GPUMaterial *material)
+{
+ const int input_index = output_to_material_attribute_map_.size();
+ std::string input_identifier = "input" + std::to_string(input_index);
+
+ /* Declare the input descriptor for this input and prefer to declare its type to be the same as
+ * the type of the output socket because doing type conversion in the shader is much cheaper. */
+ InputDescriptor input_descriptor = input_descriptor_from_input_socket(input_socket.bsocket());
+ input_descriptor.type = get_node_socket_result_type(output_socket.bsocket());
+ declare_input_descriptor(input_identifier, input_descriptor);
+
+ /* Add a new GPU attribute representing an input to the GPU material. Instead of using the
+ * attribute directly, we link it to an appropriate set function and use its output link instead.
+ * This is needed because the `gputype` member of the attribute is only initialized if it is
+ * linked to a GPU node. */
+ GPUNodeLink *attribute_link;
+ GPU_link(material,
+ get_set_function_name(input_descriptor.type),
+ GPU_attribute(material, CD_AUTO_FROM_NAME, input_identifier.c_str()),
+ &attribute_link);
+
+ /* Map the output socket to the attribute that was created for it. */
+ output_to_material_attribute_map_.add(output_socket, attribute_link);
+
+ /* Map the identifier of the operation input to the output socket it is linked to. */
+ inputs_to_linked_outputs_map_.add_new(input_identifier, output_socket);
+}
+
+void ShaderOperation::populate_results_for_node(DNode node, GPUMaterial *material)
+{
+ for (const bNodeSocket *output : node->output_sockets()) {
+ const DOutputSocket doutput{node.context(), output};
+
+ /* If any of the nodes linked to the output are not part of the shader operation, then an
+ * output result needs to be populated for it. */
+ const bool need_to_populate_result = is_output_linked_to_node_conditioned(
+ doutput, [&](DNode node) { return !compile_unit_.contains(node); });
+
+ if (need_to_populate_result) {
+ populate_operation_result(doutput, material);
+ }
+ }
+}
+
+static const char *get_store_function_name(ResultType type)
+{
+ switch (type) {
+ case ResultType::Float:
+ return "node_compositor_store_output_float";
+ case ResultType::Vector:
+ return "node_compositor_store_output_vector";
+ case ResultType::Color:
+ return "node_compositor_store_output_color";
+ }
+
+ BLI_assert_unreachable();
+ return nullptr;
+}
+
+void ShaderOperation::populate_operation_result(DOutputSocket output_socket, GPUMaterial *material)
+{
+ const unsigned int output_id = output_sockets_to_output_identifiers_map_.size();
+ std::string output_identifier = "output" + std::to_string(output_id);
+
+ const ResultType result_type = get_node_socket_result_type(output_socket.bsocket());
+ const Result result = Result(result_type, texture_pool());
+ populate_result(output_identifier, result);
+
+ /* Map the output socket to the identifier of the newly populated result. */
+ output_sockets_to_output_identifiers_map_.add_new(output_socket, output_identifier);
+
+ ShaderNode &node = *shader_nodes_.lookup(output_socket.node());
+ GPUNodeLink *output_link = node.get_output(output_socket->identifier).link;
+
+ /* Link the output node stack to an output storer storing in the appropriate result. The result
+ * is identified by its index in the operation and the index is encoded as a float to be passed
+ * to the GPU function. Additionally, create an output link from the storer node to declare as an
+ * output to the GPU material. This storer output link is a dummy link in the sense that its
+ * value is ignored since it is already written in the output, but it is used to track nodes that
+ * contribute to the output of the compositor node tree. */
+ GPUNodeLink *storer_output_link;
+ GPUNodeLink *id_link = GPU_constant((float *)&output_id);
+ const char *store_function_name = get_store_function_name(result_type);
+ GPU_link(material, store_function_name, id_link, output_link, &storer_output_link);
+
+ /* Declare the output link of the storer node as an output of the GPU material to help the GPU
+ * code generator to track the nodes that contribute to the output of the shader. */
+ GPU_material_add_output_link_composite(material, storer_output_link);
+}
+
+using namespace gpu::shader;
+
+void ShaderOperation::generate_code(void *thunk,
+ GPUMaterial *material,
+ GPUCodegenOutput *code_generator_output)
+{
+ ShaderOperation *operation = static_cast<ShaderOperation *>(thunk);
+ ShaderCreateInfo &shader_create_info = *reinterpret_cast<ShaderCreateInfo *>(
+ code_generator_output->create_info);
+
+ shader_create_info.local_group_size(16, 16);
+
+ /* The resources are added without explicit locations, so make sure it is done by the
+ * shader creator. */
+ shader_create_info.auto_resource_location(true);
+
+ /* Add implementation for implicit conversion operations inserted by the code generator. This
+ * file should include the functions [float|vec3|vec4]_from_[float|vec3|vec4]. */
+ shader_create_info.typedef_source("gpu_shader_compositor_type_conversion.glsl");
+
+ /* The source shader is a compute shader with a main function that calls the dynamically
+ * generated evaluate function. The evaluate function includes the serialized GPU material graph
+ * preceded by code that initialized the inputs of the operation. Additionally, the storer
+ * functions that writes the outputs are defined outside the evaluate function. */
+ shader_create_info.compute_source("gpu_shader_compositor_main.glsl");
+
+ /* The main function is emitted in the shader before the evaluate function, so the evaluate
+ * function needs to be forward declared here. */
+ shader_create_info.typedef_source_generated += "void evaluate();\n";
+
+ operation->generate_code_for_outputs(shader_create_info);
+
+ shader_create_info.compute_source_generated += "void evaluate()\n{\n";
+
+ operation->generate_code_for_inputs(material, shader_create_info);
+
+ shader_create_info.compute_source_generated += code_generator_output->composite;
+
+ shader_create_info.compute_source_generated += "}\n";
+}
+
+static eGPUTextureFormat texture_format_from_result_type(ResultType type)
+{
+ switch (type) {
+ case ResultType::Float:
+ return GPU_R16F;
+ case ResultType::Vector:
+ return GPU_RGBA16F;
+ case ResultType::Color:
+ return GPU_RGBA16F;
+ }
+
+ BLI_assert_unreachable();
+ return GPU_RGBA16F;
+}
+
+/* Texture storers in the shader always take a vec4 as an argument, so encode each type in a vec4
+ * appropriately. */
+static const char *glsl_store_expression_from_result_type(ResultType type)
+{
+ switch (type) {
+ case ResultType::Float:
+ return "vec4(value)";
+ case ResultType::Vector:
+ return "vec4(vector, 0.0)";
+ case ResultType::Color:
+ return "color";
+ }
+
+ BLI_assert_unreachable();
+ return nullptr;
+}
+
+void ShaderOperation::generate_code_for_outputs(ShaderCreateInfo &shader_create_info)
+{
+ const std::string store_float_function_header = "void store_float(const uint id, float value)";
+ const std::string store_vector_function_header = "void store_vector(const uint id, vec3 vector)";
+ const std::string store_color_function_header = "void store_color(const uint id, vec4 color)";
+
+ /* The store functions are used by the node_compositor_store_output_[float|vector|color]
+ * functions but are only defined later as part of the compute source, so they need to be forward
+ * declared. */
+ shader_create_info.typedef_source_generated += store_float_function_header + ";\n";
+ shader_create_info.typedef_source_generated += store_vector_function_header + ";\n";
+ shader_create_info.typedef_source_generated += store_color_function_header + ";\n";
+
+ /* Each of the store functions is essentially a single switch case on the given ID, so start by
+ * opening the function with a curly bracket followed by opening a switch statement in each of
+ * the functions. */
+ std::stringstream store_float_function;
+ std::stringstream store_vector_function;
+ std::stringstream store_color_function;
+ const std::string store_function_start = "\n{\n switch (id) {\n";
+ store_float_function << store_float_function_header << store_function_start;
+ store_vector_function << store_vector_function_header << store_function_start;
+ store_color_function << store_color_function_header << store_function_start;
+
+ for (StringRefNull output_identifier : output_sockets_to_output_identifiers_map_.values()) {
+ const Result &result = get_result(output_identifier);
+
+ /* Add a write-only image for this output where its values will be written. */
+ shader_create_info.image(0,
+ texture_format_from_result_type(result.type()),
+ Qualifier::WRITE,
+ ImageType::FLOAT_2D,
+ output_identifier,
+ Frequency::BATCH);
+
+ /* Add a case for the index of this output followed by a break statement. */
+ std::stringstream case_code;
+ const std::string store_expression = glsl_store_expression_from_result_type(result.type());
+ const std::string texel = ", ivec2(gl_GlobalInvocationID.xy), ";
+ case_code << " case " << StringRef(output_identifier).drop_known_prefix("output") << ":\n"
+ << " imageStore(" << output_identifier << texel << store_expression << ");\n"
+ << " break;\n";
+
+ /* Only add the case to the function with the matching type. */
+ switch (result.type()) {
+ case ResultType::Float:
+ store_float_function << case_code.str();
+ break;
+ case ResultType::Vector:
+ store_vector_function << case_code.str();
+ break;
+ case ResultType::Color:
+ store_color_function << case_code.str();
+ break;
+ }
+ }
+
+ /* Close the previously opened switch statement as well as the function itself. */
+ const std::string store_function_end = " }\n}\n\n";
+ store_float_function << store_function_end;
+ store_vector_function << store_function_end;
+ store_color_function << store_function_end;
+
+ shader_create_info.compute_source_generated += store_float_function.str() +
+ store_vector_function.str() +
+ store_color_function.str();
+}
+
+static const char *glsl_type_from_result_type(ResultType type)
+{
+ switch (type) {
+ case ResultType::Float:
+ return "float";
+ case ResultType::Vector:
+ return "vec3";
+ case ResultType::Color:
+ return "vec4";
+ }
+
+ BLI_assert_unreachable();
+ return nullptr;
+}
+
+/* Texture loaders in the shader always return a vec4, so a swizzle is needed to retrieve the
+ * actual value for each type. */
+static const char *glsl_swizzle_from_result_type(ResultType type)
+{
+ switch (type) {
+ case ResultType::Float:
+ return "x";
+ case ResultType::Vector:
+ return "xyz";
+ case ResultType::Color:
+ return "rgba";
+ }
+
+ BLI_assert_unreachable();
+ return nullptr;
+}
+
+void ShaderOperation::generate_code_for_inputs(GPUMaterial *material,
+ ShaderCreateInfo &shader_create_info)
+{
+ /* The attributes of the GPU material represents the inputs of the operation. */
+ ListBase attributes = GPU_material_attributes(material);
+
+ if (BLI_listbase_is_empty(&attributes)) {
+ return;
+ }
+
+ /* Add a texture sampler for each of the inputs with the same name as the attribute. */
+ LISTBASE_FOREACH (GPUMaterialAttribute *, attribute, &attributes) {
+ shader_create_info.sampler(0, ImageType::FLOAT_2D, attribute->name, Frequency::BATCH);
+ }
+
+ /* Declare a struct called var_attrs that includes an appropriately typed member for each of the
+ * inputs. The names of the members should be the letter v followed by the ID of the attribute
+ * corresponding to the input. Such names are expected by the code generator. */
+ std::stringstream declare_attributes;
+ declare_attributes << "struct {\n";
+ LISTBASE_FOREACH (GPUMaterialAttribute *, attribute, &attributes) {
+ const InputDescriptor &input_descriptor = get_input_descriptor(attribute->name);
+ const std::string type = glsl_type_from_result_type(input_descriptor.type);
+ declare_attributes << " " << type << " v" << attribute->id << ";\n";
+ }
+ declare_attributes << "} var_attrs;\n\n";
+
+ shader_create_info.compute_source_generated += declare_attributes.str();
+
+ /* The texture loader utilities are needed to sample the input textures and initialize the
+ * attributes. */
+ shader_create_info.typedef_source("gpu_shader_compositor_texture_utilities.glsl");
+
+ /* Initialize each member of the previously declared struct by loading its corresponding texture
+ * with an appropriate swizzle for its type. */
+ std::stringstream initialize_attributes;
+ LISTBASE_FOREACH (GPUMaterialAttribute *, attribute, &attributes) {
+ const InputDescriptor &input_descriptor = get_input_descriptor(attribute->name);
+ const std::string swizzle = glsl_swizzle_from_result_type(input_descriptor.type);
+ initialize_attributes << "var_attrs.v" << attribute->id << " = "
+ << "texture_load(" << attribute->name
+ << ", ivec2(gl_GlobalInvocationID.xy))." << swizzle << ";\n";
+ }
+ initialize_attributes << "\n";
+
+ shader_create_info.compute_source_generated += initialize_attributes.str();
+}
+
+} // namespace blender::realtime_compositor
diff --git a/source/blender/compositor/realtime_compositor/intern/simple_operation.cc b/source/blender/compositor/realtime_compositor/intern/simple_operation.cc
new file mode 100644
index 00000000000..d55a20e5c54
--- /dev/null
+++ b/source/blender/compositor/realtime_compositor/intern/simple_operation.cc
@@ -0,0 +1,55 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+
+#include "COM_input_descriptor.hh"
+#include "COM_operation.hh"
+#include "COM_result.hh"
+#include "COM_simple_operation.hh"
+
+namespace blender::realtime_compositor {
+
+const StringRef SimpleOperation::input_identifier_ = StringRef("Input");
+const StringRef SimpleOperation::output_identifier_ = StringRef("Output");
+
+Result &SimpleOperation::get_result()
+{
+ return Operation::get_result(output_identifier_);
+}
+
+void SimpleOperation::map_input_to_result(Result *result)
+{
+ Operation::map_input_to_result(input_identifier_, result);
+}
+
+void SimpleOperation::add_and_evaluate_input_processors()
+{
+}
+
+Result &SimpleOperation::get_input()
+{
+ return Operation::get_input(input_identifier_);
+}
+
+void SimpleOperation::switch_result_mapped_to_input(Result *result)
+{
+ Operation::switch_result_mapped_to_input(input_identifier_, result);
+}
+
+void SimpleOperation::populate_result(Result result)
+{
+ Operation::populate_result(output_identifier_, result);
+
+ /* The result of a simple operation is guaranteed to have a single user. */
+ get_result().set_initial_reference_count(1);
+}
+
+void SimpleOperation::declare_input_descriptor(InputDescriptor descriptor)
+{
+ Operation::declare_input_descriptor(input_identifier_, descriptor);
+}
+
+InputDescriptor &SimpleOperation::get_input_descriptor()
+{
+ return Operation::get_input_descriptor(input_identifier_);
+}
+
+} // namespace blender::realtime_compositor
diff --git a/source/blender/compositor/realtime_compositor/intern/static_shader_manager.cc b/source/blender/compositor/realtime_compositor/intern/static_shader_manager.cc
new file mode 100644
index 00000000000..c9c8a056f87
--- /dev/null
+++ b/source/blender/compositor/realtime_compositor/intern/static_shader_manager.cc
@@ -0,0 +1,24 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+
+#include "GPU_shader.h"
+
+#include "COM_static_shader_manager.hh"
+
+namespace blender::realtime_compositor {
+
+StaticShaderManager::~StaticShaderManager()
+{
+ for (GPUShader *shader : shaders_.values()) {
+ GPU_shader_free(shader);
+ }
+}
+
+GPUShader *StaticShaderManager::get(const char *info_name)
+{
+ /* If a shader with the same info name already exists in the manager, return it, otherwise,
+ * create a new shader from the info name and return it. */
+ return shaders_.lookup_or_add_cb(
+ info_name, [info_name]() { return GPU_shader_create_from_info_name(info_name); });
+}
+
+} // namespace blender::realtime_compositor
diff --git a/source/blender/compositor/realtime_compositor/intern/texture_pool.cc b/source/blender/compositor/realtime_compositor/intern/texture_pool.cc
new file mode 100644
index 00000000000..6bf2041e6ba
--- /dev/null
+++ b/source/blender/compositor/realtime_compositor/intern/texture_pool.cc
@@ -0,0 +1,88 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+
+#include <cstdint>
+
+#include "BLI_hash.hh"
+#include "BLI_map.hh"
+#include "BLI_math_vec_types.hh"
+#include "BLI_vector.hh"
+
+#include "GPU_texture.h"
+
+#include "COM_texture_pool.hh"
+
+namespace blender::realtime_compositor {
+
+/* -------------------------------------------------------------------- */
+/** \name Texture Pool Key
+ * \{ */
+
+TexturePoolKey::TexturePoolKey(int2 size, eGPUTextureFormat format) : size(size), format(format)
+{
+}
+
+TexturePoolKey::TexturePoolKey(const GPUTexture *texture)
+{
+ size = int2(GPU_texture_width(texture), GPU_texture_height(texture));
+ format = GPU_texture_format(texture);
+}
+
+uint64_t TexturePoolKey::hash() const
+{
+ return get_default_hash_3(size.x, size.y, format);
+}
+
+bool operator==(const TexturePoolKey &a, const TexturePoolKey &b)
+{
+ return a.size == b.size && a.format == b.format;
+}
+
+/** \} */
+
+/* -------------------------------------------------------------------- */
+/** \name Texture Pool
+ * \{ */
+
+GPUTexture *TexturePool::acquire(int2 size, eGPUTextureFormat format)
+{
+ /* Check if there is an available texture with the required specification, and if one exists,
+ * return it. */
+ const TexturePoolKey key = TexturePoolKey(size, format);
+ Vector<GPUTexture *> &available_textures = textures_.lookup_or_add_default(key);
+ if (!available_textures.is_empty()) {
+ return available_textures.pop_last();
+ }
+
+ /* Otherwise, allocate a new texture. */
+ return allocate_texture(size, format);
+}
+
+GPUTexture *TexturePool::acquire_color(int2 size)
+{
+ return acquire(size, GPU_RGBA16F);
+}
+
+GPUTexture *TexturePool::acquire_vector(int2 size)
+{
+ /* Vectors are stored in RGBA textures because RGB textures have limited support. */
+ return acquire(size, GPU_RGBA16F);
+}
+
+GPUTexture *TexturePool::acquire_float(int2 size)
+{
+ return acquire(size, GPU_R16F);
+}
+
+void TexturePool::release(GPUTexture *texture)
+{
+ textures_.lookup(TexturePoolKey(texture)).append(texture);
+}
+
+void TexturePool::reset()
+{
+ textures_.clear();
+}
+
+/** \} */
+
+} // namespace blender::realtime_compositor
diff --git a/source/blender/compositor/realtime_compositor/intern/utilities.cc b/source/blender/compositor/realtime_compositor/intern/utilities.cc
new file mode 100644
index 00000000000..1a5823b8441
--- /dev/null
+++ b/source/blender/compositor/realtime_compositor/intern/utilities.cc
@@ -0,0 +1,134 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+
+#include "BLI_assert.h"
+#include "BLI_function_ref.hh"
+#include "BLI_math_vec_types.hh"
+#include "BLI_math_vector.hh"
+#include "BLI_utildefines.h"
+
+#include "DNA_node_types.h"
+
+#include "NOD_derived_node_tree.hh"
+#include "NOD_node_declaration.hh"
+
+#include "GPU_compute.h"
+#include "GPU_shader.h"
+
+#include "COM_operation.hh"
+#include "COM_result.hh"
+#include "COM_utilities.hh"
+
+namespace blender::realtime_compositor {
+
+using namespace nodes::derived_node_tree_types;
+using TargetSocketPathInfo = DOutputSocket::TargetSocketPathInfo;
+
+DSocket get_input_origin_socket(DInputSocket input)
+{
+ /* The input is unlinked. Return the socket itself. */
+ if (!input->is_logically_linked()) {
+ return input;
+ }
+
+ /* Only a single origin socket is guaranteed to exist. */
+ DSocket socket;
+ input.foreach_origin_socket([&](const DSocket origin) { socket = origin; });
+ return socket;
+}
+
+DOutputSocket get_output_linked_to_input(DInputSocket input)
+{
+ /* Get the origin socket of this input, which will be an output socket if the input is linked
+ * to an output. */
+ const DSocket origin = get_input_origin_socket(input);
+
+ /* If the origin socket is an input, that means the input is unlinked, so return a null output
+ * socket. */
+ if (origin->is_input()) {
+ return DOutputSocket();
+ }
+
+ /* Now that we know the origin is an output, return a derived output from it. */
+ return DOutputSocket(origin);
+}
+
+ResultType get_node_socket_result_type(const bNodeSocket *socket)
+{
+ switch (socket->type) {
+ case SOCK_FLOAT:
+ return ResultType::Float;
+ case SOCK_VECTOR:
+ return ResultType::Vector;
+ case SOCK_RGBA:
+ return ResultType::Color;
+ default:
+ BLI_assert_unreachable();
+ return ResultType::Float;
+ }
+}
+
+bool is_output_linked_to_node_conditioned(DOutputSocket output, FunctionRef<bool(DNode)> condition)
+{
+ bool condition_satisfied = false;
+ output.foreach_target_socket(
+ [&](DInputSocket target, const TargetSocketPathInfo &UNUSED(path_info)) {
+ if (condition(target.node())) {
+ condition_satisfied = true;
+ return;
+ }
+ });
+ return condition_satisfied;
+}
+
+int number_of_inputs_linked_to_output_conditioned(DOutputSocket output,
+ FunctionRef<bool(DInputSocket)> condition)
+{
+ int count = 0;
+ output.foreach_target_socket(
+ [&](DInputSocket target, const TargetSocketPathInfo &UNUSED(path_info)) {
+ if (condition(target)) {
+ count++;
+ }
+ });
+ return count;
+}
+
+bool is_shader_node(DNode node)
+{
+ return node->typeinfo->get_compositor_shader_node;
+}
+
+bool is_node_supported(DNode node)
+{
+ return node->typeinfo->get_compositor_operation || node->typeinfo->get_compositor_shader_node;
+}
+
+InputDescriptor input_descriptor_from_input_socket(const bNodeSocket *socket)
+{
+ using namespace nodes;
+ InputDescriptor input_descriptor;
+ input_descriptor.type = get_node_socket_result_type(socket);
+ const NodeDeclaration *node_declaration = socket->owner_node().declaration();
+ /* Not every node have a declaration, in which case, we assume the default values for the rest of
+ * the properties. */
+ if (!node_declaration) {
+ return input_descriptor;
+ }
+ const SocketDeclarationPtr &socket_declaration = node_declaration->inputs()[socket->index()];
+ input_descriptor.domain_priority = socket_declaration->compositor_domain_priority();
+ input_descriptor.skip_realization = socket_declaration->compositor_skip_realization();
+ input_descriptor.expects_single_value = socket_declaration->compositor_expects_single_value();
+ return input_descriptor;
+}
+
+void compute_dispatch_threads_at_least(GPUShader *shader, int2 threads_range, int2 local_size)
+{
+ /* If the threads range is divisible by the local size, dispatch the number of needed groups,
+ * which is their division. If it is not divisible, then dispatch an extra group to cover the
+ * remaining invocations, which means the actual threads range of the dispatch will be a bit
+ * larger than the given one. */
+ const int2 groups_to_dispatch = math::divide_ceil(threads_range, local_size);
+ GPU_compute_dispatch(shader, groups_to_dispatch.x, groups_to_dispatch.y, 1);
+}
+
+} // namespace blender::realtime_compositor