Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'source/blender/gpu/shaders/compositor/compositor_despeckle.glsl')
-rw-r--r--source/blender/gpu/shaders/compositor/compositor_despeckle.glsl70
1 files changed, 70 insertions, 0 deletions
diff --git a/source/blender/gpu/shaders/compositor/compositor_despeckle.glsl b/source/blender/gpu/shaders/compositor/compositor_despeckle.glsl
new file mode 100644
index 00000000000..e4743d69d17
--- /dev/null
+++ b/source/blender/gpu/shaders/compositor/compositor_despeckle.glsl
@@ -0,0 +1,70 @@
+#pragma BLENDER_REQUIRE(gpu_shader_compositor_texture_utilities.glsl)
+
+/* Returns true if the given color is close enough to the given reference color within the
+ * threshold supplied by the user, and returns false otherwise. */
+bool is_close(vec4 reference_color, vec4 color)
+{
+ return all(lessThan(abs(reference_color - color).rgb, vec3(threshold)));
+}
+
+void main()
+{
+ ivec2 texel = ivec2(gl_GlobalInvocationID.xy);
+
+ /* A 3x3 weights kernel whose weights are the inverse of the distance to the center of the
+ * kernel. So the center weight is zero, the corners weights are (1 / sqrt(2)), and the rest
+ * of the weights are 1. The total sum of weights is 4 plus quadruple the corner weight. */
+ float corner_weight = 1.0 / sqrt(2.0);
+ float sum_of_weights = 4.0 + corner_weight * 4.0;
+ mat3 weights = mat3(vec3(corner_weight, 1.0, corner_weight),
+ vec3(1.0, 0.0, 1.0),
+ vec3(corner_weight, 1.0, corner_weight));
+
+ vec4 center_color = texture_load(input_tx, texel);
+
+ /* Go over the pixels in the 3x3 window around the center pixel and compute the total sum of
+ * their colors multiplied by their weights. Additionally, for pixels whose colors are not close
+ * enough to the color of the center pixel, accumulate their color as well as their weights. */
+ vec4 sum_of_colors = vec4(0);
+ float accumulated_weight = 0.0;
+ vec4 accumulated_color = vec4(0);
+ for (int j = 0; j < 3; j++) {
+ for (int i = 0; i < 3; i++) {
+ float weight = weights[j][i];
+ vec4 color = texture_load(input_tx, texel + ivec2(i - 1, j - 1)) * weight;
+ sum_of_colors += color;
+ if (!is_close(center_color, color)) {
+ accumulated_color += color;
+ accumulated_weight += weight;
+ }
+ }
+ }
+
+ /* If the accumulated weight is zero, that means all pixels in the 3x3 window are similar and no
+ * need to despeckle anything, so write the original center color and return. */
+ if (accumulated_weight == 0.0) {
+ imageStore(output_img, texel, center_color);
+ return;
+ }
+
+ /* If the ratio between the accumulated weights and the total sum of weights is not larger than
+ * the user specified neighbor threshold, then the number of pixels in the neighborhood that are
+ * not close enough to the center pixel is low, and no need to despeckle anything, so write the
+ * original center color and return. */
+ if (accumulated_weight / sum_of_weights < neighbor_threshold) {
+ imageStore(output_img, texel, center_color);
+ return;
+ }
+
+ /* If the weighted average color of the neighborhood is close enough to the center pixel, then no
+ * need to despeckle anything, so write the original center color and return. */
+ if (is_close(center_color, sum_of_colors / sum_of_weights)) {
+ imageStore(output_img, texel, center_color);
+ return;
+ }
+
+ /* We need to despeckle, so write the mean accumulated color. */
+ float factor = texture_load(factor_tx, texel).x;
+ vec4 mean_color = accumulated_color / accumulated_weight;
+ imageStore(output_img, texel, mix(center_color, mean_color, factor));
+}