Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'source/blender/nodes/composite/node_composite_util.c')
-rw-r--r--source/blender/nodes/composite/node_composite_util.c1412
1 files changed, 0 insertions, 1412 deletions
diff --git a/source/blender/nodes/composite/node_composite_util.c b/source/blender/nodes/composite/node_composite_util.c
deleted file mode 100644
index c4b48b83b16..00000000000
--- a/source/blender/nodes/composite/node_composite_util.c
+++ /dev/null
@@ -1,1412 +0,0 @@
-/*
- * ***** BEGIN GPL LICENSE BLOCK *****
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License
- * as published by the Free Software Foundation; either version 2
- * of the License, or (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software Foundation,
- * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
- *
- * The Original Code is Copyright (C) 2006 Blender Foundation.
- * All rights reserved.
- *
- * The Original Code is: all of this file.
- *
- * Contributor(s): none yet.
- *
- * ***** END GPL LICENSE BLOCK *****
- */
-
-/** \file blender/nodes/composite/node_composite_util.c
- * \ingroup nodes
- */
-
-#include "node_composite_util.h"
-
-#ifdef WITH_COMPOSITOR_LEGACY
-
-#include <limits.h>
-
-CompBuf *alloc_compbuf(int sizex, int sizey, int type, int alloc)
-{
- CompBuf *cbuf= MEM_callocN(sizeof(CompBuf), "compbuf");
-
- cbuf->x= sizex;
- cbuf->y= sizey;
- cbuf->xrad= sizex/2;
- cbuf->yrad= sizey/2;
-
- cbuf->type= type;
- if (alloc) {
- if (cbuf->type==CB_RGBA)
- cbuf->rect= MEM_mapallocN(4*sizeof(float)*sizex*sizey, "compbuf RGBA rect");
- else if (cbuf->type==CB_VEC3)
- cbuf->rect= MEM_mapallocN(3*sizeof(float)*sizex*sizey, "compbuf Vector3 rect");
- else if (cbuf->type==CB_VEC2)
- cbuf->rect= MEM_mapallocN(2*sizeof(float)*sizex*sizey, "compbuf Vector2 rect");
- else
- cbuf->rect= MEM_mapallocN(sizeof(float)*sizex*sizey, "compbuf Fac rect");
- cbuf->malloc= 1;
- }
- cbuf->disprect.xmin = 0;
- cbuf->disprect.ymin = 0;
- cbuf->disprect.xmax = sizex;
- cbuf->disprect.ymax = sizey;
-
- return cbuf;
-}
-
-CompBuf *dupalloc_compbuf(CompBuf *cbuf)
-{
- CompBuf *dupbuf= alloc_compbuf(cbuf->x, cbuf->y, cbuf->type, 1);
- if (dupbuf) {
- memcpy(dupbuf->rect, cbuf->rect, cbuf->type*sizeof(float)*cbuf->x*cbuf->y);
-
- dupbuf->xof= cbuf->xof;
- dupbuf->yof= cbuf->yof;
- }
- return dupbuf;
-}
-
-/* instead of reference counting, we create a list */
-CompBuf *pass_on_compbuf(CompBuf *cbuf)
-{
- CompBuf *dupbuf= (cbuf)? alloc_compbuf(cbuf->x, cbuf->y, cbuf->type, 0): NULL;
- CompBuf *lastbuf;
-
- if (dupbuf) {
- dupbuf->rect= cbuf->rect;
- dupbuf->xof= cbuf->xof;
- dupbuf->yof= cbuf->yof;
- dupbuf->malloc= 0;
-
- /* get last buffer in list, and append dupbuf */
- for (lastbuf= cbuf; lastbuf; lastbuf= lastbuf->next)
- if (lastbuf->next==NULL)
- break;
- lastbuf->next= dupbuf;
- dupbuf->prev= lastbuf;
- }
- return dupbuf;
-}
-
-
-void free_compbuf(CompBuf *cbuf)
-{
- /* check referencing, then remove from list and set malloc tag */
- if (cbuf->prev || cbuf->next) {
- if (cbuf->prev)
- cbuf->prev->next= cbuf->next;
- if (cbuf->next)
- cbuf->next->prev= cbuf->prev;
- if (cbuf->malloc) {
- if (cbuf->prev)
- cbuf->prev->malloc= 1;
- else
- cbuf->next->malloc= 1;
- cbuf->malloc= 0;
- }
- }
-
- if (cbuf->malloc && cbuf->rect)
- MEM_freeN(cbuf->rect);
-
- MEM_freeN(cbuf);
-}
-
-void print_compbuf(char *str, CompBuf *cbuf)
-{
- printf("Compbuf %s %d %d %p\n", str, cbuf->x, cbuf->y, (void *)cbuf->rect);
-
-}
-
-void compbuf_set_node(CompBuf *cbuf, bNode *node)
-{
- if (cbuf) cbuf->node = node;
-}
-
-
-CompBuf *get_cropped_compbuf(rcti *drect, float *rectf, int rectx, int recty, int type)
-{
- CompBuf *cbuf;
- rcti disprect= *drect;
- float *outfp;
- int dx, y;
-
- if (disprect.xmax>rectx) disprect.xmax = rectx;
- if (disprect.ymax>recty) disprect.ymax = recty;
- if (disprect.xmin>= disprect.xmax) return NULL;
- if (disprect.ymin>= disprect.ymax) return NULL;
-
- cbuf= alloc_compbuf(BLI_rcti_size_x(&disprect), BLI_rcti_size_y(&disprect), type, 1);
- outfp= cbuf->rect;
- rectf += type*(disprect.ymin*rectx + disprect.xmin);
- dx= type*cbuf->x;
- for (y=cbuf->y; y>0; y--, outfp+=dx, rectf+=type*rectx)
- memcpy(outfp, rectf, sizeof(float)*dx);
-
- return cbuf;
-}
-
-CompBuf *scalefast_compbuf(CompBuf *inbuf, int newx, int newy)
-{
- CompBuf *outbuf;
- float *rectf, *newrectf, *rf;
- int x, y, c, pixsize= inbuf->type;
- int ofsx, ofsy, stepx, stepy;
-
- if (inbuf->x==newx && inbuf->y==newy)
- return dupalloc_compbuf(inbuf);
-
- outbuf= alloc_compbuf(newx, newy, inbuf->type, 1);
- newrectf= outbuf->rect;
-
- stepx = (65536.0 * (inbuf->x - 1.0) / (newx - 1.0)) + 0.5;
- stepy = (65536.0 * (inbuf->y - 1.0) / (newy - 1.0)) + 0.5;
- ofsy = 32768;
-
- for (y = newy; y > 0 ; y--) {
- rectf = inbuf->rect;
- rectf += pixsize * (ofsy >> 16) * inbuf->x;
-
- ofsy += stepy;
- ofsx = 32768;
-
- for (x = newx ; x>0 ; x--) {
-
- rf= rectf + pixsize*(ofsx >> 16);
- for (c=0; c<pixsize; c++)
- newrectf[c] = rf[c];
-
- newrectf+= pixsize;
-
- ofsx += stepx;
- }
- }
-
- return outbuf;
-}
-
-void typecheck_compbuf_color(float *out, float *in, int outtype, int intype)
-{
- if (intype == outtype) {
- memcpy(out, in, sizeof(float)*outtype);
- }
- else if (outtype==CB_VAL) {
- if (intype==CB_VEC2) {
- *out= 0.5f*(in[0]+in[1]);
- }
- else if (intype==CB_VEC3) {
- *out= 0.333333f*(in[0]+in[1]+in[2]);
- }
- else if (intype==CB_RGBA) {
- *out = rgb_to_bw(in);
- }
- }
- else if (outtype==CB_VEC2) {
- if (intype==CB_VAL) {
- out[0] = in[0];
- out[1] = in[0];
- }
- else if (intype==CB_VEC3) {
- out[0] = in[0];
- out[1] = in[1];
- }
- else if (intype==CB_RGBA) {
- out[0] = in[0];
- out[1] = in[1];
- }
- }
- else if (outtype==CB_VEC3) {
- if (intype==CB_VAL) {
- out[0] = in[0];
- out[1] = in[0];
- out[2] = in[0];
- }
- else if (intype==CB_VEC2) {
- out[0] = in[0];
- out[1] = in[1];
- out[2] = 0.0f;
- }
- else if (intype==CB_RGBA) {
- out[0] = in[0];
- out[1] = in[1];
- out[2] = in[2];
- }
- }
- else if (outtype==CB_RGBA) {
- if (intype==CB_VAL) {
- out[0] = in[0];
- out[1] = in[0];
- out[2] = in[0];
- out[3] = 1.0f;
- }
- else if (intype==CB_VEC2) {
- out[0] = in[0];
- out[1] = in[1];
- out[2] = 0.0f;
- out[3] = 1.0f;
- }
- else if (intype==CB_VEC3) {
- out[0] = in[0];
- out[1] = in[1];
- out[2] = in[2];
- out[3] = 1.0f;
- }
- }
-}
-
-CompBuf *typecheck_compbuf(CompBuf *inbuf, int type)
-{
- if (inbuf && inbuf->type!=type) {
- CompBuf *outbuf;
- float *inrf, *outrf;
- int x;
-
- outbuf= alloc_compbuf(inbuf->x, inbuf->y, type, 1);
-
- /* warning note: xof and yof are applied in pixelprocessor, but should be copied otherwise? */
- outbuf->xof= inbuf->xof;
- outbuf->yof= inbuf->yof;
-
- if (inbuf->rect_procedural) {
- outbuf->rect_procedural= inbuf->rect_procedural;
- copy_v3_v3(outbuf->procedural_size, inbuf->procedural_size);
- copy_v3_v3(outbuf->procedural_offset, inbuf->procedural_offset);
- outbuf->procedural_type= inbuf->procedural_type;
- outbuf->node= inbuf->node;
- return outbuf;
- }
-
- inrf= inbuf->rect;
- outrf= outbuf->rect;
- x= inbuf->x*inbuf->y;
-
- if (type==CB_VAL) {
- if (inbuf->type==CB_VEC2) {
- for (; x>0; x--, outrf+= 1, inrf+= 2)
- *outrf= 0.5f*(inrf[0]+inrf[1]);
- }
- else if (inbuf->type==CB_VEC3) {
- for (; x>0; x--, outrf+= 1, inrf+= 3)
- *outrf= 0.333333f*(inrf[0]+inrf[1]+inrf[2]);
- }
- else if (inbuf->type==CB_RGBA) {
- for (; x>0; x--, outrf+= 1, inrf+= 4)
- *outrf = rgb_to_bw(inrf);
- }
- }
- else if (type==CB_VEC2) {
- if (inbuf->type==CB_VAL) {
- for (; x>0; x--, outrf+= 2, inrf+= 1) {
- outrf[0] = inrf[0];
- outrf[1] = inrf[0];
- }
- }
- else if (inbuf->type==CB_VEC3) {
- for (; x>0; x--, outrf+= 2, inrf+= 3) {
- outrf[0] = inrf[0];
- outrf[1] = inrf[1];
- }
- }
- else if (inbuf->type==CB_RGBA) {
- for (; x>0; x--, outrf+= 2, inrf+= 4) {
- outrf[0] = inrf[0];
- outrf[1] = inrf[1];
- }
- }
- }
- else if (type==CB_VEC3) {
- if (inbuf->type==CB_VAL) {
- for (; x>0; x--, outrf+= 3, inrf+= 1) {
- outrf[0] = inrf[0];
- outrf[1] = inrf[0];
- outrf[2] = inrf[0];
- }
- }
- else if (inbuf->type==CB_VEC2) {
- for (; x>0; x--, outrf+= 3, inrf+= 2) {
- outrf[0] = inrf[0];
- outrf[1] = inrf[1];
- outrf[2] = 0.0f;
- }
- }
- else if (inbuf->type==CB_RGBA) {
- for (; x>0; x--, outrf+= 3, inrf+= 4) {
- outrf[0] = inrf[0];
- outrf[1] = inrf[1];
- outrf[2] = inrf[2];
- }
- }
- }
- else if (type==CB_RGBA) {
- if (inbuf->type==CB_VAL) {
- for (; x>0; x--, outrf+= 4, inrf+= 1) {
- outrf[0] = inrf[0];
- outrf[1] = inrf[0];
- outrf[2] = inrf[0];
- outrf[3] = 1.0f;
- }
- }
- else if (inbuf->type==CB_VEC2) {
- for (; x>0; x--, outrf+= 4, inrf+= 2) {
- outrf[0] = inrf[0];
- outrf[1] = inrf[1];
- outrf[2] = 0.0f;
- outrf[3] = 1.0f;
- }
- }
- else if (inbuf->type==CB_VEC3) {
- for (; x>0; x--, outrf+= 4, inrf+= 3) {
- outrf[0] = inrf[0];
- outrf[1] = inrf[1];
- outrf[2] = inrf[2];
- outrf[3] = 1.0f;
- }
- }
- }
-
- return outbuf;
- }
- return inbuf;
-}
-
-float *compbuf_get_pixel(CompBuf *cbuf, float *defcol, float *use, int x, int y, int xrad, int yrad)
-{
- if (cbuf) {
- if (cbuf->rect_procedural) {
- cbuf->rect_procedural(cbuf, use, (float)x/(float)xrad, (float)y/(float)yrad);
- return use;
- }
- else {
- static float col[4] = {0.0f, 0.0f, 0.0f, 0.0f};
-
- /* map coords */
- x-= cbuf->xof;
- y-= cbuf->yof;
-
- if (y<-cbuf->yrad || y>= -cbuf->yrad+cbuf->y) return col;
- if (x<-cbuf->xrad || x>= -cbuf->xrad+cbuf->x) return col;
-
- return cbuf->rect + cbuf->type*( (cbuf->yrad+y)*cbuf->x + (cbuf->xrad+x) );
- }
- }
- else return defcol;
-}
-
-/* **************************************************** */
-
-static CompBuf *composit_check_compbuf(CompBuf *cbuf, int type, CompBuf *outbuf)
-{
- /* check type */
- CompBuf *dbuf= typecheck_compbuf(cbuf, type);
-
- /* if same as output and translated, duplicate so pixels don't interfere */
- if (dbuf == outbuf && !dbuf->rect_procedural && (dbuf->xof || dbuf->yof))
- dbuf= dupalloc_compbuf(dbuf);
-
- return dbuf;
-}
-
-/* Pixel-to-Pixel operation, 1 Image in, 1 out */
-void composit1_pixel_processor(bNode *node, CompBuf *out, CompBuf *src_buf, float *src_col,
- void (*func)(bNode *, float *, float *),
- int src_type)
-{
- CompBuf *src_use;
- float *outfp=out->rect, *srcfp;
- float color[4]; /* local color if compbuf is procedural */
- int xrad, yrad, x, y;
-
- src_use= composit_check_compbuf(src_buf, src_type, out);
-
- xrad= out->xrad;
- yrad= out->yrad;
-
- for (y= -yrad; y<-yrad+out->y; y++) {
- for (x= -xrad; x<-xrad+out->x; x++, outfp+=out->type) {
- srcfp= compbuf_get_pixel(src_use, src_col, color, x, y, xrad, yrad);
- func(node, outfp, srcfp);
- }
- }
-
- if (src_use!=src_buf)
- free_compbuf(src_use);
-}
-
-/* Pixel-to-Pixel operation, 2 Images in, 1 out */
-void composit2_pixel_processor(bNode *node, CompBuf *out, CompBuf *src_buf, float *src_col,
- CompBuf *fac_buf, float *fac, void (*func)(bNode *, float *, float *, float *),
- int src_type, int fac_type)
-{
- CompBuf *src_use, *fac_use;
- float *outfp=out->rect, *srcfp, *facfp;
- float color[4]; /* local color if compbuf is procedural */
- int xrad, yrad, x, y;
-
- src_use= composit_check_compbuf(src_buf, src_type, out);
- fac_use= composit_check_compbuf(fac_buf, fac_type, out);
-
- xrad= out->xrad;
- yrad= out->yrad;
-
- for (y= -yrad; y<-yrad+out->y; y++) {
- for (x= -xrad; x<-xrad+out->x; x++, outfp+=out->type) {
- srcfp= compbuf_get_pixel(src_use, src_col, color, x, y, xrad, yrad);
- facfp= compbuf_get_pixel(fac_use, fac, color, x, y, xrad, yrad);
-
- func(node, outfp, srcfp, facfp);
- }
- }
- if (src_use!=src_buf)
- free_compbuf(src_use);
- if (fac_use!=fac_buf)
- free_compbuf(fac_use);
-}
-
-/* Pixel-to-Pixel operation, 3 Images in, 1 out */
-void composit3_pixel_processor(bNode *node, CompBuf *out, CompBuf *src1_buf, float *src1_col, CompBuf *src2_buf, float *src2_col,
- CompBuf *fac_buf, float *fac, void (*func)(bNode *, float *, float *, float *, float *),
- int src1_type, int src2_type, int fac_type)
-{
- CompBuf *src1_use, *src2_use, *fac_use;
- float *outfp=out->rect, *src1fp, *src2fp, *facfp;
- float color[4]; /* local color if compbuf is procedural */
- int xrad, yrad, x, y;
-
- src1_use= composit_check_compbuf(src1_buf, src1_type, out);
- src2_use= composit_check_compbuf(src2_buf, src2_type, out);
- fac_use= composit_check_compbuf(fac_buf, fac_type, out);
-
- xrad= out->xrad;
- yrad= out->yrad;
-
- for (y= -yrad; y<-yrad+out->y; y++) {
- for (x= -xrad; x<-xrad+out->x; x++, outfp+=out->type) {
- src1fp= compbuf_get_pixel(src1_use, src1_col, color, x, y, xrad, yrad);
- src2fp= compbuf_get_pixel(src2_use, src2_col, color, x, y, xrad, yrad);
- facfp= compbuf_get_pixel(fac_use, fac, color, x, y, xrad, yrad);
-
- func(node, outfp, src1fp, src2fp, facfp);
- }
- }
-
- if (src1_use!=src1_buf)
- free_compbuf(src1_use);
- if (src2_use!=src2_buf)
- free_compbuf(src2_use);
- if (fac_use!=fac_buf)
- free_compbuf(fac_use);
-}
-
-/* Pixel-to-Pixel operation, 4 Images in, 1 out */
-void composit4_pixel_processor(bNode *node, CompBuf *out, CompBuf *src1_buf, float *src1_col, CompBuf *fac1_buf, float *fac1,
- CompBuf *src2_buf, float *src2_col, CompBuf *fac2_buf, float *fac2,
- void (*func)(bNode *, float *, float *, float *, float *, float *),
- int src1_type, int fac1_type, int src2_type, int fac2_type)
-{
- CompBuf *src1_use, *src2_use, *fac1_use, *fac2_use;
- float *outfp=out->rect, *src1fp, *src2fp, *fac1fp, *fac2fp;
- float color[4]; /* local color if compbuf is procedural */
- int xrad, yrad, x, y;
-
- src1_use= composit_check_compbuf(src1_buf, src1_type, out);
- src2_use= composit_check_compbuf(src2_buf, src2_type, out);
- fac1_use= composit_check_compbuf(fac1_buf, fac1_type, out);
- fac2_use= composit_check_compbuf(fac2_buf, fac2_type, out);
-
- xrad= out->xrad;
- yrad= out->yrad;
-
- for (y= -yrad; y<-yrad+out->y; y++) {
- for (x= -xrad; x<-xrad+out->x; x++, outfp+=out->type) {
- src1fp= compbuf_get_pixel(src1_use, src1_col, color, x, y, xrad, yrad);
- src2fp= compbuf_get_pixel(src2_use, src2_col, color, x, y, xrad, yrad);
- fac1fp= compbuf_get_pixel(fac1_use, fac1, color, x, y, xrad, yrad);
- fac2fp= compbuf_get_pixel(fac2_use, fac2, color, x, y, xrad, yrad);
-
- func(node, outfp, src1fp, fac1fp, src2fp, fac2fp);
- }
- }
-
- if (src1_use!=src1_buf)
- free_compbuf(src1_use);
- if (src2_use!=src2_buf)
- free_compbuf(src2_use);
- if (fac1_use!=fac1_buf)
- free_compbuf(fac1_use);
- if (fac2_use!=fac2_buf)
- free_compbuf(fac2_use);
-}
-
-
-CompBuf *valbuf_from_rgbabuf(CompBuf *cbuf, int channel)
-{
- CompBuf *valbuf= alloc_compbuf(cbuf->x, cbuf->y, CB_VAL, 1);
- float *valf, *rectf;
- int tot;
-
- /* warning note: xof and yof are applied in pixelprocessor, but should be copied otherwise? */
- valbuf->xof= cbuf->xof;
- valbuf->yof= cbuf->yof;
-
- valf= valbuf->rect;
-
- /* defaults to returning alpha channel */
- if ((channel < CHAN_R) || (channel > CHAN_A)) channel = CHAN_A;
-
- rectf= cbuf->rect + channel;
-
- for (tot= cbuf->x*cbuf->y; tot>0; tot--, valf++, rectf+=4)
- *valf= *rectf;
-
- return valbuf;
-}
-
-void valbuf_to_rgbabuf(CompBuf *valbuf, CompBuf *cbuf, int channel)
-{
- float *valf, *rectf;
- int tot;
-
- valf= valbuf->rect;
-
- /* defaults to returning alpha channel */
- if ((channel < CHAN_R) || (channel > CHAN_A)) channel = CHAN_A;
-
- rectf = cbuf->rect + channel;
-
- for (tot= cbuf->x*cbuf->y; tot>0; tot--, valf++, rectf+=4)
- *rectf = *valf;
-}
-
-static CompBuf *generate_procedural_preview(CompBuf *cbuf, int newx, int newy)
-{
- CompBuf *outbuf;
- float *outfp;
- int xrad, yrad, x, y;
-
- outbuf= alloc_compbuf(newx, newy, CB_RGBA, 1);
-
- outfp= outbuf->rect;
- xrad= outbuf->xrad;
- yrad= outbuf->yrad;
-
- for (y= -yrad; y<-yrad+outbuf->y; y++)
- for (x= -xrad; x<-xrad+outbuf->x; x++, outfp+=outbuf->type)
- cbuf->rect_procedural(cbuf, outfp, (float)x/(float)xrad, (float)y/(float)yrad);
-
- return outbuf;
-}
-
-/* OCIO_TODO: this function is only used by legacy compositor system only, which would likely be removed soon,
- * keep check for old color management flag for now
- */
-void generate_preview(void *data, bNode *node, CompBuf *stackbuf)
-{
- RenderData *rd= data;
- bNodePreview *preview= node->preview;
- int xsize, ysize;
- int profile_from= (rd->color_mgt_flag & R_COLOR_MANAGEMENT)? IB_PROFILE_LINEAR_RGB: IB_PROFILE_SRGB;
- int predivide= TRUE;
- int dither= 0;
- unsigned char *rect;
-
- if (preview && stackbuf) {
- CompBuf *cbuf, *stackbuf_use;
-
- if (stackbuf->rect==NULL && stackbuf->rect_procedural==NULL) return;
-
- stackbuf_use= typecheck_compbuf(stackbuf, CB_RGBA);
-
- if (stackbuf->x > stackbuf->y) {
- xsize= 140;
- ysize= (140*stackbuf->y)/stackbuf->x;
- }
- else {
- ysize= 140;
- xsize= (140*stackbuf->x)/stackbuf->y;
- }
-
- if (stackbuf_use->rect_procedural)
- cbuf= generate_procedural_preview(stackbuf_use, xsize, ysize);
- else
- cbuf= scalefast_compbuf(stackbuf_use, xsize, ysize);
-
- /* convert to byte for preview */
- rect= MEM_callocN(sizeof(unsigned char)*4*xsize*ysize, "bNodePreview.rect");
-
- IMB_buffer_byte_from_float(rect, cbuf->rect,
- 4, dither, IB_PROFILE_SRGB, profile_from, predivide,
- xsize, ysize, xsize, xsize);
-
- free_compbuf(cbuf);
- if (stackbuf_use!=stackbuf)
- free_compbuf(stackbuf_use);
-
- // BLI_lock_thread(LOCK_PREVIEW);
-
- if (preview->rect)
- MEM_freeN(preview->rect);
- preview->xsize= xsize;
- preview->ysize= ysize;
- preview->rect= rect;
-
- // BLI_unlock_thread(LOCK_PREVIEW);
- }
-}
-
-void do_rgba_to_yuva(bNode *UNUSED(node), float *out, float *in)
-{
- rgb_to_yuv(in[0], in[1], in[2], &out[0], &out[1], &out[2]);
- out[3]=in[3];
-}
-
-void do_rgba_to_hsva(bNode *UNUSED(node), float *out, float *in)
-{
- rgb_to_hsv(in[0], in[1], in[2], &out[0], &out[1], &out[2]);
- out[3]=in[3];
-}
-
-void do_rgba_to_ycca(bNode *UNUSED(node), float *out, float *in)
-{
- rgb_to_ycc(in[0], in[1], in[2], &out[0], &out[1], &out[2], BLI_YCC_ITU_BT601);
- out[3]=in[3];
-}
-
-void do_yuva_to_rgba(bNode *UNUSED(node), float *out, float *in)
-{
- yuv_to_rgb(in[0], in[1], in[2], &out[0], &out[1], &out[2]);
- out[3]=in[3];
-}
-
-void do_hsva_to_rgba(bNode *UNUSED(node), float *out, float *in)
-{
- hsv_to_rgb(in[0], in[1], in[2], &out[0], &out[1], &out[2]);
- out[3]=in[3];
-}
-
-void do_ycca_to_rgba(bNode *UNUSED(node), float *out, float *in)
-{
- ycc_to_rgb(in[0], in[1], in[2], &out[0], &out[1], &out[2], BLI_YCC_ITU_BT601);
- out[3]=in[3];
-}
-
-void do_copy_rgba(bNode *UNUSED(node), float *out, float *in)
-{
- copy_v4_v4(out, in);
-}
-
-void do_copy_rgb(bNode *UNUSED(node), float *out, float *in)
-{
- copy_v3_v3(out, in);
- out[3] = 1.0f;
-}
-
-void do_copy_value(bNode *UNUSED(node), float *out, float *in)
-{
- out[0] = in[0];
-}
-
-void do_copy_a_rgba(bNode *UNUSED(node), float *out, float *in, float *fac)
-{
- copy_v3_v3(out, in);
- out[3] = *fac;
-}
-
-/* only accepts RGBA buffers */
-void gamma_correct_compbuf(CompBuf *img, int inversed)
-{
- float *drect;
- int x;
-
- if (img->type!=CB_RGBA) return;
-
- drect= img->rect;
- if (inversed) {
- for (x=img->x*img->y; x>0; x--, drect+=4) {
- if (drect[0]>0.0f) drect[0] = sqrt(drect[0]); else drect[0] = 0.0f;
- if (drect[1]>0.0f) drect[1] = sqrt(drect[1]); else drect[1] = 0.0f;
- if (drect[2]>0.0f) drect[2] = sqrt(drect[2]); else drect[2] = 0.0f;
- }
- }
- else {
- for (x=img->x*img->y; x>0; x--, drect+=4) {
- if (drect[0]>0.0f) drect[0]*= drect[0]; else drect[0] = 0.0f;
- if (drect[1]>0.0f) drect[1]*= drect[1]; else drect[1] = 0.0f;
- if (drect[2]>0.0f) drect[2]*= drect[2]; else drect[2] = 0.0f;
- }
- }
-}
-
-void premul_compbuf(CompBuf *img, int inversed)
-{
- float *drect;
- int x;
-
- if (img->type!=CB_RGBA) return;
-
- drect= img->rect;
- if (inversed) {
- for (x=img->x*img->y; x>0; x--, drect+=4) {
- if (fabsf(drect[3]) < 1e-5f) {
- drect[0] = 0.0f;
- drect[1] = 0.0f;
- drect[2] = 0.0f;
- }
- else {
- drect[0] /= drect[3];
- drect[1] /= drect[3];
- drect[2] /= drect[3];
- }
- }
- }
- else {
- for (x=img->x*img->y; x>0; x--, drect+=4) {
- drect[0] *= drect[3];
- drect[1] *= drect[3];
- drect[2] *= drect[3];
- }
- }
-}
-
-
-
-/*
- * 2D Fast Hartley Transform, used for convolution
- */
-
-typedef float fREAL;
-
-// returns next highest power of 2 of x, as well it's log2 in L2
-static unsigned int nextPow2(unsigned int x, unsigned int* L2)
-{
- unsigned int pw, x_notpow2 = x & (x-1);
- *L2 = 0;
- while (x>>=1) ++(*L2);
- pw = 1 << (*L2);
- if (x_notpow2) { (*L2)++; pw<<=1; }
- return pw;
-}
-
-//------------------------------------------------------------------------------
-
-// from FXT library by Joerg Arndt, faster in order bitreversal
-// use: r = revbin_upd(r, h) where h = N>>1
-static unsigned int revbin_upd(unsigned int r, unsigned int h)
-{
- while (!((r^=h)&h)) h >>= 1;
- return r;
-}
-//------------------------------------------------------------------------------
-static void FHT(fREAL* data, unsigned int M, unsigned int inverse)
-{
- double tt, fc, dc, fs, ds, a = M_PI;
- fREAL t1, t2;
- int n2, bd, bl, istep, k, len = 1 << M, n = 1;
-
- int i, j = 0;
- unsigned int Nh = len >> 1;
- for (i=1;i<(len-1);++i) {
- j = revbin_upd(j, Nh);
- if (j>i) {
- t1 = data[i];
- data[i] = data[j];
- data[j] = t1;
- }
- }
-
- do {
- fREAL* data_n = &data[n];
-
- istep = n << 1;
- for (k=0; k<len; k+=istep) {
- t1 = data_n[k];
- data_n[k] = data[k] - t1;
- data[k] += t1;
- }
-
- n2 = n >> 1;
- if (n>2) {
- fc = dc = cos(a);
- fs = ds = sqrt(1.0 - fc*fc); //sin(a);
- bd = n-2;
- for (bl=1; bl<n2; bl++) {
- fREAL* data_nbd = &data_n[bd];
- fREAL* data_bd = &data[bd];
- for (k=bl; k<len; k+=istep) {
- t1 = fc*data_n[k] + fs*data_nbd[k];
- t2 = fs*data_n[k] - fc*data_nbd[k];
- data_n[k] = data[k] - t1;
- data_nbd[k] = data_bd[k] - t2;
- data[k] += t1;
- data_bd[k] += t2;
- }
- tt = fc*dc - fs*ds;
- fs = fs*dc + fc*ds;
- fc = tt;
- bd -= 2;
- }
- }
-
- if (n>1) {
- for (k=n2; k<len; k+=istep) {
- t1 = data_n[k];
- data_n[k] = data[k] - t1;
- data[k] += t1;
- }
- }
-
- n = istep;
- a *= 0.5;
- } while (n<len);
-
- if (inverse) {
- fREAL sc = (fREAL)1 / (fREAL)len;
- for (k=0; k<len; ++k)
- data[k] *= sc;
- }
-}
-//------------------------------------------------------------------------------
-/* 2D Fast Hartley Transform, Mx/My -> log2 of width/height,
- * nzp -> the row where zero pad data starts,
- * inverse -> see above */
-static void FHT2D(fREAL *data, unsigned int Mx, unsigned int My,
- unsigned int nzp, unsigned int inverse)
-{
- unsigned int i, j, Nx, Ny, maxy;
- fREAL t;
-
- Nx = 1 << Mx;
- Ny = 1 << My;
-
- // rows (forward transform skips 0 pad data)
- maxy = inverse ? Ny : nzp;
- for (j=0; j<maxy; ++j)
- FHT(&data[Nx*j], Mx, inverse);
-
- // transpose data
- if (Nx==Ny) { // square
- for (j=0; j<Ny; ++j)
- for (i=j+1; i<Nx; ++i) {
- unsigned int op = i + (j << Mx), np = j + (i << My);
- t=data[op], data[op]=data[np], data[np]=t;
- }
- }
- else { // rectangular
- unsigned int k, Nym = Ny-1, stm = 1 << (Mx + My);
- for (i=0; stm>0; i++) {
- #define PRED(k) (((k & Nym) << Mx) + (k >> My))
- for (j=PRED(i); j>i; j=PRED(j));
- if (j < i) continue;
- for (k=i, j=PRED(i); j!=i; k=j, j=PRED(j), stm--) {
- t=data[j], data[j]=data[k], data[k]=t;
- }
- #undef PRED
- stm--;
- }
- }
- // swap Mx/My & Nx/Ny
- i = Nx, Nx = Ny, Ny = i;
- i = Mx, Mx = My, My = i;
-
- // now columns == transposed rows
- for (j=0; j<Ny; ++j)
- FHT(&data[Nx*j], Mx, inverse);
-
- // finalize
- for (j=0; j<=(Ny >> 1); j++) {
- unsigned int jm = (Ny - j) & (Ny-1);
- unsigned int ji = j << Mx;
- unsigned int jmi = jm << Mx;
- for (i=0; i<=(Nx >> 1); i++) {
- unsigned int im = (Nx - i) & (Nx-1);
- fREAL A = data[ji + i];
- fREAL B = data[jmi + i];
- fREAL C = data[ji + im];
- fREAL D = data[jmi + im];
- fREAL E = (fREAL)0.5*((A + D) - (B + C));
- data[ji + i] = A - E;
- data[jmi + i] = B + E;
- data[ji + im] = C + E;
- data[jmi + im] = D - E;
- }
- }
-
-}
-
-//------------------------------------------------------------------------------
-
-/* 2D convolution calc, d1 *= d2, M/N - > log2 of width/height */
-static void fht_convolve(fREAL* d1, fREAL* d2, unsigned int M, unsigned int N)
-{
- fREAL a, b;
- unsigned int i, j, k, L, mj, mL;
- unsigned int m = 1 << M, n = 1 << N;
- unsigned int m2 = 1 << (M-1), n2 = 1 << (N-1);
- unsigned int mn2 = m << (N-1);
-
- d1[0] *= d2[0];
- d1[mn2] *= d2[mn2];
- d1[m2] *= d2[m2];
- d1[m2 + mn2] *= d2[m2 + mn2];
- for (i=1; i<m2; i++) {
- k = m - i;
- a = d1[i]*d2[i] - d1[k]*d2[k];
- b = d1[k]*d2[i] + d1[i]*d2[k];
- d1[i] = (b + a)*(fREAL)0.5;
- d1[k] = (b - a)*(fREAL)0.5;
- a = d1[i + mn2]*d2[i + mn2] - d1[k + mn2]*d2[k + mn2];
- b = d1[k + mn2]*d2[i + mn2] + d1[i + mn2]*d2[k + mn2];
- d1[i + mn2] = (b + a)*(fREAL)0.5;
- d1[k + mn2] = (b - a)*(fREAL)0.5;
- }
- for (j=1; j<n2; j++) {
- L = n - j;
- mj = j << M;
- mL = L << M;
- a = d1[mj]*d2[mj] - d1[mL]*d2[mL];
- b = d1[mL]*d2[mj] + d1[mj]*d2[mL];
- d1[mj] = (b + a)*(fREAL)0.5;
- d1[mL] = (b - a)*(fREAL)0.5;
- a = d1[m2 + mj]*d2[m2 + mj] - d1[m2 + mL]*d2[m2 + mL];
- b = d1[m2 + mL]*d2[m2 + mj] + d1[m2 + mj]*d2[m2 + mL];
- d1[m2 + mj] = (b + a)*(fREAL)0.5;
- d1[m2 + mL] = (b - a)*(fREAL)0.5;
- }
- for (i=1; i<m2; i++) {
- k = m - i;
- for (j=1; j<n2; j++) {
- L = n - j;
- mj = j << M;
- mL = L << M;
- a = d1[i + mj]*d2[i + mj] - d1[k + mL]*d2[k + mL];
- b = d1[k + mL]*d2[i + mj] + d1[i + mj]*d2[k + mL];
- d1[i + mj] = (b + a)*(fREAL)0.5;
- d1[k + mL] = (b - a)*(fREAL)0.5;
- a = d1[i + mL]*d2[i + mL] - d1[k + mj]*d2[k + mj];
- b = d1[k + mj]*d2[i + mL] + d1[i + mL]*d2[k + mj];
- d1[i + mL] = (b + a)*(fREAL)0.5;
- d1[k + mj] = (b - a)*(fREAL)0.5;
- }
- }
-}
-
-//------------------------------------------------------------------------------
-
-void convolve(CompBuf* dst, CompBuf* in1, CompBuf* in2)
-{
- fREAL *data1, *data2, *fp;
- unsigned int w2, h2, hw, hh, log2_w, log2_h;
- fRGB wt, *colp;
- int x, y, ch;
- int xbl, ybl, nxb, nyb, xbsz, ybsz;
- int in2done = FALSE;
-
- CompBuf* rdst = alloc_compbuf(in1->x, in1->y, in1->type, 1);
-
- // convolution result width & height
- w2 = 2*in2->x - 1;
- h2 = 2*in2->y - 1;
- // FFT pow2 required size & log2
- w2 = nextPow2(w2, &log2_w);
- h2 = nextPow2(h2, &log2_h);
-
- // alloc space
- data1 = (fREAL*)MEM_callocN(3*w2*h2*sizeof(fREAL), "convolve_fast FHT data1");
- data2 = (fREAL*)MEM_callocN(w2*h2*sizeof(fREAL), "convolve_fast FHT data2");
-
- // normalize convolutor
- wt[0] = wt[1] = wt[2] = 0.f;
- for (y=0; y<in2->y; y++) {
- colp = (fRGB*)&in2->rect[y*in2->x*in2->type];
- for (x=0; x<in2->x; x++)
- add_v3_v3(wt, colp[x]);
- }
- if (wt[0] != 0.f) wt[0] = 1.f/wt[0];
- if (wt[1] != 0.f) wt[1] = 1.f/wt[1];
- if (wt[2] != 0.f) wt[2] = 1.f/wt[2];
- for (y=0; y<in2->y; y++) {
- colp = (fRGB*)&in2->rect[y*in2->x*in2->type];
- for (x=0; x<in2->x; x++)
- mul_v3_v3(colp[x], wt);
- }
-
- // copy image data, unpacking interleaved RGBA into separate channels
- // only need to calc data1 once
-
- // block add-overlap
- hw = in2->x >> 1;
- hh = in2->y >> 1;
- xbsz = (w2 + 1) - in2->x;
- ybsz = (h2 + 1) - in2->y;
- nxb = in1->x / xbsz;
- if (in1->x % xbsz) nxb++;
- nyb = in1->y / ybsz;
- if (in1->y % ybsz) nyb++;
- for (ybl=0; ybl<nyb; ybl++) {
- for (xbl=0; xbl<nxb; xbl++) {
-
- // each channel one by one
- for (ch=0; ch<3; ch++) {
- fREAL* data1ch = &data1[ch*w2*h2];
-
- // only need to calc fht data from in2 once, can re-use for every block
- if (!in2done) {
- // in2, channel ch -> data1
- for (y=0; y<in2->y; y++) {
- fp = &data1ch[y*w2];
- colp = (fRGB*)&in2->rect[y*in2->x*in2->type];
- for (x=0; x<in2->x; x++)
- fp[x] = colp[x][ch];
- }
- }
-
- // in1, channel ch -> data2
- memset(data2, 0, w2*h2*sizeof(fREAL));
- for (y=0; y<ybsz; y++) {
- int yy = ybl*ybsz + y;
- if (yy >= in1->y) continue;
- fp = &data2[y*w2];
- colp = (fRGB*)&in1->rect[yy*in1->x*in1->type];
- for (x=0; x<xbsz; x++) {
- int xx = xbl*xbsz + x;
- if (xx >= in1->x) continue;
- fp[x] = colp[xx][ch];
- }
- }
-
- // forward FHT
- // zero pad data start is different for each == height+1
- if (!in2done) FHT2D(data1ch, log2_w, log2_h, in2->y+1, 0);
- FHT2D(data2, log2_w, log2_h, in2->y+1, 0);
-
- // FHT2D transposed data, row/col now swapped
- // convolve & inverse FHT
- fht_convolve(data2, data1ch, log2_h, log2_w);
- FHT2D(data2, log2_h, log2_w, 0, 1);
- // data again transposed, so in order again
-
- // overlap-add result
- for (y=0; y<(int)h2; y++) {
- const int yy = ybl*ybsz + y - hh;
- if ((yy < 0) || (yy >= in1->y)) continue;
- fp = &data2[y*w2];
- colp = (fRGB*)&rdst->rect[yy*in1->x*in1->type];
- for (x=0; x<(int)w2; x++) {
- const int xx = xbl*xbsz + x - hw;
- if ((xx < 0) || (xx >= in1->x)) continue;
- colp[xx][ch] += fp[x];
- }
- }
-
- }
- in2done = TRUE;
- }
- }
-
- MEM_freeN(data2);
- MEM_freeN(data1);
- memcpy(dst->rect, rdst->rect, sizeof(float)*dst->x*dst->y*dst->type);
- free_compbuf(rdst);
-}
-
-
-/*
- *
- * Utility functions qd_* should probably be integrated better with other functions here.
- *
- */
-// sets fcol to pixelcolor at (x, y)
-void qd_getPixel(CompBuf* src, int x, int y, float* col)
-{
- if (src->rect_procedural) {
- float bc[4];
- src->rect_procedural(src, bc, (float)x/(float)src->xrad, (float)y/(float)src->yrad);
-
- switch (src->type) {
- /* these fallthrough to get all the channels */
- case CB_RGBA: col[3]=bc[3];
- case CB_VEC3: col[2]=bc[2];
- case CB_VEC2: col[1]=bc[1];
- case CB_VAL: col[0]=bc[0];
- }
- }
- else if ((x >= 0) && (x < src->x) && (y >= 0) && (y < src->y)) {
- float* bc = &src->rect[(x + y*src->x)*src->type];
- switch (src->type) {
- /* these fallthrough to get all the channels */
- case CB_RGBA: col[3]=bc[3];
- case CB_VEC3: col[2]=bc[2];
- case CB_VEC2: col[1]=bc[1];
- case CB_VAL: col[0]=bc[0];
- }
- }
- else {
- switch (src->type) {
- /* these fallthrough to get all the channels */
- case CB_RGBA: col[3]=0.0;
- case CB_VEC3: col[2]=0.0;
- case CB_VEC2: col[1]=0.0;
- case CB_VAL: col[0]=0.0;
- }
- }
-}
-
-// sets pixel (x, y) to color col
-void qd_setPixel(CompBuf* src, int x, int y, float* col)
-{
- if ((x >= 0) && (x < src->x) && (y >= 0) && (y < src->y)) {
- float* bc = &src->rect[(x + y*src->x)*src->type];
- switch (src->type) {
- /* these fallthrough to get all the channels */
- case CB_RGBA: bc[3]=col[3];
- case CB_VEC3: bc[2]=col[2];
- case CB_VEC2: bc[1]=col[1];
- case CB_VAL: bc[0]=col[0];
- }
- }
-}
-
-// adds fcol to pixelcolor (x, y)
-void qd_addPixel(CompBuf* src, int x, int y, float* col)
-{
- if ((x >= 0) && (x < src->x) && (y >= 0) && (y < src->y)) {
- float* bc = &src->rect[(x + y*src->x)*src->type];
- bc[0] += col[0], bc[1] += col[1], bc[2] += col[2];
- }
-}
-
-// multiplies pixel by factor value f
-void qd_multPixel(CompBuf* src, int x, int y, float f)
-{
- if ((x >= 0) && (x < src->x) && (y >= 0) && (y < src->y)) {
- float* bc = &src->rect[(x + y*src->x)*src->type];
- bc[0] *= f, bc[1] *= f, bc[2] *= f;
- }
-}
-
-// bilinear interpolation with wraparound
-void qd_getPixelLerpWrap(CompBuf* src, float u, float v, float* col)
-{
- const float ufl = floor(u), vfl = floor(v);
- const int nx = (int)ufl % src->x, ny = (int)vfl % src->y;
- const int x1 = (nx < 0) ? (nx + src->x) : nx;
- const int y1 = (ny < 0) ? (ny + src->y) : ny;
- const int x2 = (x1 + 1) % src->x, y2 = (y1 + 1) % src->y;
- const float* c00 = &src->rect[(x1 + y1*src->x)*src->type];
- const float* c10 = &src->rect[(x2 + y1*src->x)*src->type];
- const float* c01 = &src->rect[(x1 + y2*src->x)*src->type];
- const float* c11 = &src->rect[(x2 + y2*src->x)*src->type];
- const float uf = u - ufl, vf = v - vfl;
- const float w00=(1.f-uf)*(1.f-vf), w10=uf*(1.f-vf), w01=(1.f-uf)*vf, w11=uf*vf;
- col[0] = w00*c00[0] + w10*c10[0] + w01*c01[0] + w11*c11[0];
- if (src->type != CB_VAL) {
- col[1] = w00*c00[1] + w10*c10[1] + w01*c01[1] + w11*c11[1];
- col[2] = w00*c00[2] + w10*c10[2] + w01*c01[2] + w11*c11[2];
- col[3] = w00*c00[3] + w10*c10[3] + w01*c01[3] + w11*c11[3];
- }
-}
-
-// as above, without wrap around
-void qd_getPixelLerp(CompBuf* src, float u, float v, float* col)
-{
- const float ufl = floor(u), vfl = floor(v);
- const int x1 = (int)ufl, y1 = (int)vfl;
- const int x2 = (int)ceil(u), y2 = (int)ceil(v);
- if ((x2 >= 0) && (y2 >= 0) && (x1 < src->x) && (y1 < src->y)) {
- const float B[4] = {0, 0, 0, 0};
- const int ox1 = (x1 < 0), oy1 = (y1 < 0), ox2 = (x2 >= src->x), oy2 = (y2 >= src->y);
- const float* c00 = (ox1 || oy1) ? B : &src->rect[(x1 + y1*src->x)*src->type];
- const float* c10 = (ox2 || oy1) ? B : &src->rect[(x2 + y1*src->x)*src->type];
- const float* c01 = (ox1 || oy2) ? B : &src->rect[(x1 + y2*src->x)*src->type];
- const float* c11 = (ox2 || oy2) ? B : &src->rect[(x2 + y2*src->x)*src->type];
- const float uf = u - ufl, vf = v - vfl;
- const float w00=(1.f-uf)*(1.f-vf), w10=uf*(1.f-vf), w01=(1.f-uf)*vf, w11=uf*vf;
- col[0] = w00*c00[0] + w10*c10[0] + w01*c01[0] + w11*c11[0];
- if (src->type != CB_VAL) {
- col[1] = w00*c00[1] + w10*c10[1] + w01*c01[1] + w11*c11[1];
- col[2] = w00*c00[2] + w10*c10[2] + w01*c01[2] + w11*c11[2];
- col[3] = w00*c00[3] + w10*c10[3] + w01*c01[3] + w11*c11[3];
- }
- }
- else col[0] = col[1] = col[2] = col[3] = 0.f;
-}
-
-// as above, sampling only one channel
-void qd_getPixelLerpChan(CompBuf* src, float u, float v, int chan, float* out)
-{
- const float ufl = floor(u), vfl = floor(v);
- const int x1 = (int)ufl, y1 = (int)vfl;
- const int x2 = (int)ceil(u), y2 = (int)ceil(v);
- if (chan >= src->type) chan = 0;
- if ((x2 >= 0) && (y2 >= 0) && (x1 < src->x) && (y1 < src->y)) {
- const float B[4] = {0, 0, 0, 0};
- const int ox1 = (x1 < 0), oy1 = (y1 < 0), ox2 = (x2 >= src->x), oy2 = (y2 >= src->y);
- const float* c00 = (ox1 || oy1) ? B : &src->rect[(x1 + y1*src->x)*src->type + chan];
- const float* c10 = (ox2 || oy1) ? B : &src->rect[(x2 + y1*src->x)*src->type + chan];
- const float* c01 = (ox1 || oy2) ? B : &src->rect[(x1 + y2*src->x)*src->type + chan];
- const float* c11 = (ox2 || oy2) ? B : &src->rect[(x2 + y2*src->x)*src->type + chan];
- const float uf = u - ufl, vf = v - vfl;
- const float w00=(1.f-uf)*(1.f-vf), w10=uf*(1.f-vf), w01=(1.f-uf)*vf, w11=uf*vf;
- out[0] = w00*c00[0] + w10*c10[0] + w01*c01[0] + w11*c11[0];
- }
- else *out = 0.f;
-}
-
-
-CompBuf* qd_downScaledCopy(CompBuf* src, int scale)
-{
- CompBuf* fbuf;
- if (scale <= 1)
- fbuf = dupalloc_compbuf(src);
- else {
- int nw = src->x/scale, nh = src->y/scale;
- if ((2*(src->x % scale)) > scale) nw++;
- if ((2*(src->y % scale)) > scale) nh++;
- fbuf = alloc_compbuf(nw, nh, src->type, 1);
- {
- int x, y, xx, yy, sx, sy, mx, my;
- float colsum[4] = {0.0f, 0.0f, 0.0f, 0.0f};
- float fscale = 1.f/(float)(scale*scale);
- for (y=0; y<nh; y++) {
- fRGB* fcolp = (fRGB*)&fbuf->rect[y*fbuf->x*fbuf->type];
- yy = y*scale;
- my = yy + scale;
- if (my > src->y) my = src->y;
- for (x=0; x<nw; x++) {
- xx = x*scale;
- mx = xx + scale;
- if (mx > src->x) mx = src->x;
- zero_v3(colsum);
- for (sy=yy; sy<my; sy++) {
- fRGB* scolp = (fRGB*)&src->rect[sy*src->x*src->type];
- for (sx=xx; sx<mx; sx++)
- add_v3_v3(colsum, scolp[sx]);
- }
- mul_v3_fl(colsum, fscale);
- copy_v3_v3(fcolp[x], colsum);
- }
- }
- }
- }
- return fbuf;
-}
-
-// fast g.blur, per channel
-// xy var. bits 1 & 2 ca be used to blur in x or y direction separately
-void IIR_gauss(CompBuf* src, float sigma, int chan, int xy)
-{
- double q, q2, sc, cf[4], tsM[9], tsu[3], tsv[3];
- double *X, *Y, *W;
- const unsigned int src_width = src->x;
- const unsigned int src_height = src->y;
- unsigned int i, x, y, sz;
-
- // <0.5 not valid, though can have a possibly useful sort of sharpening effect
- if (sigma < 0.5f) return;
-
- if ((xy < 1) || (xy > 3)) xy = 3;
-
- // XXX The YVV macro defined below explicitly expects sources of at least 3x3 pixels,
- // so just skiping blur along faulty direction if src's def is below that limit!
- if (src_width < 3) xy &= ~(int) 1;
- if (src_height < 3) xy &= ~(int) 2;
- if (xy < 1) return;
-
- // see "Recursive Gabor Filtering" by Young/VanVliet
- // all factors here in double.prec. Required, because for single.prec it seems to blow up if sigma > ~200
- if (sigma >= 3.556f)
- q = 0.9804f * (sigma - 3.556f) + 2.5091f;
- else // sigma >= 0.5
- q = (0.0561f * sigma + 0.5784f) * sigma - 0.2568f;
- q2 = q * q;
- sc = (1.1668 + q) * (3.203729649 + (2.21566 + q) * q);
- // no gabor filtering here, so no complex multiplies, just the regular coefs.
- // all negated here, so as not to have to recalc Triggs/Sdika matrix
- cf[1] = q * (5.788961737 + (6.76492 + 3.0 * q) * q) / sc;
- cf[2] = -q2 * (3.38246 + 3.0 * q) / sc;
- // 0 & 3 unchanged
- cf[3] = q2 * q / sc;
- cf[0] = 1.0 - cf[1] - cf[2] - cf[3];
-
- // Triggs/Sdika border corrections,
- // it seems to work, not entirely sure if it is actually totally correct,
- // Besides J.M.Geusebroek's anigauss.c (see http://www.science.uva.nl/~mark),
- // found one other implementation by Cristoph Lampert,
- // but neither seem to be quite the same, result seems to be ok so far anyway.
- // Extra scale factor here to not have to do it in filter,
- // though maybe this had something to with the precision errors
- sc = cf[0] / ((1.0 + cf[1] - cf[2] + cf[3]) * (1.0 - cf[1] - cf[2] - cf[3]) * (1.0 + cf[2] + (cf[1] - cf[3]) * cf[3]));
- tsM[0] = sc * (-cf[3] * cf[1] + 1.0 - cf[3] * cf[3] - cf[2]);
- tsM[1] = sc * ((cf[3] + cf[1]) * (cf[2] + cf[3] * cf[1]));
- tsM[2] = sc * (cf[3] * (cf[1] + cf[3] * cf[2]));
- tsM[3] = sc * (cf[1] + cf[3] * cf[2]);
- tsM[4] = sc * (-(cf[2] - 1.0) * (cf[2] + cf[3] * cf[1]));
- tsM[5] = sc * (-(cf[3] * cf[1] + cf[3] * cf[3] + cf[2] - 1.0) * cf[3]);
- tsM[6] = sc * (cf[3] * cf[1] + cf[2] + cf[1] * cf[1] - cf[2] * cf[2]);
- tsM[7] = sc * (cf[1] * cf[2] + cf[3] * cf[2] * cf[2] - cf[1] * cf[3] * cf[3] - cf[3] * cf[3] * cf[3] - cf[3] * cf[2] + cf[3]);
- tsM[8] = sc * (cf[3] * (cf[1] + cf[3] * cf[2]));
-
-#define YVV(L) \
-{ \
- W[0] = cf[0] * X[0] + cf[1] * X[0] + cf[2] * X[0] + cf[3] * X[0]; \
- W[1] = cf[0] * X[1] + cf[1] * W[0] + cf[2] * X[0] + cf[3] * X[0]; \
- W[2] = cf[0] * X[2] + cf[1] * W[1] + cf[2] * W[0] + cf[3] * X[0]; \
- for (i = 3; i < L; i++) { \
- W[i] = cf[0] * X[i] + cf[1] * W[i - 1] + cf[2] * W[i - 2] + cf[3] * W[i - 3]; \
- } \
- tsu[0] = W[L - 1] - X[L - 1]; \
- tsu[1] = W[L - 2] - X[L - 1]; \
- tsu[2] = W[L - 3] - X[L - 1]; \
- tsv[0] = tsM[0] * tsu[0] + tsM[1] * tsu[1] + tsM[2] * tsu[2] + X[L - 1]; \
- tsv[1] = tsM[3] * tsu[0] + tsM[4] * tsu[1] + tsM[5] * tsu[2] + X[L - 1]; \
- tsv[2] = tsM[6] * tsu[0] + tsM[7] * tsu[1] + tsM[8] * tsu[2] + X[L - 1]; \
- Y[L - 1] = cf[0] * W[L - 1] + cf[1] * tsv[0] + cf[2] * tsv[1] + cf[3] * tsv[2]; \
- Y[L - 2] = cf[0] * W[L - 2] + cf[1] * Y[L - 1] + cf[2] * tsv[0] + cf[3] * tsv[1]; \
- Y[L - 3] = cf[0] * W[L - 3] + cf[1] * Y[L - 2] + cf[2] * Y[L - 1] + cf[3] * tsv[0]; \
- /* 'i != UINT_MAX' is really 'i >= 0', but necessary for unsigned int wrapping */ \
- for (i = L - 4; i != UINT_MAX; i--) { \
- Y[i] = cf[0] * W[i] + cf[1] * Y[i + 1] + cf[2] * Y[i + 2] + cf[3] * Y[i + 3]; \
- } \
-} (void)0
-
- // intermediate buffers
- sz = MAX2(src_width, src_height);
- X = MEM_callocN(sz * sizeof(double), "IIR_gauss X buf");
- Y = MEM_callocN(sz * sizeof(double), "IIR_gauss Y buf");
- W = MEM_callocN(sz * sizeof(double), "IIR_gauss W buf");
- if (xy & 1) { // H
- for (y = 0; y < src_height; ++y) {
- const int yx = y * src_width;
- for (x = 0; x < src_width; ++x)
- X[x] = src->rect[(x + yx) * src->type + chan];
- YVV(src_width);
- for (x = 0; x < src_width; ++x)
- src->rect[(x + yx) * src->type + chan] = Y[x];
- }
- }
- if (xy & 2) { // V
- for (x = 0; x < src_width; ++x) {
- for (y = 0; y < src_height; ++y)
- X[y] = src->rect[(x + y * src_width) * src->type + chan];
- YVV(src_height);
- for (y = 0; y < src_height; ++y)
- src->rect[(x + y * src_width) * src->type + chan] = Y[y];
- }
- }
-
- MEM_freeN(X);
- MEM_freeN(W);
- MEM_freeN(Y);
-#undef YVV
-}
-
-#endif /* WITH_COMPOSITOR_LEGACY */