Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'source/blender/nodes/geometry/nodes/node_geo_curve_fillet.cc')
-rw-r--r--source/blender/nodes/geometry/nodes/node_geo_curve_fillet.cc595
1 files changed, 36 insertions, 559 deletions
diff --git a/source/blender/nodes/geometry/nodes/node_geo_curve_fillet.cc b/source/blender/nodes/geometry/nodes/node_geo_curve_fillet.cc
index fb8a488ddae..4586bb24464 100644
--- a/source/blender/nodes/geometry/nodes/node_geo_curve_fillet.cc
+++ b/source/blender/nodes/geometry/nodes/node_geo_curve_fillet.cc
@@ -1,16 +1,12 @@
/* SPDX-License-Identifier: GPL-2.0-or-later */
-#include "BLI_task.hh"
-
#include "UI_interface.h"
#include "UI_resources.h"
-#include "DNA_node_types.h"
+#include "GEO_fillet_curves.hh"
#include "node_geometry_util.hh"
-#include "BKE_spline.hh"
-
namespace blender::nodes::node_geo_curve_fillet_cc {
NODE_STORAGE_FUNCS(NodeGeometryCurveFillet)
@@ -44,571 +40,18 @@ static void node_layout(uiLayout *layout, bContext *UNUSED(C), PointerRNA *ptr)
static void node_init(bNodeTree *UNUSED(tree), bNode *node)
{
NodeGeometryCurveFillet *data = MEM_cnew<NodeGeometryCurveFillet>(__func__);
-
data->mode = GEO_NODE_CURVE_FILLET_BEZIER;
node->storage = data;
}
-struct FilletParam {
- GeometryNodeCurveFilletMode mode;
-
- /* Number of points to be added. */
- VArray<int> counts;
-
- /* Radii for fillet arc at all vertices. */
- VArray<float> radii;
-
- /* Whether or not fillets are allowed to overlap. */
- bool limit_radius;
-};
-
-/* A data structure used to store fillet data about all vertices to be filleted. */
-struct FilletData {
- Span<float3> positions;
- Array<float3> directions, axes;
- Array<float> radii, angles;
- Array<int> counts;
-};
-
static void node_update(bNodeTree *ntree, bNode *node)
{
const NodeGeometryCurveFillet &storage = node_storage(*node);
const GeometryNodeCurveFilletMode mode = (GeometryNodeCurveFilletMode)storage.mode;
-
bNodeSocket *poly_socket = ((bNodeSocket *)node->inputs.first)->next;
-
nodeSetSocketAvailability(ntree, poly_socket, mode == GEO_NODE_CURVE_FILLET_POLY);
}
-/* Function to get the center of a fillet. */
-static float3 get_center(const float3 vec_pos2prev,
- const float3 pos,
- const float3 axis,
- const float angle)
-{
- float3 vec_pos2center;
- rotate_normalized_v3_v3v3fl(vec_pos2center, vec_pos2prev, axis, M_PI_2 - angle / 2.0f);
- vec_pos2center *= 1.0f / sinf(angle / 2.0f);
-
- return vec_pos2center + pos;
-}
-
-/* Function to get the center of the fillet using fillet data */
-static float3 get_center(const float3 vec_pos2prev, const FilletData &fd, const int index)
-{
- const float angle = fd.angles[index];
- const float3 axis = fd.axes[index];
- const float3 pos = fd.positions[index];
-
- return get_center(vec_pos2prev, pos, axis, angle);
-}
-
-/* Calculate the direction vectors from each vertex to their previous vertex. */
-static Array<float3> calculate_directions(const Span<float3> positions)
-{
- const int num = positions.size();
- Array<float3> directions(num);
-
- for (const int i : IndexRange(num - 1)) {
- directions[i] = math::normalize(positions[i + 1] - positions[i]);
- }
- directions[num - 1] = math::normalize(positions[0] - positions[num - 1]);
-
- return directions;
-}
-
-/* Calculate the axes around which the fillet is built. */
-static Array<float3> calculate_axes(const Span<float3> directions)
-{
- const int num = directions.size();
- Array<float3> axes(num);
-
- axes[0] = math::normalize(math::cross(-directions[num - 1], directions[0]));
- for (const int i : IndexRange(1, num - 1)) {
- axes[i] = math::normalize(math::cross(-directions[i - 1], directions[i]));
- }
-
- return axes;
-}
-
-/* Calculate the angle of the arc formed by the fillet. */
-static Array<float> calculate_angles(const Span<float3> directions)
-{
- const int num = directions.size();
- Array<float> angles(num);
-
- angles[0] = M_PI - angle_v3v3(-directions[num - 1], directions[0]);
- for (const int i : IndexRange(1, num - 1)) {
- angles[i] = M_PI - angle_v3v3(-directions[i - 1], directions[i]);
- }
-
- return angles;
-}
-
-/* Calculate the segment count in each filleted arc. */
-static Array<int> calculate_counts(const FilletParam &fillet_param,
- const int num,
- const int spline_offset,
- const bool cyclic)
-{
- Array<int> counts(num, 1);
- if (fillet_param.mode == GEO_NODE_CURVE_FILLET_POLY) {
- for (const int i : IndexRange(num)) {
- counts[i] = fillet_param.counts[spline_offset + i];
- }
- }
- if (!cyclic) {
- counts[0] = counts[num - 1] = 0;
- }
-
- return counts;
-}
-
-/* Calculate the radii for the vertices to be filleted. */
-static Array<float> calculate_radii(const FilletParam &fillet_param,
- const int num,
- const int spline_offset)
-{
- Array<float> radii(num, 0.0f);
- if (fillet_param.limit_radius) {
- for (const int i : IndexRange(num)) {
- radii[i] = std::max(fillet_param.radii[spline_offset + i], 0.0f);
- }
- }
- else {
- for (const int i : IndexRange(num)) {
- radii[i] = fillet_param.radii[spline_offset + i];
- }
- }
-
- return radii;
-}
-
-/* Calculate the number of vertices added per vertex on the source spline. */
-static int calculate_point_counts(MutableSpan<int> point_counts,
- const Span<float> radii,
- const Span<int> counts)
-{
- int added_count = 0;
- for (const int i : IndexRange(point_counts.size())) {
- /* Calculate number of points to be added for the vertex. */
- if (radii[i] != 0.0f) {
- added_count += counts[i];
- point_counts[i] = counts[i] + 1;
- }
- }
-
- return added_count;
-}
-
-static FilletData calculate_fillet_data(const Spline &spline,
- const FilletParam &fillet_param,
- int &added_count,
- MutableSpan<int> point_counts,
- const int spline_offset)
-{
- const int num = spline.size();
-
- FilletData fd;
- fd.directions = calculate_directions(spline.positions());
- fd.positions = spline.positions();
- fd.axes = calculate_axes(fd.directions);
- fd.angles = calculate_angles(fd.directions);
- fd.counts = calculate_counts(fillet_param, num, spline_offset, spline.is_cyclic());
- fd.radii = calculate_radii(fillet_param, num, spline_offset);
-
- added_count = calculate_point_counts(point_counts, fd.radii, fd.counts);
-
- return fd;
-}
-
-/* Limit the radius based on angle and radii to prevent overlapping. */
-static void limit_radii(FilletData &fd, const bool cyclic)
-{
- MutableSpan<float> radii(fd.radii);
- Span<float> angles(fd.angles);
- Span<float3> positions(fd.positions);
-
- const int num = radii.size();
- const int fillet_count = cyclic ? num : num - 2;
- const int start = cyclic ? 0 : 1;
- Array<float> max_radii(num, FLT_MAX);
-
- if (cyclic) {
- /* Calculate lengths between adjacent control points. */
- const float len_prev = math::distance(positions[0], positions[num - 1]);
- const float len_next = math::distance(positions[0], positions[1]);
-
- /* Calculate tangent lengths of fillets in control points. */
- const float tan_len = radii[0] * tan(angles[0] / 2.0f);
- const float tan_len_prev = radii[num - 1] * tan(angles[num - 1] / 2.0f);
- const float tan_len_next = radii[1] * tan(angles[1] / 2.0f);
-
- float factor_prev = 1.0f, factor_next = 1.0f;
- if (tan_len + tan_len_prev > len_prev) {
- factor_prev = len_prev / (tan_len + tan_len_prev);
- }
- if (tan_len + tan_len_next > len_next) {
- factor_next = len_next / (tan_len + tan_len_next);
- }
-
- /* Scale max radii by calculated factors. */
- max_radii[0] = radii[0] * std::min(factor_next, factor_prev);
- max_radii[1] = radii[1] * factor_next;
- max_radii[num - 1] = radii[num - 1] * factor_prev;
- }
-
- /* Initialize max_radii to largest possible radii. */
- float prev_dist = math::distance(positions[1], positions[0]);
- for (const int i : IndexRange(1, num - 2)) {
- const float temp_dist = math::distance(positions[i], positions[i + 1]);
- max_radii[i] = std::min(prev_dist, temp_dist) / tan(angles[i] / 2.0f);
- prev_dist = temp_dist;
- }
-
- /* Max radii calculations for each index. */
- for (const int i : IndexRange(start, fillet_count - 1)) {
- const float len_next = math::distance(positions[i], positions[i + 1]);
- const float tan_len = radii[i] * tan(angles[i] / 2.0f);
- const float tan_len_next = radii[i + 1] * tan(angles[i + 1] / 2.0f);
-
- /* Scale down radii if too large for segment. */
- float factor = 1.0f;
- if (tan_len + tan_len_next > len_next) {
- factor = len_next / (tan_len + tan_len_next);
- }
- max_radii[i] = std::min(max_radii[i], radii[i] * factor);
- max_radii[i + 1] = std::min(max_radii[i + 1], radii[i + 1] * factor);
- }
-
- /* Assign the max_radii to the fillet data's radii. */
- for (const int i : IndexRange(num)) {
- radii[i] = std::min(radii[i], max_radii[i]);
- }
-}
-
-/*
- * Create a mapping from each vertex in the destination spline to that of the source spline.
- * Used for copying the data from the source spline.
- */
-static Array<int> create_dst_to_src_map(const Span<int> point_counts, const int total_points)
-{
- Array<int> map(total_points);
- MutableSpan<int> map_span{map};
- int index = 0;
-
- for (const int i : point_counts.index_range()) {
- map_span.slice(index, point_counts[i]).fill(i);
- index += point_counts[i];
- }
-
- BLI_assert(index == total_points);
-
- return map;
-}
-
-template<typename T>
-static void copy_attribute_by_mapping(const Span<T> src,
- MutableSpan<T> dst,
- const Span<int> mapping)
-{
- for (const int i : dst.index_range()) {
- dst[i] = src[mapping[i]];
- }
-}
-
-/* Copy radii and tilts from source spline to destination. Positions are handled later in update
- * positions methods. */
-static void copy_common_attributes_by_mapping(const Spline &src,
- Spline &dst,
- const Span<int> mapping)
-{
- copy_attribute_by_mapping(src.radii(), dst.radii(), mapping);
- copy_attribute_by_mapping(src.tilts(), dst.tilts(), mapping);
-
- src.attributes.foreach_attribute(
- [&](const AttributeIDRef &attribute_id, const AttributeMetaData &meta_data) {
- std::optional<GSpan> src_attribute = src.attributes.get_for_read(attribute_id);
- if (dst.attributes.create(attribute_id, meta_data.data_type)) {
- std::optional<GMutableSpan> dst_attribute = dst.attributes.get_for_write(attribute_id);
- if (dst_attribute) {
- attribute_math::convert_to_static_type(dst_attribute->type(), [&](auto dummy) {
- using T = decltype(dummy);
- copy_attribute_by_mapping(
- src_attribute->typed<T>(), dst_attribute->typed<T>(), mapping);
- });
- return true;
- }
- }
- BLI_assert_unreachable();
- return false;
- },
- ATTR_DOMAIN_POINT);
-}
-
-/* Update the vertex positions and handle positions of a Bezier spline based on fillet data. */
-static void update_bezier_positions(const FilletData &fd,
- BezierSpline &dst_spline,
- const BezierSpline &src_spline,
- const Span<int> point_counts)
-{
- Span<float> radii(fd.radii);
- Span<float> angles(fd.angles);
- Span<float3> axes(fd.axes);
- Span<float3> positions(fd.positions);
- Span<float3> directions(fd.directions);
-
- const int num = radii.size();
-
- int i_dst = 0;
- for (const int i_src : IndexRange(num)) {
- const int count = point_counts[i_src];
-
- /* Skip if the point count for the vertex is 1. */
- if (count == 1) {
- dst_spline.positions()[i_dst] = src_spline.positions()[i_src];
- dst_spline.handle_types_left()[i_dst] = src_spline.handle_types_left()[i_src];
- dst_spline.handle_types_right()[i_dst] = src_spline.handle_types_right()[i_src];
- dst_spline.handle_positions_left()[i_dst] = src_spline.handle_positions_left()[i_src];
- dst_spline.handle_positions_right()[i_dst] = src_spline.handle_positions_right()[i_src];
- i_dst++;
- continue;
- }
-
- /* Calculate the angle to be formed between any 2 adjacent vertices within the fillet. */
- const float segment_angle = angles[i_src] / (count - 1);
- /* Calculate the handle length for each added vertex. Equation: L = 4R/3 * tan(A/4) */
- const float handle_length = 4.0f * radii[i_src] / 3.0f * tan(segment_angle / 4.0f);
- /* Calculate the distance by which each vertex should be displaced from their initial position.
- */
- const float displacement = radii[i_src] * tan(angles[i_src] / 2.0f);
-
- /* Position the end points of the arc and their handles. */
- const int end_i = i_dst + count - 1;
- const float3 prev_dir = i_src == 0 ? -directions[num - 1] : -directions[i_src - 1];
- const float3 next_dir = directions[i_src];
- dst_spline.positions()[i_dst] = positions[i_src] + displacement * prev_dir;
- dst_spline.positions()[end_i] = positions[i_src] + displacement * next_dir;
- dst_spline.handle_positions_right()[i_dst] = dst_spline.positions()[i_dst] -
- handle_length * prev_dir;
- dst_spline.handle_positions_left()[end_i] = dst_spline.positions()[end_i] -
- handle_length * next_dir;
- dst_spline.handle_types_right()[i_dst] = dst_spline.handle_types_left()[end_i] =
- BEZIER_HANDLE_ALIGN;
- dst_spline.handle_types_left()[i_dst] = dst_spline.handle_types_right()[end_i] =
- BEZIER_HANDLE_VECTOR;
- dst_spline.mark_cache_invalid();
-
- /* Calculate the center of the radius to be formed. */
- const float3 center = get_center(dst_spline.positions()[i_dst] - positions[i_src], fd, i_src);
- /* Calculate the vector of the radius formed by the first vertex. */
- float3 radius_vec = dst_spline.positions()[i_dst] - center;
- float radius;
- radius_vec = math::normalize_and_get_length(radius_vec, radius);
-
- dst_spline.handle_types_right().slice(1, count - 2).fill(BEZIER_HANDLE_ALIGN);
- dst_spline.handle_types_left().slice(1, count - 2).fill(BEZIER_HANDLE_ALIGN);
-
- /* For each of the vertices in between the end points. */
- for (const int j : IndexRange(1, count - 2)) {
- int index = i_dst + j;
- /* Rotate the radius by the segment angle and determine its tangent (used for getting handle
- * directions). */
- float3 new_radius_vec, tangent_vec;
- rotate_normalized_v3_v3v3fl(new_radius_vec, radius_vec, -axes[i_src], segment_angle);
- rotate_normalized_v3_v3v3fl(tangent_vec, new_radius_vec, axes[i_src], M_PI_2);
- radius_vec = new_radius_vec;
- tangent_vec *= handle_length;
-
- /* Adjust the positions of the respective vertex and its handles. */
- dst_spline.positions()[index] = center + new_radius_vec * radius;
- dst_spline.handle_positions_left()[index] = dst_spline.positions()[index] + tangent_vec;
- dst_spline.handle_positions_right()[index] = dst_spline.positions()[index] - tangent_vec;
- }
-
- i_dst += count;
- }
-}
-
-/* Update the vertex positions of a Poly spline based on fillet data. */
-static void update_poly_positions(const FilletData &fd,
- Spline &dst_spline,
- const Spline &src_spline,
- const Span<int> point_counts)
-{
- Span<float> radii(fd.radii);
- Span<float> angles(fd.angles);
- Span<float3> axes(fd.axes);
- Span<float3> positions(fd.positions);
- Span<float3> directions(fd.directions);
-
- const int num = radii.size();
-
- int i_dst = 0;
- for (const int i_src : IndexRange(num)) {
- const int count = point_counts[i_src];
-
- /* Skip if the point count for the vertex is 1. */
- if (count == 1) {
- dst_spline.positions()[i_dst] = src_spline.positions()[i_src];
- i_dst++;
- continue;
- }
-
- const float segment_angle = angles[i_src] / (count - 1);
- const float displacement = radii[i_src] * tan(angles[i_src] / 2.0f);
-
- /* Position the end points of the arc. */
- const int end_i = i_dst + count - 1;
- const float3 prev_dir = i_src == 0 ? -directions[num - 1] : -directions[i_src - 1];
- const float3 next_dir = directions[i_src];
- dst_spline.positions()[i_dst] = positions[i_src] + displacement * prev_dir;
- dst_spline.positions()[end_i] = positions[i_src] + displacement * next_dir;
-
- /* Calculate the center of the radius to be formed. */
- const float3 center = get_center(dst_spline.positions()[i_dst] - positions[i_src], fd, i_src);
- /* Calculate the vector of the radius formed by the first vertex. */
- float3 radius_vec = dst_spline.positions()[i_dst] - center;
-
- for (const int j : IndexRange(1, count - 2)) {
- /* Rotate the radius by the segment angle */
- float3 new_radius_vec;
- rotate_normalized_v3_v3v3fl(new_radius_vec, radius_vec, -axes[i_src], segment_angle);
- radius_vec = new_radius_vec;
-
- dst_spline.positions()[i_dst + j] = center + new_radius_vec;
- }
-
- i_dst += count;
- }
-}
-
-static SplinePtr fillet_spline(const Spline &spline,
- const FilletParam &fillet_param,
- const int spline_offset)
-{
- const int num = spline.size();
- const bool cyclic = spline.is_cyclic();
-
- if (num < 3) {
- return spline.copy();
- }
-
- /* Initialize the point_counts with 1s (at least one vertex on dst for each vertex on src). */
- Array<int> point_counts(num, 1);
-
- int added_count = 0;
- /* Update point_counts array and added_count. */
- FilletData fd = calculate_fillet_data(
- spline, fillet_param, added_count, point_counts, spline_offset);
- if (fillet_param.limit_radius) {
- limit_radii(fd, cyclic);
- }
-
- const int total_points = added_count + num;
- const Array<int> dst_to_src = create_dst_to_src_map(point_counts, total_points);
- SplinePtr dst_spline_ptr = spline.copy_only_settings();
- (*dst_spline_ptr).resize(total_points);
- copy_common_attributes_by_mapping(spline, *dst_spline_ptr, dst_to_src);
-
- switch (spline.type()) {
- case CURVE_TYPE_BEZIER: {
- const BezierSpline &src_spline = static_cast<const BezierSpline &>(spline);
- BezierSpline &dst_spline = static_cast<BezierSpline &>(*dst_spline_ptr);
- if (fillet_param.mode == GEO_NODE_CURVE_FILLET_POLY) {
- dst_spline.handle_types_left().fill(BEZIER_HANDLE_VECTOR);
- dst_spline.handle_types_right().fill(BEZIER_HANDLE_VECTOR);
- update_poly_positions(fd, dst_spline, src_spline, point_counts);
- }
- else {
- update_bezier_positions(fd, dst_spline, src_spline, point_counts);
- }
- break;
- }
- case CURVE_TYPE_POLY: {
- update_poly_positions(fd, *dst_spline_ptr, spline, point_counts);
- break;
- }
- case CURVE_TYPE_NURBS: {
- const NURBSpline &src_spline = static_cast<const NURBSpline &>(spline);
- NURBSpline &dst_spline = static_cast<NURBSpline &>(*dst_spline_ptr);
- copy_attribute_by_mapping(src_spline.weights(), dst_spline.weights(), dst_to_src);
- update_poly_positions(fd, dst_spline, src_spline, point_counts);
- break;
- }
- case CURVE_TYPE_CATMULL_ROM: {
- BLI_assert_unreachable();
- break;
- }
- }
-
- return dst_spline_ptr;
-}
-
-static std::unique_ptr<CurveEval> fillet_curve(const CurveEval &input_curve,
- const FilletParam &fillet_param)
-{
- Span<SplinePtr> input_splines = input_curve.splines();
-
- std::unique_ptr<CurveEval> output_curve = std::make_unique<CurveEval>();
- const int splines_num = input_splines.size();
- output_curve->resize(splines_num);
- MutableSpan<SplinePtr> output_splines = output_curve->splines();
- Array<int> spline_offsets = input_curve.control_point_offsets();
-
- threading::parallel_for(input_splines.index_range(), 128, [&](IndexRange range) {
- for (const int i : range) {
- output_splines[i] = fillet_spline(*input_splines[i], fillet_param, spline_offsets[i]);
- }
- });
- output_curve->attributes = input_curve.attributes;
-
- return output_curve;
-}
-
-static void calculate_curve_fillet(GeometrySet &geometry_set,
- const GeometryNodeCurveFilletMode mode,
- const Field<float> &radius_field,
- const std::optional<Field<int>> &count_field,
- const bool limit_radius)
-{
- if (!geometry_set.has_curves()) {
- return;
- }
-
- FilletParam fillet_param;
- fillet_param.mode = mode;
-
- CurveComponent &component = geometry_set.get_component_for_write<CurveComponent>();
- GeometryComponentFieldContext field_context{component, ATTR_DOMAIN_POINT};
- const int domain_num = component.attribute_domain_num(ATTR_DOMAIN_POINT);
- fn::FieldEvaluator field_evaluator{field_context, domain_num};
-
- field_evaluator.add(radius_field);
-
- if (mode == GEO_NODE_CURVE_FILLET_POLY) {
- field_evaluator.add(*count_field);
- }
-
- field_evaluator.evaluate();
-
- fillet_param.radii = field_evaluator.get_evaluated<float>(0);
- if (fillet_param.radii.is_single() && fillet_param.radii.get_internal_single() < 0.0f) {
- return;
- }
-
- if (mode == GEO_NODE_CURVE_FILLET_POLY) {
- fillet_param.counts = field_evaluator.get_evaluated<int>(1);
- }
-
- fillet_param.limit_radius = limit_radius;
-
- const std::unique_ptr<CurveEval> input_curve = curves_to_curve_eval(*component.get_for_read());
- std::unique_ptr<CurveEval> output_curve = fillet_curve(*input_curve, fillet_param);
-
- geometry_set.replace_curves(curve_eval_to_curves(*output_curve));
-}
-
static void node_geo_exec(GeoNodeExecParams params)
{
GeometrySet geometry_set = params.extract_input<GeometrySet>("Curve");
@@ -625,7 +68,41 @@ static void node_geo_exec(GeoNodeExecParams params)
}
geometry_set.modify_geometry_sets([&](GeometrySet &geometry_set) {
- calculate_curve_fillet(geometry_set, mode, radius_field, count_field, limit_radius);
+ if (!geometry_set.has_curves()) {
+ return;
+ }
+
+ const Curves &curves_id = *geometry_set.get_curves_for_read();
+ const bke::CurvesGeometry &curves = bke::CurvesGeometry::wrap(curves_id.geometry);
+ bke::CurvesFieldContext context{curves, ATTR_DOMAIN_POINT};
+ fn::FieldEvaluator evaluator{context, curves.points_num()};
+ evaluator.add(radius_field);
+
+ switch (mode) {
+ case GEO_NODE_CURVE_FILLET_BEZIER: {
+ evaluator.evaluate();
+ bke::CurvesGeometry dst_curves = geometry::fillet_curves_bezier(
+ curves, curves.curves_range(), evaluator.get_evaluated<float>(0), limit_radius);
+ Curves *dst_curves_id = bke::curves_new_nomain(std::move(dst_curves));
+ bke::curves_copy_parameters(curves_id, *dst_curves_id);
+ geometry_set.replace_curves(dst_curves_id);
+ break;
+ }
+ case GEO_NODE_CURVE_FILLET_POLY: {
+ evaluator.add(*count_field);
+ evaluator.evaluate();
+ bke::CurvesGeometry dst_curves = geometry::fillet_curves_poly(
+ curves,
+ curves.curves_range(),
+ evaluator.get_evaluated<float>(0),
+ evaluator.get_evaluated<int>(1),
+ limit_radius);
+ Curves *dst_curves_id = bke::curves_new_nomain(std::move(dst_curves));
+ bke::curves_copy_parameters(curves_id, *dst_curves_id);
+ geometry_set.replace_curves(dst_curves_id);
+ break;
+ }
+ }
});
params.set_output("Curve", std::move(geometry_set));