Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'source/blender/nodes/geometry/nodes/node_geo_dual_mesh.cc')
-rw-r--r--source/blender/nodes/geometry/nodes/node_geo_dual_mesh.cc159
1 files changed, 102 insertions, 57 deletions
diff --git a/source/blender/nodes/geometry/nodes/node_geo_dual_mesh.cc b/source/blender/nodes/geometry/nodes/node_geo_dual_mesh.cc
index 76eeee95239..1b9e9ae9b4a 100644
--- a/source/blender/nodes/geometry/nodes/node_geo_dual_mesh.cc
+++ b/source/blender/nodes/geometry/nodes/node_geo_dual_mesh.cc
@@ -209,13 +209,18 @@ static void calc_boundaries(const Mesh &mesh,
{
BLI_assert(r_vertex_types.size() == mesh.totvert);
BLI_assert(r_edge_types.size() == mesh.totedge);
+ const Span<MEdge> edges = mesh.edges();
+ const Span<MPoly> polys = mesh.polygons();
+ const Span<MLoop> loops = mesh.loops();
+
r_vertex_types.fill(VertexType::Loose);
r_edge_types.fill(EdgeType::Loose);
/* Add up the number of polys connected to each edge. */
for (const int i : IndexRange(mesh.totpoly)) {
- const MPoly &poly = mesh.mpoly[i];
- for (const MLoop &loop : Span<MLoop>(&mesh.mloop[poly.loopstart], poly.totloop)) {
+ const MPoly &poly = polys[i];
+ const Span<MLoop> poly_loops = loops.slice(poly.loopstart, poly.totloop);
+ for (const MLoop &loop : poly_loops) {
r_edge_types[loop.e] = get_edge_type_with_added_neighbor(r_edge_types[loop.e]);
}
}
@@ -226,7 +231,7 @@ static void calc_boundaries(const Mesh &mesh,
if (edge_type == EdgeType::Loose) {
continue;
}
- const MEdge &edge = mesh.medge[i];
+ const MEdge &edge = edges[i];
if (edge_type == EdgeType::Boundary) {
r_vertex_types[edge.v1] = get_vertex_type_with_added_neighbor(r_vertex_types[edge.v1]);
r_vertex_types[edge.v2] = get_vertex_type_with_added_neighbor(r_vertex_types[edge.v2]);
@@ -241,7 +246,7 @@ static void calc_boundaries(const Mesh &mesh,
for (const int i : IndexRange(mesh.totedge)) {
const EdgeType edge_type = r_edge_types[i];
if (edge_type == EdgeType::Normal) {
- const MEdge &edge = mesh.medge[i];
+ const MEdge &edge = edges[i];
if (r_vertex_types[edge.v1] == VertexType::Loose) {
r_vertex_types[edge.v1] = VertexType::Normal;
}
@@ -258,9 +263,12 @@ static void calc_boundaries(const Mesh &mesh,
static void create_vertex_poly_map(const Mesh &mesh,
MutableSpan<Vector<int>> r_vertex_poly_indices)
{
- for (const int i : IndexRange(mesh.totpoly)) {
- const MPoly &poly = mesh.mpoly[i];
- for (const MLoop &loop : Span<MLoop>(&mesh.mloop[poly.loopstart], poly.totloop)) {
+ const Span<MPoly> polygons = mesh.polygons();
+ const Span<MLoop> loops = mesh.loops();
+ for (const int i : polygons.index_range()) {
+ const MPoly &poly = polygons[i];
+ const Span<MLoop> poly_loops = loops.slice(poly.loopstart, poly.totloop);
+ for (const MLoop &loop : poly_loops) {
r_vertex_poly_indices[loop.v].append(i);
}
}
@@ -321,7 +329,9 @@ static void create_vertex_poly_map(const Mesh &mesh,
* - Finally if we are in the normal case we also need to add the last "shared edge" to close the
* loop.
*/
-static bool sort_vertex_polys(const Mesh &mesh,
+static bool sort_vertex_polys(const Span<MEdge> edges,
+ const Span<MPoly> polys,
+ const Span<MLoop> loops,
const int vertex_index,
const bool boundary_vertex,
const Span<EdgeType> edge_types,
@@ -336,11 +346,11 @@ static bool sort_vertex_polys(const Mesh &mesh,
/* For each polygon store the two corners whose edge contains the vertex. */
Array<std::pair<int, int>> poly_vertex_corners(connected_polygons.size());
for (const int i : connected_polygons.index_range()) {
- const MPoly &poly = mesh.mpoly[connected_polygons[i]];
+ const MPoly &poly = polys[connected_polygons[i]];
bool first_edge_done = false;
for (const int loop_index : IndexRange(poly.loopstart, poly.totloop)) {
- const MLoop &loop = mesh.mloop[loop_index];
- if (mesh.medge[loop.e].v1 == vertex_index || mesh.medge[loop.e].v2 == vertex_index) {
+ const MLoop &loop = loops[loop_index];
+ if (edges[loop.e].v1 == vertex_index || edges[loop.e].v2 == vertex_index) {
if (!first_edge_done) {
poly_vertex_corners[i].first = loop_index;
first_edge_done = true;
@@ -360,8 +370,8 @@ static bool sort_vertex_polys(const Mesh &mesh,
if (boundary_vertex) {
/* Our first polygon needs to be one which has a boundary edge. */
for (const int i : connected_polygons.index_range()) {
- const MLoop &first_loop = mesh.mloop[poly_vertex_corners[i].first];
- const MLoop &second_loop = mesh.mloop[poly_vertex_corners[i].second];
+ const MLoop &first_loop = loops[poly_vertex_corners[i].first];
+ const MLoop &second_loop = loops[poly_vertex_corners[i].second];
if (edge_types[first_loop.e] == EdgeType::Boundary && first_loop.v == vertex_index) {
shared_edge_i = second_loop.e;
r_sorted_corners[0] = poly_vertex_corners[i].first;
@@ -381,8 +391,8 @@ static bool sort_vertex_polys(const Mesh &mesh,
/* The rotation is inconsistent between the two polygons on the boundary. Just choose one
* of the polygon's orientation. */
for (const int i : connected_polygons.index_range()) {
- const MLoop &first_loop = mesh.mloop[poly_vertex_corners[i].first];
- const MLoop &second_loop = mesh.mloop[poly_vertex_corners[i].second];
+ const MLoop &first_loop = loops[poly_vertex_corners[i].first];
+ const MLoop &second_loop = loops[poly_vertex_corners[i].second];
if (edge_types[first_loop.e] == EdgeType::Boundary) {
shared_edge_i = second_loop.e;
r_sorted_corners[0] = poly_vertex_corners[i].first;
@@ -402,8 +412,8 @@ static bool sort_vertex_polys(const Mesh &mesh,
}
else {
/* Any polygon can be the first. Just need to check the orientation. */
- const MLoop &first_loop = mesh.mloop[poly_vertex_corners[0].first];
- const MLoop &second_loop = mesh.mloop[poly_vertex_corners[0].second];
+ const MLoop &first_loop = loops[poly_vertex_corners[0].first];
+ const MLoop &second_loop = loops[poly_vertex_corners[0].second];
if (first_loop.v == vertex_index) {
shared_edge_i = second_loop.e;
r_sorted_corners[0] = poly_vertex_corners[0].first;
@@ -421,8 +431,8 @@ static bool sort_vertex_polys(const Mesh &mesh,
/* Look at the other polys to see if it has this shared edge. */
int j = i + 1;
for (; j < connected_polygons.size(); ++j) {
- const MLoop &first_loop = mesh.mloop[poly_vertex_corners[j].first];
- const MLoop &second_loop = mesh.mloop[poly_vertex_corners[j].second];
+ const MLoop &first_loop = loops[poly_vertex_corners[j].first];
+ const MLoop &second_loop = loops[poly_vertex_corners[j].second];
if (first_loop.e == shared_edge_i) {
r_sorted_corners[i + 1] = poly_vertex_corners[j].first;
shared_edge_i = second_loop.e;
@@ -455,14 +465,16 @@ static bool sort_vertex_polys(const Mesh &mesh,
* Get the edge on the poly that contains the given vertex and is a boundary edge.
*/
static void boundary_edge_on_poly(const MPoly &poly,
- const Mesh &mesh,
+ const Span<MEdge> edges,
+ const Span<MLoop> loops,
const int vertex_index,
const Span<EdgeType> edge_types,
int &r_edge)
{
- for (const MLoop &loop : Span<MLoop>(&mesh.mloop[poly.loopstart], poly.totloop)) {
+ const Span<MLoop> poly_loops = loops.slice(poly.loopstart, poly.totloop);
+ for (const MLoop &loop : poly_loops) {
if (edge_types[loop.e] == EdgeType::Boundary) {
- const MEdge &edge = mesh.medge[loop.e];
+ const MEdge &edge = edges[loop.e];
if (edge.v1 == vertex_index || edge.v2 == vertex_index) {
r_edge = loop.e;
return;
@@ -476,7 +488,8 @@ static void boundary_edge_on_poly(const MPoly &poly,
* orientation of the poly is taken into account.
*/
static void boundary_edges_on_poly(const MPoly &poly,
- const Mesh &mesh,
+ const Span<MEdge> edges,
+ const Span<MLoop> loops,
const int vertex_index,
const Span<EdgeType> edge_types,
int &r_edge1,
@@ -486,9 +499,10 @@ static void boundary_edges_on_poly(const MPoly &poly,
/* This is set to true if the order in which we encounter the two edges is inconsistent with the
* orientation of the polygon. */
bool needs_swap = false;
- for (const MLoop &loop : Span<MLoop>(&mesh.mloop[poly.loopstart], poly.totloop)) {
+ const Span<MLoop> poly_loops = loops.slice(poly.loopstart, poly.totloop);
+ for (const MLoop &loop : poly_loops) {
if (edge_types[loop.e] == EdgeType::Boundary) {
- const MEdge &edge = mesh.medge[loop.e];
+ const MEdge &edge = edges[loop.e];
if (edge.v1 == vertex_index || edge.v2 == vertex_index) {
if (edge1_done) {
if (needs_swap) {
@@ -510,7 +524,7 @@ static void boundary_edges_on_poly(const MPoly &poly,
}
}
-static void add_edge(const Mesh &mesh,
+static void add_edge(const Span<MEdge> src_edges,
const int old_edge_i,
const int v1,
const int v2,
@@ -518,7 +532,7 @@ static void add_edge(const Mesh &mesh,
Vector<MEdge> &new_edges,
Vector<int> &loop_edges)
{
- MEdge new_edge = MEdge(mesh.medge[old_edge_i]);
+ MEdge new_edge = src_edges[old_edge_i];
new_edge.v1 = v1;
new_edge.v2 = v2;
const int new_edge_i = new_edges.size();
@@ -549,14 +563,17 @@ static bool vertex_needs_dissolving(const int vertex,
* edges in the input mesh which contain such a vertex are marked as 'done' to prevent duplicate
* edges being created. (See T94144)
*/
-static void dissolve_redundant_verts(const Mesh &mesh,
+static void dissolve_redundant_verts(const Span<MEdge> edges,
+ const Span<MPoly> polys,
+ const Span<MLoop> loops,
const Span<Vector<int>> vertex_poly_indices,
MutableSpan<VertexType> vertex_types,
MutableSpan<int> old_to_new_edges_map,
Vector<MEdge> &new_edges,
Vector<int> &new_to_old_edges_map)
{
- for (const int vert_i : IndexRange(mesh.totvert)) {
+ const int vertex_num = vertex_types.size();
+ for (const int vert_i : IndexRange(vertex_num)) {
if (vertex_poly_indices[vert_i].size() != 2 || vertex_types[vert_i] != VertexType::Normal) {
continue;
}
@@ -564,9 +581,10 @@ static void dissolve_redundant_verts(const Mesh &mesh,
const int second_poly_index = vertex_poly_indices[vert_i][1];
const int new_edge_index = new_edges.size();
bool edge_created = false;
- const MPoly &poly = mesh.mpoly[first_poly_index];
- for (const MLoop &loop : Span<MLoop>(&mesh.mloop[poly.loopstart], poly.totloop)) {
- const MEdge &edge = mesh.medge[loop.e];
+ const MPoly &poly = polys[first_poly_index];
+ const Span<MLoop> poly_loops = loops.slice(poly.loopstart, poly.totloop);
+ for (const MLoop &loop : poly_loops) {
+ const MEdge &edge = edges[loop.e];
const int v1 = edge.v1;
const int v2 = edge.v2;
bool mark_edge = false;
@@ -617,6 +635,10 @@ static void calc_dual_mesh(GeometrySet &geometry_set,
const bool keep_boundaries)
{
const Mesh &mesh_in = *in_component.get_for_read();
+ const Span<MVert> src_verts = mesh_in.vertices();
+ const Span<MEdge> src_edges = mesh_in.edges();
+ const Span<MPoly> src_polys = mesh_in.polygons();
+ const Span<MLoop> src_loops = mesh_in.loops();
Map<AttributeIDRef, AttributeKind> attributes;
geometry_set.gather_attributes_for_propagation(
@@ -644,14 +666,28 @@ static void calc_dual_mesh(GeometrySet &geometry_set,
bool vertex_ok = true;
if (vertex_types[i] == VertexType::Normal) {
Array<int> shared_edges(loop_indices.size());
- vertex_ok = sort_vertex_polys(
- mesh_in, i, false, edge_types, loop_indices, shared_edges, sorted_corners);
+ vertex_ok = sort_vertex_polys(src_edges,
+ src_polys,
+ src_loops,
+ i,
+ false,
+ edge_types,
+ loop_indices,
+ shared_edges,
+ sorted_corners);
vertex_shared_edges[i] = std::move(shared_edges);
}
else {
Array<int> shared_edges(loop_indices.size() - 1);
- vertex_ok = sort_vertex_polys(
- mesh_in, i, true, edge_types, loop_indices, shared_edges, sorted_corners);
+ vertex_ok = sort_vertex_polys(src_edges,
+ src_polys,
+ src_loops,
+ i,
+ true,
+ edge_types,
+ loop_indices,
+ shared_edges,
+ sorted_corners);
vertex_shared_edges[i] = std::move(shared_edges);
}
if (!vertex_ok) {
@@ -666,9 +702,9 @@ static void calc_dual_mesh(GeometrySet &geometry_set,
Vector<float3> vertex_positions(mesh_in.totpoly);
for (const int i : IndexRange(mesh_in.totpoly)) {
- const MPoly poly = mesh_in.mpoly[i];
+ const MPoly &poly = src_polys[i];
BKE_mesh_calc_poly_center(
- &poly, &mesh_in.mloop[poly.loopstart], mesh_in.mvert, vertex_positions[i]);
+ &poly, &src_loops[poly.loopstart], src_verts.data(), vertex_positions[i]);
}
Array<int> boundary_edge_midpoint_index;
@@ -679,8 +715,8 @@ static void calc_dual_mesh(GeometrySet &geometry_set,
for (const int i : IndexRange(mesh_in.totedge)) {
if (edge_types[i] == EdgeType::Boundary) {
float3 mid;
- const MEdge &edge = mesh_in.medge[i];
- mid_v3_v3v3(mid, mesh_in.mvert[edge.v1].co, mesh_in.mvert[edge.v2].co);
+ const MEdge &edge = src_edges[i];
+ mid_v3_v3v3(mid, src_verts[edge.v1].co, src_verts[edge.v2].co);
boundary_edge_midpoint_index[i] = vertex_positions.size();
vertex_positions.append(mid);
}
@@ -706,7 +742,9 @@ static void calc_dual_mesh(GeometrySet &geometry_set,
/* This is necessary to prevent duplicate edges from being created, but will likely not do
* anything for most meshes. */
- dissolve_redundant_verts(mesh_in,
+ dissolve_redundant_verts(src_edges,
+ src_polys,
+ src_loops,
vertex_poly_indices,
vertex_types,
old_to_new_edges_map,
@@ -734,7 +772,7 @@ static void calc_dual_mesh(GeometrySet &geometry_set,
const int old_edge_i = shared_edges[i];
if (old_to_new_edges_map[old_edge_i] == -1) {
/* This edge has not been created yet. */
- MEdge new_edge = MEdge(mesh_in.medge[old_edge_i]);
+ MEdge new_edge = src_edges[old_edge_i];
new_edge.v1 = loop_indices[i];
new_edge.v2 = loop_indices[(i + 1) % loop_indices.size()];
new_to_old_edges_map.append(old_edge_i);
@@ -776,7 +814,7 @@ static void calc_dual_mesh(GeometrySet &geometry_set,
const int old_edge_i = shared_edges[i];
if (old_to_new_edges_map[old_edge_i] == -1) {
/* This edge has not been created yet. */
- MEdge new_edge = MEdge(mesh_in.medge[old_edge_i]);
+ MEdge new_edge = src_edges[old_edge_i];
new_edge.v1 = loop_indices[i];
new_edge.v2 = loop_indices[i + 1];
new_to_old_edges_map.append(old_edge_i);
@@ -795,13 +833,15 @@ static void calc_dual_mesh(GeometrySet &geometry_set,
int edge2;
if (loop_indices.size() >= 2) {
/* The first boundary edge is at the end of the chain of polygons. */
- boundary_edge_on_poly(mesh_in.mpoly[loop_indices.last()], mesh_in, i, edge_types, edge1);
- boundary_edge_on_poly(mesh_in.mpoly[loop_indices.first()], mesh_in, i, edge_types, edge2);
+ boundary_edge_on_poly(
+ src_polys[loop_indices.last()], src_edges, src_loops, i, edge_types, edge1);
+ boundary_edge_on_poly(
+ src_polys[loop_indices.first()], src_edges, src_loops, i, edge_types, edge2);
}
else {
/* If there is only one polygon both edges are in that polygon. */
boundary_edges_on_poly(
- mesh_in.mpoly[loop_indices[0]], mesh_in, i, edge_types, edge1, edge2);
+ src_polys[loop_indices[0]], src_edges, src_loops, i, edge_types, edge1, edge2);
}
const int last_face_center = loop_indices.last();
@@ -809,7 +849,7 @@ static void calc_dual_mesh(GeometrySet &geometry_set,
new_to_old_face_corners_map.append(sorted_corners.last());
const int first_midpoint = loop_indices.last();
if (old_to_new_edges_map[edge1] == -1) {
- add_edge(mesh_in,
+ add_edge(src_edges,
edge1,
last_face_center,
first_midpoint,
@@ -827,9 +867,9 @@ static void calc_dual_mesh(GeometrySet &geometry_set,
new_to_old_face_corners_map.append(sorted_corners.first());
boundary_vertex_to_relevant_face_map.append(
std::pair(loop_indices.last(), last_face_center));
- vertex_positions.append(mesh_in.mvert[i].co);
+ vertex_positions.append(src_verts[i].co);
const int boundary_vertex = loop_indices.last();
- add_edge(mesh_in,
+ add_edge(src_edges,
edge1,
first_midpoint,
boundary_vertex,
@@ -840,7 +880,7 @@ static void calc_dual_mesh(GeometrySet &geometry_set,
loop_indices.append(boundary_edge_midpoint_index[edge2]);
new_to_old_face_corners_map.append(sorted_corners.first());
const int second_midpoint = loop_indices.last();
- add_edge(mesh_in,
+ add_edge(src_edges,
edge2,
boundary_vertex,
second_midpoint,
@@ -850,7 +890,7 @@ static void calc_dual_mesh(GeometrySet &geometry_set,
if (old_to_new_edges_map[edge2] == -1) {
const int first_face_center = loop_indices.first();
- add_edge(mesh_in,
+ add_edge(src_edges,
edge2,
second_midpoint,
first_face_center,
@@ -881,20 +921,25 @@ static void calc_dual_mesh(GeometrySet &geometry_set,
bke::mesh_attributes(mesh_in),
bke::mesh_attributes_for_write(*mesh_out));
+ MutableSpan<MVert> dst_verts = mesh_out->vertices_for_write();
+ MutableSpan<MEdge> dst_edges = mesh_out->edges_for_write();
+ MutableSpan<MPoly> dst_polys = mesh_out->polygons_for_write();
+ MutableSpan<MLoop> dst_loops = mesh_out->loops_for_write();
+
int loop_start = 0;
for (const int i : IndexRange(mesh_out->totpoly)) {
- mesh_out->mpoly[i].loopstart = loop_start;
- mesh_out->mpoly[i].totloop = loop_lengths[i];
+ dst_polys[i].loopstart = loop_start;
+ dst_polys[i].totloop = loop_lengths[i];
loop_start += loop_lengths[i];
}
for (const int i : IndexRange(mesh_out->totloop)) {
- mesh_out->mloop[i].v = loops[i];
- mesh_out->mloop[i].e = loop_edges[i];
+ dst_loops[i].v = loops[i];
+ dst_loops[i].e = loop_edges[i];
}
for (const int i : IndexRange(mesh_out->totvert)) {
- copy_v3_v3(mesh_out->mvert[i].co, vertex_positions[i]);
+ copy_v3_v3(dst_verts[i].co, vertex_positions[i]);
}
- memcpy(mesh_out->medge, new_edges.data(), sizeof(MEdge) * new_edges.size());
+ dst_edges.copy_from(new_edges);
geometry_set.replace_mesh(mesh_out);
}