Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'source/blender/nodes/geometry/nodes/node_geo_mesh_to_curve.cc')
-rw-r--r--source/blender/nodes/geometry/nodes/node_geo_mesh_to_curve.cc318
1 files changed, 318 insertions, 0 deletions
diff --git a/source/blender/nodes/geometry/nodes/node_geo_mesh_to_curve.cc b/source/blender/nodes/geometry/nodes/node_geo_mesh_to_curve.cc
new file mode 100644
index 00000000000..b852f929b5f
--- /dev/null
+++ b/source/blender/nodes/geometry/nodes/node_geo_mesh_to_curve.cc
@@ -0,0 +1,318 @@
+/*
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ */
+
+#include "BLI_array.hh"
+#include "BLI_task.hh"
+
+#include "DNA_mesh_types.h"
+#include "DNA_meshdata_types.h"
+
+#include "BKE_attribute_math.hh"
+#include "BKE_spline.hh"
+
+#include "node_geometry_util.hh"
+
+using blender::Array;
+
+static bNodeSocketTemplate geo_node_mesh_to_curve_in[] = {
+ {SOCK_GEOMETRY, N_("Mesh")},
+ {SOCK_STRING, N_("Selection")},
+ {-1, ""},
+};
+
+static bNodeSocketTemplate geo_node_mesh_to_curve_out[] = {
+ {SOCK_GEOMETRY, N_("Curve")},
+ {-1, ""},
+};
+
+namespace blender::nodes {
+
+template<typename T>
+static void copy_attribute_to_points(const VArray<T> &source_data,
+ Span<int> map,
+ MutableSpan<T> dest_data)
+{
+ for (const int point_index : map.index_range()) {
+ const int vert_index = map[point_index];
+ dest_data[point_index] = source_data[vert_index];
+ }
+}
+
+static void copy_attributes_to_points(CurveEval &curve,
+ const MeshComponent &mesh_component,
+ Span<Vector<int>> point_to_vert_maps)
+{
+ MutableSpan<SplinePtr> splines = curve.splines();
+ Set<std::string> source_attribute_names = mesh_component.attribute_names();
+
+ /* Copy builtin control point attributes. */
+ if (source_attribute_names.contains_as("tilt")) {
+ const GVArray_Typed<float> tilt_attribute = mesh_component.attribute_get_for_read<float>(
+ "tilt", ATTR_DOMAIN_POINT, 0.0f);
+ parallel_for(splines.index_range(), 256, [&](IndexRange range) {
+ for (const int i : range) {
+ copy_attribute_to_points<float>(
+ *tilt_attribute, point_to_vert_maps[i], splines[i]->tilts());
+ }
+ });
+ source_attribute_names.remove_contained_as("tilt");
+ }
+ if (source_attribute_names.contains_as("radius")) {
+ const GVArray_Typed<float> radius_attribute = mesh_component.attribute_get_for_read<float>(
+ "radius", ATTR_DOMAIN_POINT, 1.0f);
+ parallel_for(splines.index_range(), 256, [&](IndexRange range) {
+ for (const int i : range) {
+ copy_attribute_to_points<float>(
+ *radius_attribute, point_to_vert_maps[i], splines[i]->radii());
+ }
+ });
+ source_attribute_names.remove_contained_as("radius");
+ }
+
+ /* Don't copy other builtin control point attributes. */
+ source_attribute_names.remove_as("position");
+
+ /* Copy dynamic control point attributes. */
+ for (const StringRef name : source_attribute_names) {
+ const GVArrayPtr mesh_attribute = mesh_component.attribute_try_get_for_read(name,
+ ATTR_DOMAIN_POINT);
+ /* Some attributes might not exist if they were builtin attribute on domains that don't
+ * have any elements, i.e. a face attribute on the output of the line primitive node. */
+ if (!mesh_attribute) {
+ continue;
+ }
+
+ const CustomDataType data_type = bke::cpp_type_to_custom_data_type(mesh_attribute->type());
+
+ parallel_for(splines.index_range(), 128, [&](IndexRange range) {
+ for (const int i : range) {
+ /* Create attribute on the spline points. */
+ splines[i]->attributes.create(name, data_type);
+ std::optional<GMutableSpan> spline_attribute = splines[i]->attributes.get_for_write(name);
+ BLI_assert(spline_attribute);
+
+ /* Copy attribute based on the map for this spline. */
+ attribute_math::convert_to_static_type(mesh_attribute->type(), [&](auto dummy) {
+ using T = decltype(dummy);
+ copy_attribute_to_points<T>(
+ mesh_attribute->typed<T>(), point_to_vert_maps[i], spline_attribute->typed<T>());
+ });
+ }
+ });
+ }
+
+ curve.assert_valid_point_attributes();
+}
+
+struct CurveFromEdgesOutput {
+ std::unique_ptr<CurveEval> curve;
+ Vector<Vector<int>> point_to_vert_maps;
+};
+
+static CurveFromEdgesOutput mesh_to_curve(Span<MVert> verts, Span<std::pair<int, int>> edges)
+{
+ std::unique_ptr<CurveEval> curve = std::make_unique<CurveEval>();
+ Vector<Vector<int>> point_to_vert_maps;
+
+ /* Compute the number of edges connecting to each vertex. */
+ Array<int> neighbor_count(verts.size(), 0);
+ for (const std::pair<int, int> &edge : edges) {
+ neighbor_count[edge.first]++;
+ neighbor_count[edge.second]++;
+ }
+
+ /* Compute an offset into the array of neighbor edges based on the counts. */
+ Array<int> neighbor_offsets(verts.size());
+ int start = 0;
+ for (const int i : verts.index_range()) {
+ neighbor_offsets[i] = start;
+ start += neighbor_count[i];
+ }
+
+ /* Use as an index into the "neighbor group" for each vertex. */
+ Array<int> used_slots(verts.size(), 0);
+ /* Calculate the indices of each vertex's neighboring edges. */
+ Array<int> neighbors(edges.size() * 2);
+ for (const int i : edges.index_range()) {
+ const int v1 = edges[i].first;
+ const int v2 = edges[i].second;
+ neighbors[neighbor_offsets[v1] + used_slots[v1]] = v2;
+ neighbors[neighbor_offsets[v2] + used_slots[v2]] = v1;
+ used_slots[v1]++;
+ used_slots[v2]++;
+ }
+
+ /* Now use the neighbor group offsets calculated above as a count used edges at each vertex. */
+ Array<int> unused_edges = std::move(used_slots);
+
+ for (const int start_vert : verts.index_range()) {
+ /* The vertex will be part of a cyclic spline. */
+ if (neighbor_count[start_vert] == 2) {
+ continue;
+ }
+
+ /* The vertex has no connected edges, or they were already used. */
+ if (unused_edges[start_vert] == 0) {
+ continue;
+ }
+
+ for (const int i : IndexRange(neighbor_count[start_vert])) {
+ int current_vert = start_vert;
+ int next_vert = neighbors[neighbor_offsets[current_vert] + i];
+
+ if (unused_edges[next_vert] == 0) {
+ continue;
+ }
+
+ std::unique_ptr<PolySpline> spline = std::make_unique<PolySpline>();
+ Vector<int> point_to_vert_map;
+
+ spline->add_point(verts[current_vert].co, 1.0f, 0.0f);
+ point_to_vert_map.append(current_vert);
+
+ /* Follow connected edges until we read a vertex with more than two connected edges. */
+ while (true) {
+ int last_vert = current_vert;
+ current_vert = next_vert;
+
+ spline->add_point(verts[current_vert].co, 1.0f, 0.0f);
+ point_to_vert_map.append(current_vert);
+ unused_edges[current_vert]--;
+ unused_edges[last_vert]--;
+
+ if (neighbor_count[current_vert] != 2) {
+ break;
+ }
+
+ const int offset = neighbor_offsets[current_vert];
+ const int next_a = neighbors[offset];
+ const int next_b = neighbors[offset + 1];
+ next_vert = (last_vert == next_a) ? next_b : next_a;
+ }
+
+ spline->attributes.reallocate(spline->size());
+ curve->add_spline(std::move(spline));
+ point_to_vert_maps.append(std::move(point_to_vert_map));
+ }
+ }
+
+ /* All remaining edges are part of cyclic splines (we skipped vertices with two edges before). */
+ for (const int start_vert : verts.index_range()) {
+ if (unused_edges[start_vert] != 2) {
+ continue;
+ }
+
+ int current_vert = start_vert;
+ int next_vert = neighbors[neighbor_offsets[current_vert]];
+
+ std::unique_ptr<PolySpline> spline = std::make_unique<PolySpline>();
+ Vector<int> point_to_vert_map;
+ spline->set_cyclic(true);
+
+ spline->add_point(verts[current_vert].co, 1.0f, 0.0f);
+ point_to_vert_map.append(current_vert);
+
+ /* Follow connected edges until we loop back to the start vertex. */
+ while (next_vert != start_vert) {
+ const int last_vert = current_vert;
+ current_vert = next_vert;
+
+ spline->add_point(verts[current_vert].co, 1.0f, 0.0f);
+ point_to_vert_map.append(current_vert);
+ unused_edges[current_vert]--;
+ unused_edges[last_vert]--;
+
+ const int offset = neighbor_offsets[current_vert];
+ const int next_a = neighbors[offset];
+ const int next_b = neighbors[offset + 1];
+ next_vert = (last_vert == next_a) ? next_b : next_a;
+ }
+
+ spline->attributes.reallocate(spline->size());
+ curve->add_spline(std::move(spline));
+ point_to_vert_maps.append(std::move(point_to_vert_map));
+ }
+
+ curve->attributes.reallocate(curve->splines().size());
+ return {std::move(curve), std::move(point_to_vert_maps)};
+}
+
+/**
+ * Get a separate array of the indices for edges in a selection (a boolean attribute).
+ * This helps to make the above algorithm simpler by removing the need to check for selection
+ * in many places.
+ */
+static Vector<std::pair<int, int>> get_selected_edges(GeoNodeExecParams params,
+ const MeshComponent &component)
+{
+ const Mesh &mesh = *component.get_for_read();
+ const std::string selection_name = params.extract_input<std::string>("Selection");
+ if (!selection_name.empty() && !component.attribute_exists(selection_name)) {
+ params.error_message_add(NodeWarningType::Error,
+ TIP_("No attribute with name \"") + selection_name + "\"");
+ }
+ GVArray_Typed<bool> selection = component.attribute_get_for_read<bool>(
+ selection_name, ATTR_DOMAIN_EDGE, true);
+
+ Vector<std::pair<int, int>> selected_edges;
+ for (const int i : IndexRange(mesh.totedge)) {
+ if (selection[i]) {
+ selected_edges.append({mesh.medge[i].v1, mesh.medge[i].v2});
+ }
+ }
+
+ return selected_edges;
+}
+
+static void geo_node_mesh_to_curve_exec(GeoNodeExecParams params)
+{
+ GeometrySet geometry_set = params.extract_input<GeometrySet>("Mesh");
+
+ geometry_set = bke::geometry_set_realize_instances(geometry_set);
+
+ if (!geometry_set.has_mesh()) {
+ params.set_output("Curve", GeometrySet());
+ return;
+ }
+
+ const MeshComponent &component = *geometry_set.get_component_for_read<MeshComponent>();
+ const Mesh &mesh = *component.get_for_read();
+ Span<MVert> verts = Span{mesh.mvert, mesh.totvert};
+ Span<MEdge> edges = Span{mesh.medge, mesh.totedge};
+ if (edges.size() == 0) {
+ params.set_output("Curve", GeometrySet());
+ return;
+ }
+
+ Vector<std::pair<int, int>> selected_edges = get_selected_edges(params, component);
+
+ CurveFromEdgesOutput output = mesh_to_curve(verts, selected_edges);
+ copy_attributes_to_points(*output.curve, component, output.point_to_vert_maps);
+
+ params.set_output("Curve", GeometrySet::create_with_curve(output.curve.release()));
+}
+
+} // namespace blender::nodes
+
+void register_node_type_geo_mesh_to_curve()
+{
+ static bNodeType ntype;
+
+ geo_node_type_base(&ntype, GEO_NODE_MESH_TO_CURVE, "Mesh to Curve", NODE_CLASS_GEOMETRY, 0);
+ node_type_socket_templates(&ntype, geo_node_mesh_to_curve_in, geo_node_mesh_to_curve_out);
+ ntype.geometry_node_execute = blender::nodes::geo_node_mesh_to_curve_exec;
+ nodeRegisterType(&ntype);
+}