Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'source/blender/simulation/intern/SIM_mass_spring.cpp')
-rw-r--r--source/blender/simulation/intern/SIM_mass_spring.cpp1355
1 files changed, 1355 insertions, 0 deletions
diff --git a/source/blender/simulation/intern/SIM_mass_spring.cpp b/source/blender/simulation/intern/SIM_mass_spring.cpp
new file mode 100644
index 00000000000..4834d6d351c
--- /dev/null
+++ b/source/blender/simulation/intern/SIM_mass_spring.cpp
@@ -0,0 +1,1355 @@
+/*
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ *
+ * The Original Code is Copyright (C) Blender Foundation
+ * All rights reserved.
+ */
+
+/** \file
+ * \ingroup bph
+ */
+
+#include "MEM_guardedalloc.h"
+
+#include "DNA_cloth_types.h"
+#include "DNA_meshdata_types.h"
+#include "DNA_modifier_types.h"
+#include "DNA_object_force_types.h"
+#include "DNA_object_types.h"
+#include "DNA_scene_types.h"
+
+#include "BLI_linklist.h"
+#include "BLI_math.h"
+#include "BLI_utildefines.h"
+
+#include "BKE_cloth.h"
+#include "BKE_collision.h"
+#include "BKE_effect.h"
+
+#include "SIM_mass_spring.h"
+#include "implicit.h"
+
+#include "DEG_depsgraph.h"
+#include "DEG_depsgraph_query.h"
+
+static float I3[3][3] = {{1.0, 0.0, 0.0}, {0.0, 1.0, 0.0}, {0.0, 0.0, 1.0}};
+
+/* Number of off-diagonal non-zero matrix blocks.
+ * Basically there is one of these for each vertex-vertex interaction.
+ */
+static int cloth_count_nondiag_blocks(Cloth *cloth)
+{
+ LinkNode *link;
+ int nondiag = 0;
+
+ for (link = cloth->springs; link; link = link->next) {
+ ClothSpring *spring = (ClothSpring *)link->link;
+ switch (spring->type) {
+ case CLOTH_SPRING_TYPE_BENDING_HAIR:
+ /* angular bending combines 3 vertices */
+ nondiag += 3;
+ break;
+
+ default:
+ /* all other springs depend on 2 vertices only */
+ nondiag += 1;
+ break;
+ }
+ }
+
+ return nondiag;
+}
+
+static bool cloth_get_pressure_weights(ClothModifierData *clmd,
+ const MVertTri *vt,
+ float *r_weights)
+{
+ /* We have custom vertex weights for pressure. */
+ if (clmd->sim_parms->vgroup_pressure > 0) {
+ Cloth *cloth = clmd->clothObject;
+ ClothVertex *verts = cloth->verts;
+
+ for (unsigned int j = 0; j < 3; j++) {
+ r_weights[j] = verts[vt->tri[j]].pressure_factor;
+
+ /* Skip the entire triangle if it has a zero weight. */
+ if (r_weights[j] == 0.0f) {
+ return false;
+ }
+ }
+ }
+
+ return true;
+}
+
+static void cloth_calc_pressure_gradient(ClothModifierData *clmd,
+ const float gradient_vector[3],
+ float *r_vertex_pressure)
+{
+ Cloth *cloth = clmd->clothObject;
+ Implicit_Data *data = cloth->implicit;
+ unsigned int mvert_num = cloth->mvert_num;
+ float pt[3];
+
+ for (unsigned int i = 0; i < mvert_num; i++) {
+ SIM_mass_spring_get_position(data, i, pt);
+ r_vertex_pressure[i] = dot_v3v3(pt, gradient_vector);
+ }
+}
+
+static float cloth_calc_volume(ClothModifierData *clmd)
+{
+ /* Calculate the (closed) cloth volume. */
+ Cloth *cloth = clmd->clothObject;
+ const MVertTri *tri = cloth->tri;
+ Implicit_Data *data = cloth->implicit;
+ float weights[3] = {1.0f, 1.0f, 1.0f};
+ float vol = 0;
+
+ /* Early exit for hair, as it never has volume. */
+ if (clmd->hairdata) {
+ return 0.0f;
+ }
+
+ for (unsigned int i = 0; i < cloth->primitive_num; i++) {
+ const MVertTri *vt = &tri[i];
+
+ if (cloth_get_pressure_weights(clmd, vt, weights)) {
+ vol += SIM_tri_tetra_volume_signed_6x(data, vt->tri[0], vt->tri[1], vt->tri[2]);
+ }
+ }
+
+ /* We need to divide by 6 to get the actual volume. */
+ vol = vol / 6.0f;
+
+ return vol;
+}
+
+static float cloth_calc_rest_volume(ClothModifierData *clmd)
+{
+ /* Calculate the (closed) cloth volume. */
+ Cloth *cloth = clmd->clothObject;
+ const MVertTri *tri = cloth->tri;
+ const ClothVertex *v = cloth->verts;
+ float weights[3] = {1.0f, 1.0f, 1.0f};
+ float vol = 0;
+
+ /* Early exit for hair, as it never has volume. */
+ if (clmd->hairdata) {
+ return 0.0f;
+ }
+
+ for (unsigned int i = 0; i < cloth->primitive_num; i++) {
+ const MVertTri *vt = &tri[i];
+
+ if (cloth_get_pressure_weights(clmd, vt, weights)) {
+ vol += volume_tri_tetrahedron_signed_v3_6x(
+ v[vt->tri[0]].xrest, v[vt->tri[1]].xrest, v[vt->tri[2]].xrest);
+ }
+ }
+
+ /* We need to divide by 6 to get the actual volume. */
+ vol = vol / 6.0f;
+
+ return vol;
+}
+
+static float cloth_calc_average_pressure(ClothModifierData *clmd, const float *vertex_pressure)
+{
+ Cloth *cloth = clmd->clothObject;
+ const MVertTri *tri = cloth->tri;
+ Implicit_Data *data = cloth->implicit;
+ float weights[3] = {1.0f, 1.0f, 1.0f};
+ float total_force = 0;
+ float total_area = 0;
+
+ for (unsigned int i = 0; i < cloth->primitive_num; i++) {
+ const MVertTri *vt = &tri[i];
+
+ if (cloth_get_pressure_weights(clmd, vt, weights)) {
+ float area = SIM_tri_area(data, vt->tri[0], vt->tri[1], vt->tri[2]);
+
+ total_force += (vertex_pressure[vt->tri[0]] + vertex_pressure[vt->tri[1]] +
+ vertex_pressure[vt->tri[2]]) *
+ area / 3.0f;
+ total_area += area;
+ }
+ }
+
+ return total_force / total_area;
+}
+
+int SIM_cloth_solver_init(Object *UNUSED(ob), ClothModifierData *clmd)
+{
+ Cloth *cloth = clmd->clothObject;
+ ClothVertex *verts = cloth->verts;
+ const float ZERO[3] = {0.0f, 0.0f, 0.0f};
+ Implicit_Data *id;
+ unsigned int i, nondiag;
+
+ nondiag = cloth_count_nondiag_blocks(cloth);
+ cloth->implicit = id = SIM_mass_spring_solver_create(cloth->mvert_num, nondiag);
+
+ for (i = 0; i < cloth->mvert_num; i++) {
+ SIM_mass_spring_set_vertex_mass(id, i, verts[i].mass);
+ }
+
+ for (i = 0; i < cloth->mvert_num; i++) {
+ SIM_mass_spring_set_motion_state(id, i, verts[i].x, ZERO);
+ }
+
+ return 1;
+}
+
+void SIM_cloth_solver_free(ClothModifierData *clmd)
+{
+ Cloth *cloth = clmd->clothObject;
+
+ if (cloth->implicit) {
+ SIM_mass_spring_solver_free(cloth->implicit);
+ cloth->implicit = NULL;
+ }
+}
+
+void SIM_cloth_solver_set_positions(ClothModifierData *clmd)
+{
+ Cloth *cloth = clmd->clothObject;
+ ClothVertex *verts = cloth->verts;
+ unsigned int mvert_num = cloth->mvert_num, i;
+ ClothHairData *cloth_hairdata = clmd->hairdata;
+ Implicit_Data *id = cloth->implicit;
+
+ for (i = 0; i < mvert_num; i++) {
+ if (cloth_hairdata) {
+ ClothHairData *root = &cloth_hairdata[i];
+ SIM_mass_spring_set_rest_transform(id, i, root->rot);
+ }
+ else {
+ SIM_mass_spring_set_rest_transform(id, i, I3);
+ }
+
+ SIM_mass_spring_set_motion_state(id, i, verts[i].x, verts[i].v);
+ }
+}
+
+void SIM_cloth_solver_set_volume(ClothModifierData *clmd)
+{
+ Cloth *cloth = clmd->clothObject;
+
+ cloth->initial_mesh_volume = cloth_calc_rest_volume(clmd);
+}
+
+/* Init constraint matrix
+ * This is part of the modified CG method suggested by Baraff/Witkin in
+ * "Large Steps in Cloth Simulation" (Siggraph 1998)
+ */
+static void cloth_setup_constraints(ClothModifierData *clmd)
+{
+ Cloth *cloth = clmd->clothObject;
+ Implicit_Data *data = cloth->implicit;
+ ClothVertex *verts = cloth->verts;
+ int mvert_num = cloth->mvert_num;
+ int v;
+
+ const float ZERO[3] = {0.0f, 0.0f, 0.0f};
+
+ SIM_mass_spring_clear_constraints(data);
+
+ for (v = 0; v < mvert_num; v++) {
+ if (verts[v].flags & CLOTH_VERT_FLAG_PINNED) {
+ /* pinned vertex constraints */
+ SIM_mass_spring_add_constraint_ndof0(data, v, ZERO); /* velocity is defined externally */
+ }
+
+ verts[v].impulse_count = 0;
+ }
+}
+
+/* computes where the cloth would be if it were subject to perfectly stiff edges
+ * (edge distance constraints) in a lagrangian solver. then add forces to help
+ * guide the implicit solver to that state. this function is called after
+ * collisions*/
+static int UNUSED_FUNCTION(cloth_calc_helper_forces)(Object *UNUSED(ob),
+ ClothModifierData *clmd,
+ float (*initial_cos)[3],
+ float UNUSED(step),
+ float dt)
+{
+ Cloth *cloth = clmd->clothObject;
+ float(*cos)[3] = (float(*)[3])MEM_callocN(sizeof(float[3]) * cloth->mvert_num,
+ "cos cloth_calc_helper_forces");
+ float *masses = (float *)MEM_callocN(sizeof(float) * cloth->mvert_num,
+ "cos cloth_calc_helper_forces");
+ LinkNode *node;
+ ClothSpring *spring;
+ ClothVertex *cv;
+ int i, steps;
+
+ cv = cloth->verts;
+ for (i = 0; i < cloth->mvert_num; i++, cv++) {
+ copy_v3_v3(cos[i], cv->tx);
+
+ if (cv->goal == 1.0f || len_squared_v3v3(initial_cos[i], cv->tx) != 0.0f) {
+ masses[i] = 1e+10;
+ }
+ else {
+ masses[i] = cv->mass;
+ }
+ }
+
+ steps = 55;
+ for (i = 0; i < steps; i++) {
+ for (node = cloth->springs; node; node = node->next) {
+ /* ClothVertex *cv1, *cv2; */ /* UNUSED */
+ int v1, v2;
+ float len, c, l, vec[3];
+
+ spring = (ClothSpring *)node->link;
+ if (spring->type != CLOTH_SPRING_TYPE_STRUCTURAL &&
+ spring->type != CLOTH_SPRING_TYPE_SHEAR) {
+ continue;
+ }
+
+ v1 = spring->ij;
+ v2 = spring->kl;
+ /* cv1 = cloth->verts + v1; */ /* UNUSED */
+ /* cv2 = cloth->verts + v2; */ /* UNUSED */
+ len = len_v3v3(cos[v1], cos[v2]);
+
+ sub_v3_v3v3(vec, cos[v1], cos[v2]);
+ normalize_v3(vec);
+
+ c = (len - spring->restlen);
+ if (c == 0.0f) {
+ continue;
+ }
+
+ l = c / ((1.0f / masses[v1]) + (1.0f / masses[v2]));
+
+ mul_v3_fl(vec, -(1.0f / masses[v1]) * l);
+ add_v3_v3(cos[v1], vec);
+
+ sub_v3_v3v3(vec, cos[v2], cos[v1]);
+ normalize_v3(vec);
+
+ mul_v3_fl(vec, -(1.0f / masses[v2]) * l);
+ add_v3_v3(cos[v2], vec);
+ }
+ }
+
+ cv = cloth->verts;
+ for (i = 0; i < cloth->mvert_num; i++, cv++) {
+ float vec[3];
+
+ /*compute forces*/
+ sub_v3_v3v3(vec, cos[i], cv->tx);
+ mul_v3_fl(vec, cv->mass * dt * 20.0f);
+ add_v3_v3(cv->tv, vec);
+ // copy_v3_v3(cv->tx, cos[i]);
+ }
+
+ MEM_freeN(cos);
+ MEM_freeN(masses);
+
+ return 1;
+}
+
+BLI_INLINE void cloth_calc_spring_force(ClothModifierData *clmd, ClothSpring *s)
+{
+ Cloth *cloth = clmd->clothObject;
+ ClothSimSettings *parms = clmd->sim_parms;
+ Implicit_Data *data = cloth->implicit;
+ bool using_angular = parms->bending_model == CLOTH_BENDING_ANGULAR;
+ bool resist_compress = (parms->flags & CLOTH_SIMSETTINGS_FLAG_RESIST_SPRING_COMPRESS) &&
+ !using_angular;
+
+ s->flags &= ~CLOTH_SPRING_FLAG_NEEDED;
+
+ /* Calculate force of bending springs. */
+ if ((s->type & CLOTH_SPRING_TYPE_BENDING) && using_angular) {
+#ifdef CLOTH_FORCE_SPRING_BEND
+ float k, scaling;
+
+ s->flags |= CLOTH_SPRING_FLAG_NEEDED;
+
+ scaling = parms->bending + s->ang_stiffness * fabsf(parms->max_bend - parms->bending);
+ k = scaling * s->restlen *
+ 0.1f; /* Multiplying by 0.1, just to scale the forces to more reasonable values. */
+
+ SIM_mass_spring_force_spring_angular(
+ data, s->ij, s->kl, s->pa, s->pb, s->la, s->lb, s->restang, k, parms->bending_damping);
+#endif
+ }
+
+ /* Calculate force of structural + shear springs. */
+ if (s->type &
+ (CLOTH_SPRING_TYPE_STRUCTURAL | CLOTH_SPRING_TYPE_SEWING | CLOTH_SPRING_TYPE_INTERNAL)) {
+#ifdef CLOTH_FORCE_SPRING_STRUCTURAL
+ float k_tension, scaling_tension;
+
+ s->flags |= CLOTH_SPRING_FLAG_NEEDED;
+
+ scaling_tension = parms->tension +
+ s->lin_stiffness * fabsf(parms->max_tension - parms->tension);
+ k_tension = scaling_tension / (parms->avg_spring_len + FLT_EPSILON);
+
+ if (s->type & CLOTH_SPRING_TYPE_SEWING) {
+ /* TODO: verify, half verified (couldn't see error)
+ * sewing springs usually have a large distance at first so clamp the force so we don't get
+ * tunneling through collision objects. */
+ SIM_mass_spring_force_spring_linear(data,
+ s->ij,
+ s->kl,
+ s->restlen,
+ k_tension,
+ parms->tension_damp,
+ 0.0f,
+ 0.0f,
+ false,
+ false,
+ parms->max_sewing);
+ }
+ else if (s->type & CLOTH_SPRING_TYPE_STRUCTURAL) {
+ float k_compression, scaling_compression;
+ scaling_compression = parms->compression +
+ s->lin_stiffness * fabsf(parms->max_compression - parms->compression);
+ k_compression = scaling_compression / (parms->avg_spring_len + FLT_EPSILON);
+
+ SIM_mass_spring_force_spring_linear(data,
+ s->ij,
+ s->kl,
+ s->restlen,
+ k_tension,
+ parms->tension_damp,
+ k_compression,
+ parms->compression_damp,
+ resist_compress,
+ using_angular,
+ 0.0f);
+ }
+ else {
+ /* CLOTH_SPRING_TYPE_INTERNAL */
+ BLI_assert(s->type & CLOTH_SPRING_TYPE_INTERNAL);
+
+ scaling_tension = parms->internal_tension +
+ s->lin_stiffness *
+ fabsf(parms->max_internal_tension - parms->internal_tension);
+ k_tension = scaling_tension / (parms->avg_spring_len + FLT_EPSILON);
+ float scaling_compression = parms->internal_compression +
+ s->lin_stiffness * fabsf(parms->max_internal_compression -
+ parms->internal_compression);
+ float k_compression = scaling_compression / (parms->avg_spring_len + FLT_EPSILON);
+
+ float k_tension_damp = parms->tension_damp;
+ float k_compression_damp = parms->compression_damp;
+
+ if (k_tension == 0.0f) {
+ /* No damping so it behaves as if no tension spring was there at all. */
+ k_tension_damp = 0.0f;
+ }
+
+ if (k_compression == 0.0f) {
+ /* No damping so it behaves as if no compression spring was there at all. */
+ k_compression_damp = 0.0f;
+ }
+
+ SIM_mass_spring_force_spring_linear(data,
+ s->ij,
+ s->kl,
+ s->restlen,
+ k_tension,
+ k_tension_damp,
+ k_compression,
+ k_compression_damp,
+ resist_compress,
+ using_angular,
+ 0.0f);
+ }
+#endif
+ }
+ else if (s->type & CLOTH_SPRING_TYPE_SHEAR) {
+#ifdef CLOTH_FORCE_SPRING_SHEAR
+ float k, scaling;
+
+ s->flags |= CLOTH_SPRING_FLAG_NEEDED;
+
+ scaling = parms->shear + s->lin_stiffness * fabsf(parms->max_shear - parms->shear);
+ k = scaling / (parms->avg_spring_len + FLT_EPSILON);
+
+ SIM_mass_spring_force_spring_linear(data,
+ s->ij,
+ s->kl,
+ s->restlen,
+ k,
+ parms->shear_damp,
+ 0.0f,
+ 0.0f,
+ resist_compress,
+ false,
+ 0.0f);
+#endif
+ }
+ else if (s->type & CLOTH_SPRING_TYPE_BENDING) { /* calculate force of bending springs */
+#ifdef CLOTH_FORCE_SPRING_BEND
+ float kb, cb, scaling;
+
+ s->flags |= CLOTH_SPRING_FLAG_NEEDED;
+
+ scaling = parms->bending + s->lin_stiffness * fabsf(parms->max_bend - parms->bending);
+ kb = scaling / (20.0f * (parms->avg_spring_len + FLT_EPSILON));
+
+ // Fix for [#45084] for cloth stiffness must have cb proportional to kb
+ cb = kb * parms->bending_damping;
+
+ SIM_mass_spring_force_spring_bending(data, s->ij, s->kl, s->restlen, kb, cb);
+#endif
+ }
+ else if (s->type & CLOTH_SPRING_TYPE_BENDING_HAIR) {
+#ifdef CLOTH_FORCE_SPRING_BEND
+ float kb, cb, scaling;
+
+ s->flags |= CLOTH_SPRING_FLAG_NEEDED;
+
+ /* XXX WARNING: angular bending springs for hair apply stiffness factor as an overall factor,
+ * unlike cloth springs! this is crap, but needed due to cloth/hair mixing ... max_bend factor
+ * is not even used for hair, so ...
+ */
+ scaling = s->lin_stiffness * parms->bending;
+ kb = scaling / (20.0f * (parms->avg_spring_len + FLT_EPSILON));
+
+ // Fix for [#45084] for cloth stiffness must have cb proportional to kb
+ cb = kb * parms->bending_damping;
+
+ /* XXX assuming same restlen for ij and jk segments here,
+ * this can be done correctly for hair later. */
+ SIM_mass_spring_force_spring_bending_hair(data, s->ij, s->kl, s->mn, s->target, kb, cb);
+
+# if 0
+ {
+ float x_kl[3], x_mn[3], v[3], d[3];
+
+ SIM_mass_spring_get_motion_state(data, s->kl, x_kl, v);
+ SIM_mass_spring_get_motion_state(data, s->mn, x_mn, v);
+
+ BKE_sim_debug_data_add_dot(clmd->debug_data, x_kl, 0.9, 0.9, 0.9, "target", 7980, s->kl);
+ BKE_sim_debug_data_add_line(
+ clmd->debug_data, x_kl, x_mn, 0.8, 0.8, 0.8, "target", 7981, s->kl);
+
+ copy_v3_v3(d, s->target);
+ BKE_sim_debug_data_add_vector(
+ clmd->debug_data, x_kl, d, 0.8, 0.8, 0.2, "target", 7982, s->kl);
+
+ // copy_v3_v3(d, s->target_ij);
+ // BKE_sim_debug_data_add_vector(clmd->debug_data, x, d, 1, 0.4, 0.4, "target", 7983, s->kl);
+ }
+# endif
+#endif
+ }
+}
+
+static void hair_get_boundbox(ClothModifierData *clmd, float gmin[3], float gmax[3])
+{
+ Cloth *cloth = clmd->clothObject;
+ Implicit_Data *data = cloth->implicit;
+ unsigned int mvert_num = cloth->mvert_num;
+ int i;
+
+ INIT_MINMAX(gmin, gmax);
+ for (i = 0; i < mvert_num; i++) {
+ float x[3];
+ SIM_mass_spring_get_motion_state(data, i, x, NULL);
+ DO_MINMAX(x, gmin, gmax);
+ }
+}
+
+static void cloth_calc_force(
+ Scene *scene, ClothModifierData *clmd, float UNUSED(frame), ListBase *effectors, float time)
+{
+ /* Collect forces and derivatives: F, dFdX, dFdV */
+ Cloth *cloth = clmd->clothObject;
+ ClothSimSettings *parms = clmd->sim_parms;
+ Implicit_Data *data = cloth->implicit;
+ unsigned int i = 0;
+ float drag = clmd->sim_parms->Cvi * 0.01f; /* viscosity of air scaled in percent */
+ float gravity[3] = {0.0f, 0.0f, 0.0f};
+ const MVertTri *tri = cloth->tri;
+ unsigned int mvert_num = cloth->mvert_num;
+ ClothVertex *vert;
+
+#ifdef CLOTH_FORCE_GRAVITY
+ /* global acceleration (gravitation) */
+ if (scene->physics_settings.flag & PHYS_GLOBAL_GRAVITY) {
+ /* scale gravity force */
+ mul_v3_v3fl(gravity,
+ scene->physics_settings.gravity,
+ 0.001f * clmd->sim_parms->effector_weights->global_gravity);
+ }
+
+ vert = cloth->verts;
+ for (i = 0; i < cloth->mvert_num; i++, vert++) {
+ SIM_mass_spring_force_gravity(data, i, vert->mass, gravity);
+
+ /* Vertex goal springs */
+ if ((!(vert->flags & CLOTH_VERT_FLAG_PINNED)) && (vert->goal > FLT_EPSILON)) {
+ float goal_x[3], goal_v[3];
+ float k;
+
+ /* divide by time_scale to prevent goal vertices' delta locations from being multiplied */
+ interp_v3_v3v3(goal_x, vert->xold, vert->xconst, time / clmd->sim_parms->time_scale);
+ sub_v3_v3v3(goal_v, vert->xconst, vert->xold); /* distance covered over dt==1 */
+
+ k = vert->goal * clmd->sim_parms->goalspring /
+ (clmd->sim_parms->avg_spring_len + FLT_EPSILON);
+
+ SIM_mass_spring_force_spring_goal(
+ data, i, goal_x, goal_v, k, clmd->sim_parms->goalfrict * 0.01f);
+ }
+ }
+#endif
+
+ /* cloth_calc_volume_force(clmd); */
+
+#ifdef CLOTH_FORCE_DRAG
+ SIM_mass_spring_force_drag(data, drag);
+#endif
+ /* handle pressure forces (making sure that this never gets computed for hair). */
+ if ((parms->flags & CLOTH_SIMSETTINGS_FLAG_PRESSURE) && (clmd->hairdata == NULL)) {
+ /* The difference in pressure between the inside and outside of the mesh.*/
+ float pressure_difference = 0.0f;
+ float volume_factor = 1.0f;
+
+ float init_vol;
+ if (parms->flags & CLOTH_SIMSETTINGS_FLAG_PRESSURE_VOL) {
+ init_vol = clmd->sim_parms->target_volume;
+ }
+ else {
+ init_vol = cloth->initial_mesh_volume;
+ }
+
+ /* Check if we need to calculate the volume of the mesh. */
+ if (init_vol > 1E-6f) {
+ float f;
+ float vol = cloth_calc_volume(clmd);
+
+ /* If the volume is the same don't apply any pressure. */
+ volume_factor = init_vol / vol;
+ pressure_difference = volume_factor - 1;
+
+ /* Calculate an artificial maximum value for cloth pressure. */
+ f = fabs(clmd->sim_parms->uniform_pressure_force) + 200.0f;
+
+ /* Clamp the cloth pressure to the calculated maximum value. */
+ CLAMP_MAX(pressure_difference, f);
+ }
+
+ pressure_difference += clmd->sim_parms->uniform_pressure_force;
+ pressure_difference *= clmd->sim_parms->pressure_factor;
+
+ /* Compute the hydrostatic pressure gradient if enabled. */
+ float fluid_density = clmd->sim_parms->fluid_density * 1000; /* kg/l -> kg/m3 */
+ float *hydrostatic_pressure = NULL;
+
+ if (fabs(fluid_density) > 1e-6f) {
+ float hydrostatic_vector[3];
+ copy_v3_v3(hydrostatic_vector, gravity);
+
+ /* When the fluid is inside the object, factor in the acceleration of
+ * the object into the pressure field, as gravity is indistinguishable
+ * from acceleration from the inside. */
+ if (fluid_density > 0) {
+ sub_v3_v3(hydrostatic_vector, cloth->average_acceleration);
+
+ /* Preserve the total mass by scaling density to match the change in volume. */
+ fluid_density *= volume_factor;
+ }
+
+ mul_v3_fl(hydrostatic_vector, fluid_density);
+
+ /* Compute an array of per-vertex hydrostatic pressure, and subtract the average. */
+ hydrostatic_pressure = (float *)MEM_mallocN(sizeof(float) * mvert_num,
+ "hydrostatic pressure gradient");
+
+ cloth_calc_pressure_gradient(clmd, hydrostatic_vector, hydrostatic_pressure);
+
+ pressure_difference -= cloth_calc_average_pressure(clmd, hydrostatic_pressure);
+ }
+
+ /* Apply pressure. */
+ if (hydrostatic_pressure || fabs(pressure_difference) > 1E-6f) {
+ float weights[3] = {1.0f, 1.0f, 1.0f};
+
+ for (i = 0; i < cloth->primitive_num; i++) {
+ const MVertTri *vt = &tri[i];
+
+ if (cloth_get_pressure_weights(clmd, vt, weights)) {
+ SIM_mass_spring_force_pressure(data,
+ vt->tri[0],
+ vt->tri[1],
+ vt->tri[2],
+ pressure_difference,
+ hydrostatic_pressure,
+ weights);
+ }
+ }
+ }
+
+ if (hydrostatic_pressure) {
+ MEM_freeN(hydrostatic_pressure);
+ }
+ }
+
+ /* handle external forces like wind */
+ if (effectors) {
+ bool is_not_hair = (clmd->hairdata == NULL) && (cloth->primitive_num > 0);
+ bool has_wind = false, has_force = false;
+
+ /* cache per-vertex forces to avoid redundant calculation */
+ float(*winvec)[3] = (float(*)[3])MEM_callocN(sizeof(float[3]) * mvert_num * 2,
+ "effector forces");
+ float(*forcevec)[3] = is_not_hair ? winvec + mvert_num : winvec;
+
+ for (i = 0; i < cloth->mvert_num; i++) {
+ float x[3], v[3];
+ EffectedPoint epoint;
+
+ SIM_mass_spring_get_motion_state(data, i, x, v);
+ pd_point_from_loc(scene, x, v, i, &epoint);
+ BKE_effectors_apply(effectors,
+ NULL,
+ clmd->sim_parms->effector_weights,
+ &epoint,
+ forcevec[i],
+ winvec[i],
+ NULL);
+
+ has_wind = has_wind || !is_zero_v3(winvec[i]);
+ has_force = has_force || !is_zero_v3(forcevec[i]);
+ }
+
+ /* Hair has only edges. */
+ if (is_not_hair) {
+ for (i = 0; i < cloth->primitive_num; i++) {
+ const MVertTri *vt = &tri[i];
+ if (has_wind) {
+ SIM_mass_spring_force_face_wind(data, vt->tri[0], vt->tri[1], vt->tri[2], winvec);
+ }
+ if (has_force) {
+ SIM_mass_spring_force_face_extern(data, vt->tri[0], vt->tri[1], vt->tri[2], forcevec);
+ }
+ }
+ }
+ else {
+#if 0
+ ClothHairData *hairdata = clmd->hairdata;
+ ClothHairData *hair_ij, *hair_kl;
+
+ for (LinkNode *link = cloth->springs; link; link = link->next) {
+ ClothSpring *spring = (ClothSpring *)link->link;
+ if (spring->type == CLOTH_SPRING_TYPE_STRUCTURAL) {
+ if (hairdata) {
+ hair_ij = &hairdata[spring->ij];
+ hair_kl = &hairdata[spring->kl];
+ SIM_mass_spring_force_edge_wind(
+ data, spring->ij, spring->kl, hair_ij->radius, hair_kl->radius, winvec);
+ }
+ else {
+ SIM_mass_spring_force_edge_wind(data, spring->ij, spring->kl, 1.0f, 1.0f, winvec);
+ }
+ }
+ }
+#else
+ ClothHairData *hairdata = clmd->hairdata;
+
+ vert = cloth->verts;
+ for (i = 0; i < cloth->mvert_num; i++, vert++) {
+ if (hairdata) {
+ ClothHairData *hair = &hairdata[i];
+ SIM_mass_spring_force_vertex_wind(data, i, hair->radius, winvec);
+ }
+ else {
+ SIM_mass_spring_force_vertex_wind(data, i, 1.0f, winvec);
+ }
+ }
+#endif
+ }
+
+ MEM_freeN(winvec);
+ }
+
+ // calculate spring forces
+ for (LinkNode *link = cloth->springs; link; link = link->next) {
+ ClothSpring *spring = (ClothSpring *)link->link;
+ // only handle active springs
+ if (!(spring->flags & CLOTH_SPRING_FLAG_DEACTIVATE)) {
+ cloth_calc_spring_force(clmd, spring);
+ }
+ }
+}
+
+/* returns vertexes' motion state */
+BLI_INLINE void cloth_get_grid_location(Implicit_Data *data,
+ float cell_scale,
+ const float cell_offset[3],
+ int index,
+ float x[3],
+ float v[3])
+{
+ SIM_mass_spring_get_position(data, index, x);
+ SIM_mass_spring_get_new_velocity(data, index, v);
+
+ mul_v3_fl(x, cell_scale);
+ add_v3_v3(x, cell_offset);
+}
+
+/* returns next spring forming a continuous hair sequence */
+BLI_INLINE LinkNode *hair_spring_next(LinkNode *spring_link)
+{
+ ClothSpring *spring = (ClothSpring *)spring_link->link;
+ LinkNode *next = spring_link->next;
+ if (next) {
+ ClothSpring *next_spring = (ClothSpring *)next->link;
+ if (next_spring->type == CLOTH_SPRING_TYPE_STRUCTURAL && next_spring->kl == spring->ij) {
+ return next;
+ }
+ }
+ return NULL;
+}
+
+/* XXX this is nasty: cloth meshes do not explicitly store
+ * the order of hair segments!
+ * We have to rely on the spring build function for now,
+ * which adds structural springs in reverse order:
+ * (3,4), (2,3), (1,2)
+ * This is currently the only way to figure out hair geometry inside this code ...
+ */
+static LinkNode *cloth_continuum_add_hair_segments(HairGrid *grid,
+ const float cell_scale,
+ const float cell_offset[3],
+ Cloth *cloth,
+ LinkNode *spring_link)
+{
+ Implicit_Data *data = cloth->implicit;
+ LinkNode *next_spring_link = NULL; /* return value */
+ ClothSpring *spring1, *spring2, *spring3;
+ // ClothVertex *verts = cloth->verts;
+ // ClothVertex *vert3, *vert4;
+ float x1[3], v1[3], x2[3], v2[3], x3[3], v3[3], x4[3], v4[3];
+ float dir1[3], dir2[3], dir3[3];
+
+ spring1 = NULL;
+ spring2 = NULL;
+ spring3 = (ClothSpring *)spring_link->link;
+
+ zero_v3(x1);
+ zero_v3(v1);
+ zero_v3(dir1);
+ zero_v3(x2);
+ zero_v3(v2);
+ zero_v3(dir2);
+
+ // vert3 = &verts[spring3->kl];
+ cloth_get_grid_location(data, cell_scale, cell_offset, spring3->kl, x3, v3);
+ // vert4 = &verts[spring3->ij];
+ cloth_get_grid_location(data, cell_scale, cell_offset, spring3->ij, x4, v4);
+ sub_v3_v3v3(dir3, x4, x3);
+ normalize_v3(dir3);
+
+ while (spring_link) {
+ /* move on */
+ spring1 = spring2;
+ spring2 = spring3;
+
+ // vert3 = vert4;
+
+ copy_v3_v3(x1, x2);
+ copy_v3_v3(v1, v2);
+ copy_v3_v3(x2, x3);
+ copy_v3_v3(v2, v3);
+ copy_v3_v3(x3, x4);
+ copy_v3_v3(v3, v4);
+
+ copy_v3_v3(dir1, dir2);
+ copy_v3_v3(dir2, dir3);
+
+ /* read next segment */
+ next_spring_link = spring_link->next;
+ spring_link = hair_spring_next(spring_link);
+
+ if (spring_link) {
+ spring3 = (ClothSpring *)spring_link->link;
+ // vert4 = &verts[spring3->ij];
+ cloth_get_grid_location(data, cell_scale, cell_offset, spring3->ij, x4, v4);
+ sub_v3_v3v3(dir3, x4, x3);
+ normalize_v3(dir3);
+ }
+ else {
+ spring3 = NULL;
+ // vert4 = NULL;
+ zero_v3(x4);
+ zero_v3(v4);
+ zero_v3(dir3);
+ }
+
+ SIM_hair_volume_add_segment(
+ grid, x1, v1, x2, v2, x3, v3, x4, v4, spring1 ? dir1 : NULL, dir2, spring3 ? dir3 : NULL);
+ }
+
+ return next_spring_link;
+}
+
+static void cloth_continuum_fill_grid(HairGrid *grid, Cloth *cloth)
+{
+#if 0
+ Implicit_Data *data = cloth->implicit;
+ int mvert_num = cloth->mvert_num;
+ ClothVertex *vert;
+ int i;
+
+ for (i = 0, vert = cloth->verts; i < mvert_num; i++, vert++) {
+ float x[3], v[3];
+
+ cloth_get_vertex_motion_state(data, vert, x, v);
+ SIM_hair_volume_add_vertex(grid, x, v);
+ }
+#else
+ LinkNode *link;
+ float cellsize, gmin[3], cell_scale, cell_offset[3];
+
+ /* scale and offset for transforming vertex locations into grid space
+ * (cell size is 0..1, gmin becomes origin)
+ */
+ SIM_hair_volume_grid_geometry(grid, &cellsize, NULL, gmin, NULL);
+ cell_scale = cellsize > 0.0f ? 1.0f / cellsize : 0.0f;
+ mul_v3_v3fl(cell_offset, gmin, cell_scale);
+ negate_v3(cell_offset);
+
+ link = cloth->springs;
+ while (link) {
+ ClothSpring *spring = (ClothSpring *)link->link;
+ if (spring->type == CLOTH_SPRING_TYPE_STRUCTURAL) {
+ link = cloth_continuum_add_hair_segments(grid, cell_scale, cell_offset, cloth, link);
+ }
+ else {
+ link = link->next;
+ }
+ }
+#endif
+ SIM_hair_volume_normalize_vertex_grid(grid);
+}
+
+static void cloth_continuum_step(ClothModifierData *clmd, float dt)
+{
+ ClothSimSettings *parms = clmd->sim_parms;
+ Cloth *cloth = clmd->clothObject;
+ Implicit_Data *data = cloth->implicit;
+ int mvert_num = cloth->mvert_num;
+ ClothVertex *vert;
+
+ const float fluid_factor = 0.95f; /* blend between PIC and FLIP methods */
+ float smoothfac = parms->velocity_smooth;
+ /* XXX FIXME arbitrary factor!!! this should be based on some intuitive value instead,
+ * like number of hairs per cell and time decay instead of "strength"
+ */
+ float density_target = parms->density_target;
+ float density_strength = parms->density_strength;
+ float gmin[3], gmax[3];
+ int i;
+
+ /* clear grid info */
+ zero_v3_int(clmd->hair_grid_res);
+ zero_v3(clmd->hair_grid_min);
+ zero_v3(clmd->hair_grid_max);
+ clmd->hair_grid_cellsize = 0.0f;
+
+ hair_get_boundbox(clmd, gmin, gmax);
+
+ /* gather velocities & density */
+ if (smoothfac > 0.0f || density_strength > 0.0f) {
+ HairGrid *grid = SIM_hair_volume_create_vertex_grid(
+ clmd->sim_parms->voxel_cell_size, gmin, gmax);
+
+ cloth_continuum_fill_grid(grid, cloth);
+
+ /* main hair continuum solver */
+ SIM_hair_volume_solve_divergence(grid, dt, density_target, density_strength);
+
+ for (i = 0, vert = cloth->verts; i < mvert_num; i++, vert++) {
+ float x[3], v[3], nv[3];
+
+ /* calculate volumetric velocity influence */
+ SIM_mass_spring_get_position(data, i, x);
+ SIM_mass_spring_get_new_velocity(data, i, v);
+
+ SIM_hair_volume_grid_velocity(grid, x, v, fluid_factor, nv);
+
+ interp_v3_v3v3(nv, v, nv, smoothfac);
+
+ /* apply on hair data */
+ SIM_mass_spring_set_new_velocity(data, i, nv);
+ }
+
+ /* store basic grid info in the modifier data */
+ SIM_hair_volume_grid_geometry(grid,
+ &clmd->hair_grid_cellsize,
+ clmd->hair_grid_res,
+ clmd->hair_grid_min,
+ clmd->hair_grid_max);
+
+#if 0 /* DEBUG hair velocity vector field */
+ {
+ const int size = 64;
+ int i, j;
+ float offset[3], a[3], b[3];
+ const int axis = 0;
+ const float shift = 0.0f;
+
+ copy_v3_v3(offset, clmd->hair_grid_min);
+ zero_v3(a);
+ zero_v3(b);
+
+ offset[axis] = shift * clmd->hair_grid_cellsize;
+ a[(axis + 1) % 3] = clmd->hair_grid_max[(axis + 1) % 3] -
+ clmd->hair_grid_min[(axis + 1) % 3];
+ b[(axis + 2) % 3] = clmd->hair_grid_max[(axis + 2) % 3] -
+ clmd->hair_grid_min[(axis + 2) % 3];
+
+ BKE_sim_debug_data_clear_category(clmd->debug_data, "grid velocity");
+ for (j = 0; j < size; j++) {
+ for (i = 0; i < size; i++) {
+ float x[3], v[3], gvel[3], gvel_smooth[3], gdensity;
+
+ madd_v3_v3v3fl(x, offset, a, (float)i / (float)(size - 1));
+ madd_v3_v3fl(x, b, (float)j / (float)(size - 1));
+ zero_v3(v);
+
+ SIM_hair_volume_grid_interpolate(grid, x, &gdensity, gvel, gvel_smooth, NULL, NULL);
+
+ // BKE_sim_debug_data_add_circle(
+ // clmd->debug_data, x, gdensity, 0.7, 0.3, 1,
+ // "grid density", i, j, 3111);
+ if (!is_zero_v3(gvel) || !is_zero_v3(gvel_smooth)) {
+ float dvel[3];
+ sub_v3_v3v3(dvel, gvel_smooth, gvel);
+ // BKE_sim_debug_data_add_vector(
+ // clmd->debug_data, x, gvel, 0.4, 0, 1,
+ // "grid velocity", i, j, 3112);
+ // BKE_sim_debug_data_add_vector(
+ // clmd->debug_data, x, gvel_smooth, 0.6, 1, 1,
+ // "grid velocity", i, j, 3113);
+ BKE_sim_debug_data_add_vector(
+ clmd->debug_data, x, dvel, 0.4, 1, 0.7, "grid velocity", i, j, 3114);
+# if 0
+ if (gdensity > 0.0f) {
+ float col0[3] = {0.0, 0.0, 0.0};
+ float col1[3] = {0.0, 1.0, 0.0};
+ float col[3];
+
+ interp_v3_v3v3(col, col0, col1,
+ CLAMPIS(gdensity * clmd->sim_parms->density_strength, 0.0, 1.0));
+ // BKE_sim_debug_data_add_circle(
+ // clmd->debug_data, x, gdensity * clmd->sim_parms->density_strength, 0, 1, 0.4,
+ // "grid velocity", i, j, 3115);
+ // BKE_sim_debug_data_add_dot(
+ // clmd->debug_data, x, col[0], col[1], col[2],
+ // "grid velocity", i, j, 3115);
+ BKE_sim_debug_data_add_circle(
+ clmd->debug_data, x, 0.01f, col[0], col[1], col[2], "grid velocity", i, j, 3115);
+ }
+# endif
+ }
+ }
+ }
+ }
+#endif
+
+ SIM_hair_volume_free_vertex_grid(grid);
+ }
+}
+
+#if 0
+static void cloth_calc_volume_force(ClothModifierData *clmd)
+{
+ ClothSimSettings *parms = clmd->sim_parms;
+ Cloth *cloth = clmd->clothObject;
+ Implicit_Data *data = cloth->implicit;
+ int mvert_num = cloth->mvert_num;
+ ClothVertex *vert;
+
+ /* 2.0f is an experimental value that seems to give good results */
+ float smoothfac = 2.0f * parms->velocity_smooth;
+ float collfac = 2.0f * parms->collider_friction;
+ float pressfac = parms->pressure;
+ float minpress = parms->pressure_threshold;
+ float gmin[3], gmax[3];
+ int i;
+
+ hair_get_boundbox(clmd, gmin, gmax);
+
+ /* gather velocities & density */
+ if (smoothfac > 0.0f || pressfac > 0.0f) {
+ HairVertexGrid *vertex_grid = SIM_hair_volume_create_vertex_grid(
+ clmd->sim_parms->voxel_res, gmin, gmax);
+
+ vert = cloth->verts;
+ for (i = 0; i < mvert_num; i++, vert++) {
+ float x[3], v[3];
+
+ if (vert->solver_index < 0) {
+ copy_v3_v3(x, vert->x);
+ copy_v3_v3(v, vert->v);
+ }
+ else {
+ SIM_mass_spring_get_motion_state(data, vert->solver_index, x, v);
+ }
+ SIM_hair_volume_add_vertex(vertex_grid, x, v);
+ }
+ SIM_hair_volume_normalize_vertex_grid(vertex_grid);
+
+ vert = cloth->verts;
+ for (i = 0; i < mvert_num; i++, vert++) {
+ float x[3], v[3], f[3], dfdx[3][3], dfdv[3][3];
+
+ if (vert->solver_index < 0) {
+ continue;
+ }
+
+ /* calculate volumetric forces */
+ SIM_mass_spring_get_motion_state(data, vert->solver_index, x, v);
+ SIM_hair_volume_vertex_grid_forces(
+ vertex_grid, x, v, smoothfac, pressfac, minpress, f, dfdx, dfdv);
+ /* apply on hair data */
+ SIM_mass_spring_force_extern(data, vert->solver_index, f, dfdx, dfdv);
+ }
+
+ SIM_hair_volume_free_vertex_grid(vertex_grid);
+ }
+}
+#endif
+
+static void cloth_calc_average_acceleration(ClothModifierData *clmd, float dt)
+{
+ Cloth *cloth = clmd->clothObject;
+ Implicit_Data *data = cloth->implicit;
+ int i, mvert_num = cloth->mvert_num;
+ float total[3] = {0.0f, 0.0f, 0.0f};
+
+ for (i = 0; i < mvert_num; i++) {
+ float v[3], nv[3];
+
+ SIM_mass_spring_get_velocity(data, i, v);
+ SIM_mass_spring_get_new_velocity(data, i, nv);
+
+ sub_v3_v3(nv, v);
+ add_v3_v3(total, nv);
+ }
+
+ mul_v3_fl(total, 1.0f / dt / mvert_num);
+
+ /* Smooth the data using a running average to prevent instability.
+ * This is effectively an abstraction of the wave propagation speed in fluid. */
+ interp_v3_v3v3(cloth->average_acceleration, total, cloth->average_acceleration, powf(0.25f, dt));
+}
+
+static void cloth_solve_collisions(
+ Depsgraph *depsgraph, Object *ob, ClothModifierData *clmd, float step, float dt)
+{
+ Cloth *cloth = clmd->clothObject;
+ Implicit_Data *id = cloth->implicit;
+ ClothVertex *verts = cloth->verts;
+ int mvert_num = cloth->mvert_num;
+ const float time_multiplier = 1.0f / (clmd->sim_parms->dt * clmd->sim_parms->timescale);
+ int i;
+
+ if (!(clmd->coll_parms->flags &
+ (CLOTH_COLLSETTINGS_FLAG_ENABLED | CLOTH_COLLSETTINGS_FLAG_SELF))) {
+ return;
+ }
+
+ if (!clmd->clothObject->bvhtree) {
+ return;
+ }
+
+ SIM_mass_spring_solve_positions(id, dt);
+
+ /* Update verts to current positions. */
+ for (i = 0; i < mvert_num; i++) {
+ SIM_mass_spring_get_new_position(id, i, verts[i].tx);
+
+ sub_v3_v3v3(verts[i].tv, verts[i].tx, verts[i].txold);
+ zero_v3(verts[i].dcvel);
+ }
+
+ if (cloth_bvh_collision(depsgraph,
+ ob,
+ clmd,
+ step / clmd->sim_parms->timescale,
+ dt / clmd->sim_parms->timescale)) {
+ for (i = 0; i < mvert_num; i++) {
+ if ((clmd->sim_parms->vgroup_mass > 0) && (verts[i].flags & CLOTH_VERT_FLAG_PINNED)) {
+ continue;
+ }
+
+ SIM_mass_spring_get_new_velocity(id, i, verts[i].tv);
+ madd_v3_v3fl(verts[i].tv, verts[i].dcvel, time_multiplier);
+ SIM_mass_spring_set_new_velocity(id, i, verts[i].tv);
+ }
+ }
+}
+
+static void cloth_clear_result(ClothModifierData *clmd)
+{
+ ClothSolverResult *sres = clmd->solver_result;
+
+ sres->status = 0;
+ sres->max_error = sres->min_error = sres->avg_error = 0.0f;
+ sres->max_iterations = sres->min_iterations = 0;
+ sres->avg_iterations = 0.0f;
+}
+
+static void cloth_record_result(ClothModifierData *clmd, ImplicitSolverResult *result, float dt)
+{
+ ClothSolverResult *sres = clmd->solver_result;
+
+ if (sres->status) { /* already initialized ? */
+ /* error only makes sense for successful iterations */
+ if (result->status == SIM_SOLVER_SUCCESS) {
+ sres->min_error = min_ff(sres->min_error, result->error);
+ sres->max_error = max_ff(sres->max_error, result->error);
+ sres->avg_error += result->error * dt;
+ }
+
+ sres->min_iterations = min_ii(sres->min_iterations, result->iterations);
+ sres->max_iterations = max_ii(sres->max_iterations, result->iterations);
+ sres->avg_iterations += (float)result->iterations * dt;
+ }
+ else {
+ /* error only makes sense for successful iterations */
+ if (result->status == SIM_SOLVER_SUCCESS) {
+ sres->min_error = sres->max_error = result->error;
+ sres->avg_error += result->error * dt;
+ }
+
+ sres->min_iterations = sres->max_iterations = result->iterations;
+ sres->avg_iterations += (float)result->iterations * dt;
+ }
+
+ sres->status |= result->status;
+}
+
+int SIM_cloth_solve(
+ Depsgraph *depsgraph, Object *ob, float frame, ClothModifierData *clmd, ListBase *effectors)
+{
+ /* Hair currently is a cloth sim in disguise ...
+ * Collision detection and volumetrics work differently then.
+ * Bad design, TODO
+ */
+ Scene *scene = DEG_get_evaluated_scene(depsgraph);
+ const bool is_hair = (clmd->hairdata != NULL);
+
+ unsigned int i = 0;
+ float step = 0.0f, tf = clmd->sim_parms->timescale;
+ Cloth *cloth = clmd->clothObject;
+ ClothVertex *verts = cloth->verts /*, *cv*/;
+ unsigned int mvert_num = cloth->mvert_num;
+ float dt = clmd->sim_parms->dt * clmd->sim_parms->timescale;
+ Implicit_Data *id = cloth->implicit;
+
+ /* Hydrostatic pressure gradient of the fluid inside the object is affected by acceleration. */
+ bool use_acceleration = (clmd->sim_parms->flags & CLOTH_SIMSETTINGS_FLAG_PRESSURE) &&
+ (clmd->sim_parms->fluid_density > 0);
+
+ BKE_sim_debug_data_clear_category("collision");
+
+ if (!clmd->solver_result) {
+ clmd->solver_result = (ClothSolverResult *)MEM_callocN(sizeof(ClothSolverResult),
+ "cloth solver result");
+ }
+ cloth_clear_result(clmd);
+
+ if (clmd->sim_parms->vgroup_mass > 0) { /* Do goal stuff. */
+ for (i = 0; i < mvert_num; i++) {
+ // update velocities with constrained velocities from pinned verts
+ if (verts[i].flags & CLOTH_VERT_FLAG_PINNED) {
+ float v[3];
+ sub_v3_v3v3(v, verts[i].xconst, verts[i].xold);
+ // mul_v3_fl(v, clmd->sim_parms->stepsPerFrame);
+ /* divide by time_scale to prevent constrained velocities from being multiplied */
+ mul_v3_fl(v, 1.0f / clmd->sim_parms->time_scale);
+ SIM_mass_spring_set_velocity(id, i, v);
+ }
+ }
+ }
+
+ if (!use_acceleration) {
+ zero_v3(cloth->average_acceleration);
+ }
+
+ while (step < tf) {
+ ImplicitSolverResult result;
+
+ /* setup vertex constraints for pinned vertices */
+ cloth_setup_constraints(clmd);
+
+ /* initialize forces to zero */
+ SIM_mass_spring_clear_forces(id);
+
+ // calculate forces
+ cloth_calc_force(scene, clmd, frame, effectors, step);
+
+ // calculate new velocity and position
+ SIM_mass_spring_solve_velocities(id, dt, &result);
+ cloth_record_result(clmd, &result, dt);
+
+ /* Calculate collision impulses. */
+ cloth_solve_collisions(depsgraph, ob, clmd, step, dt);
+
+ if (is_hair) {
+ cloth_continuum_step(clmd, dt);
+ }
+
+ if (use_acceleration) {
+ cloth_calc_average_acceleration(clmd, dt);
+ }
+
+ SIM_mass_spring_solve_positions(id, dt);
+ SIM_mass_spring_apply_result(id);
+
+ /* move pinned verts to correct position */
+ for (i = 0; i < mvert_num; i++) {
+ if (clmd->sim_parms->vgroup_mass > 0) {
+ if (verts[i].flags & CLOTH_VERT_FLAG_PINNED) {
+ float x[3];
+ /* divide by time_scale to prevent pinned vertices'
+ * delta locations from being multiplied */
+ interp_v3_v3v3(
+ x, verts[i].xold, verts[i].xconst, (step + dt) / clmd->sim_parms->time_scale);
+ SIM_mass_spring_set_position(id, i, x);
+ }
+ }
+
+ SIM_mass_spring_get_motion_state(id, i, verts[i].txold, NULL);
+ }
+
+ step += dt;
+ }
+
+ /* copy results back to cloth data */
+ for (i = 0; i < mvert_num; i++) {
+ SIM_mass_spring_get_motion_state(id, i, verts[i].x, verts[i].v);
+ copy_v3_v3(verts[i].txold, verts[i].x);
+ }
+
+ return 1;
+}