Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'source/blender/simulation/intern/particle_mesh_emitter.cc')
-rw-r--r--source/blender/simulation/intern/particle_mesh_emitter.cc362
1 files changed, 362 insertions, 0 deletions
diff --git a/source/blender/simulation/intern/particle_mesh_emitter.cc b/source/blender/simulation/intern/particle_mesh_emitter.cc
new file mode 100644
index 00000000000..26541d550eb
--- /dev/null
+++ b/source/blender/simulation/intern/particle_mesh_emitter.cc
@@ -0,0 +1,362 @@
+/*
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ */
+
+#include "particle_mesh_emitter.hh"
+
+#include "BLI_float4x4.hh"
+#include "BLI_rand.hh"
+#include "BLI_vector_adaptor.hh"
+
+#include "BKE_mesh_runtime.h"
+
+#include "DNA_mesh_types.h"
+#include "DNA_meshdata_types.h"
+#include "DNA_object_types.h"
+
+namespace blender::sim {
+
+ParticleMeshEmitter::~ParticleMeshEmitter() = default;
+
+struct EmitterSettings {
+ Object *object;
+ float rate;
+};
+
+static BLI_NOINLINE void compute_birth_times(float rate,
+ TimeInterval emit_interval,
+ ParticleMeshEmitterSimulationState &state,
+ Vector<float> &r_birth_times)
+{
+ const float time_between_particles = 1.0f / rate;
+ int counter = 0;
+ while (true) {
+ counter++;
+ const float time_offset = counter * time_between_particles;
+ const float birth_time = state.last_birth_time + time_offset;
+ if (birth_time > emit_interval.stop()) {
+ break;
+ }
+ if (birth_time <= emit_interval.start()) {
+ continue;
+ }
+ r_birth_times.append(birth_time);
+ }
+}
+
+static BLI_NOINLINE Span<MLoopTri> get_mesh_triangles(Mesh &mesh)
+{
+ const MLoopTri *triangles = BKE_mesh_runtime_looptri_ensure(&mesh);
+ int amount = BKE_mesh_runtime_looptri_len(&mesh);
+ return Span(triangles, amount);
+}
+
+static BLI_NOINLINE void compute_triangle_areas(Mesh &mesh,
+ Span<MLoopTri> triangles,
+ MutableSpan<float> r_areas)
+{
+ assert_same_size(triangles, r_areas);
+
+ for (int i : triangles.index_range()) {
+ const MLoopTri &tri = triangles[i];
+
+ const float3 v1 = mesh.mvert[mesh.mloop[tri.tri[0]].v].co;
+ const float3 v2 = mesh.mvert[mesh.mloop[tri.tri[1]].v].co;
+ const float3 v3 = mesh.mvert[mesh.mloop[tri.tri[2]].v].co;
+
+ const float area = area_tri_v3(v1, v2, v3);
+ r_areas[i] = area;
+ }
+}
+
+static BLI_NOINLINE void compute_triangle_weights(Mesh &mesh,
+ Span<MLoopTri> triangles,
+ MutableSpan<float> r_weights)
+{
+ assert_same_size(triangles, r_weights);
+ compute_triangle_areas(mesh, triangles, r_weights);
+}
+
+static BLI_NOINLINE void compute_cumulative_distribution(Span<float> weights,
+ MutableSpan<float> r_cumulative_weights)
+{
+ BLI_assert(weights.size() + 1 == r_cumulative_weights.size());
+
+ r_cumulative_weights[0] = 0;
+ for (int i : weights.index_range()) {
+ r_cumulative_weights[i + 1] = r_cumulative_weights[i] + weights[i];
+ }
+}
+
+static void sample_cumulative_distribution_recursive(RandomNumberGenerator &rng,
+ int amount,
+ int start,
+ int one_after_end,
+ Span<float> cumulative_weights,
+ VectorAdaptor<int> &r_sampled_indices)
+{
+ BLI_assert(start <= one_after_end);
+ const int size = one_after_end - start;
+ if (size == 0) {
+ BLI_assert(amount == 0);
+ }
+ else if (amount == 0) {
+ return;
+ }
+ else if (size == 1) {
+ r_sampled_indices.append_n_times(start, amount);
+ }
+ else {
+ const int middle = start + size / 2;
+ const float left_weight = cumulative_weights[middle] - cumulative_weights[start];
+ const float right_weight = cumulative_weights[one_after_end] - cumulative_weights[middle];
+ BLI_assert(left_weight >= 0.0f && right_weight >= 0.0f);
+ const float weight_sum = left_weight + right_weight;
+ BLI_assert(weight_sum > 0.0f);
+
+ const float left_factor = left_weight / weight_sum;
+ const float right_factor = right_weight / weight_sum;
+
+ int left_amount = amount * left_factor;
+ int right_amount = amount * right_factor;
+
+ if (left_amount + right_amount < amount) {
+ BLI_assert(left_amount + right_amount + 1 == amount);
+ const float weight_per_item = weight_sum / amount;
+ const float total_remaining_weight = weight_sum -
+ (left_amount + right_amount) * weight_per_item;
+ const float left_remaining_weight = left_weight - left_amount * weight_per_item;
+ const float left_remaining_factor = left_remaining_weight / total_remaining_weight;
+ if (rng.get_float() < left_remaining_factor) {
+ left_amount++;
+ }
+ else {
+ right_amount++;
+ }
+ }
+
+ sample_cumulative_distribution_recursive(
+ rng, left_amount, start, middle, cumulative_weights, r_sampled_indices);
+ sample_cumulative_distribution_recursive(
+ rng, right_amount, middle, one_after_end, cumulative_weights, r_sampled_indices);
+ }
+}
+
+static BLI_NOINLINE void sample_cumulative_distribution(RandomNumberGenerator &rng,
+ Span<float> cumulative_weights,
+ MutableSpan<int> r_samples)
+{
+ VectorAdaptor<int> sampled_indices(r_samples);
+ sample_cumulative_distribution_recursive(rng,
+ r_samples.size(),
+ 0,
+ cumulative_weights.size() - 1,
+ cumulative_weights,
+ sampled_indices);
+ BLI_assert(sampled_indices.is_full());
+}
+
+static BLI_NOINLINE bool sample_weighted_buckets(RandomNumberGenerator &rng,
+ Span<float> weights,
+ MutableSpan<int> r_samples)
+{
+ Array<float> cumulative_weights(weights.size() + 1);
+ compute_cumulative_distribution(weights, cumulative_weights);
+
+ if (r_samples.size() > 0 && cumulative_weights.as_span().last() == 0.0f) {
+ /* All weights are zero. */
+ return false;
+ }
+
+ sample_cumulative_distribution(rng, cumulative_weights, r_samples);
+ return true;
+}
+
+static BLI_NOINLINE void sample_looptris(RandomNumberGenerator &rng,
+ Mesh &mesh,
+ Span<MLoopTri> triangles,
+ Span<int> triangles_to_sample,
+ MutableSpan<float3> r_sampled_positions,
+ MutableSpan<float3> r_sampled_normals)
+{
+ assert_same_size(triangles_to_sample, r_sampled_positions, r_sampled_normals);
+
+ MLoop *loops = mesh.mloop;
+ MVert *verts = mesh.mvert;
+
+ for (uint i : triangles_to_sample.index_range()) {
+ const uint triangle_index = triangles_to_sample[i];
+ const MLoopTri &triangle = triangles[triangle_index];
+
+ const float3 v1 = verts[loops[triangle.tri[0]].v].co;
+ const float3 v2 = verts[loops[triangle.tri[1]].v].co;
+ const float3 v3 = verts[loops[triangle.tri[2]].v].co;
+
+ const float3 bary_coords = rng.get_barycentric_coordinates();
+
+ float3 position;
+ interp_v3_v3v3v3(position, v1, v2, v3, bary_coords);
+
+ float3 normal;
+ normal_tri_v3(normal, v1, v2, v3);
+
+ r_sampled_positions[i] = position;
+ r_sampled_normals[i] = normal;
+ }
+}
+
+static BLI_NOINLINE bool compute_new_particle_attributes(ParticleEmitterContext &context,
+ EmitterSettings &settings,
+ ParticleMeshEmitterSimulationState &state,
+ Vector<float3> &r_positions,
+ Vector<float3> &r_velocities,
+ Vector<float> &r_birth_times)
+{
+ if (settings.object == nullptr) {
+ return false;
+ }
+ if (settings.rate <= 0.000001f) {
+ return false;
+ }
+ if (settings.object->type != OB_MESH) {
+ return false;
+ }
+ Mesh &mesh = *(Mesh *)settings.object->data;
+ if (mesh.totvert == 0) {
+ return false;
+ }
+
+ const float start_time = context.emit_interval.start();
+ const uint32_t seed = DefaultHash<StringRef>{}(state.head.name);
+ RandomNumberGenerator rng{(*(uint32_t *)&start_time) ^ seed};
+
+ compute_birth_times(settings.rate, context.emit_interval, state, r_birth_times);
+ const int particle_amount = r_birth_times.size();
+ if (particle_amount == 0) {
+ return false;
+ }
+
+ const float last_birth_time = r_birth_times.last();
+ rng.shuffle(r_birth_times.as_mutable_span());
+
+ Span<MLoopTri> triangles = get_mesh_triangles(mesh);
+ if (triangles.is_empty()) {
+ return false;
+ }
+
+ Array<float> triangle_weights(triangles.size());
+ compute_triangle_weights(mesh, triangles, triangle_weights);
+
+ Array<int> triangles_to_sample(particle_amount);
+ if (!sample_weighted_buckets(rng, triangle_weights, triangles_to_sample)) {
+ return false;
+ }
+
+ r_positions.resize(particle_amount);
+ r_velocities.resize(particle_amount);
+ sample_looptris(rng, mesh, triangles, triangles_to_sample, r_positions, r_velocities);
+
+ if (context.solve_context.dependency_animations.is_object_transform_changing(*settings.object)) {
+ Array<float4x4> local_to_world_matrices(particle_amount);
+ context.solve_context.dependency_animations.get_object_transforms(
+ *settings.object, r_birth_times, local_to_world_matrices);
+
+ for (int i : IndexRange(particle_amount)) {
+ const float4x4 &position_to_world = local_to_world_matrices[i];
+ const float4x4 normal_to_world = position_to_world.inverted_transposed_affine();
+ r_positions[i] = position_to_world * r_positions[i];
+ r_velocities[i] = normal_to_world * r_velocities[i];
+ }
+ }
+ else {
+ const float4x4 position_to_world = settings.object->obmat;
+ const float4x4 normal_to_world = position_to_world.inverted_transposed_affine();
+ for (int i : IndexRange(particle_amount)) {
+ r_positions[i] = position_to_world * r_positions[i];
+ r_velocities[i] = normal_to_world * r_velocities[i];
+ }
+ }
+
+ for (int i : IndexRange(particle_amount)) {
+ r_velocities[i].normalize();
+ }
+
+ state.last_birth_time = last_birth_time;
+ return true;
+}
+
+static BLI_NOINLINE EmitterSettings compute_settings(const fn::MultiFunction &inputs_fn,
+ ParticleEmitterContext &context)
+{
+ EmitterSettings parameters;
+
+ fn::MFContextBuilder mf_context;
+ mf_context.add_global_context("PersistentDataHandleMap", &context.solve_context.handle_map);
+
+ fn::MFParamsBuilder mf_params{inputs_fn, 1};
+ bke::PersistentObjectHandle object_handle;
+ mf_params.add_uninitialized_single_output(&object_handle, "Object");
+ mf_params.add_uninitialized_single_output(&parameters.rate, "Rate");
+
+ inputs_fn.call(IndexRange(1), mf_params, mf_context);
+
+ parameters.object = context.solve_context.handle_map.lookup(object_handle);
+ return parameters;
+}
+
+void ParticleMeshEmitter::emit(ParticleEmitterContext &context) const
+{
+ auto *state = context.lookup_state<ParticleMeshEmitterSimulationState>(own_state_name_);
+ if (state == nullptr) {
+ return;
+ }
+
+ EmitterSettings settings = compute_settings(inputs_fn_, context);
+
+ Vector<float3> new_positions;
+ Vector<float3> new_velocities;
+ Vector<float> new_birth_times;
+
+ if (!compute_new_particle_attributes(
+ context, settings, *state, new_positions, new_velocities, new_birth_times)) {
+ return;
+ }
+
+ for (StringRef name : particle_names_) {
+ ParticleAllocator *allocator = context.try_get_particle_allocator(name);
+ if (allocator == nullptr) {
+ continue;
+ }
+
+ int amount = new_positions.size();
+ fn::MutableAttributesRef attributes = allocator->allocate(amount);
+
+ attributes.get<float3>("Position").copy_from(new_positions);
+ attributes.get<float3>("Velocity").copy_from(new_velocities);
+ attributes.get<float>("Birth Time").copy_from(new_birth_times);
+
+ if (action_ != nullptr) {
+ ParticleChunkContext particles{
+ *context.solve_context.state_map.lookup<ParticleSimulationState>(name),
+ IndexRange(amount),
+ attributes,
+ nullptr};
+ ParticleActionContext action_context{context.solve_context, particles};
+ action_->execute(action_context);
+ }
+ }
+}
+
+} // namespace blender::sim