Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'source/gameengine/Physics/Bullet/CcdPhysicsEnvironment.cpp')
-rw-r--r--source/gameengine/Physics/Bullet/CcdPhysicsEnvironment.cpp655
1 files changed, 641 insertions, 14 deletions
diff --git a/source/gameengine/Physics/Bullet/CcdPhysicsEnvironment.cpp b/source/gameengine/Physics/Bullet/CcdPhysicsEnvironment.cpp
index dd21e58bd68..3e1e0294321 100644
--- a/source/gameengine/Physics/Bullet/CcdPhysicsEnvironment.cpp
+++ b/source/gameengine/Physics/Bullet/CcdPhysicsEnvironment.cpp
@@ -18,6 +18,7 @@ subject to the following restrictions:
#include "CcdPhysicsEnvironment.h"
#include "CcdPhysicsController.h"
+#include "CcdGraphicController.h"
#include <algorithm>
#include "btBulletDynamicsCommon.h"
@@ -32,6 +33,10 @@ subject to the following restrictions:
#include "PHY_IMotionState.h"
+#include "KX_GameObject.h"
+#include "RAS_MeshObject.h"
+#include "RAS_Polygon.h"
+#include "RAS_TexVert.h"
#define CCD_CONSTRAINT_DISABLE_LINKED_COLLISION 0x80
@@ -46,7 +51,9 @@ btRaycastVehicle::btVehicleTuning gTuning;
#endif //NEW_BULLET_VEHICLE_SUPPORT
#include "LinearMath/btAabbUtil2.h"
-
+#include "MT_Matrix4x4.h"
+#include "MT_Vector3.h"
+#include "GL/glew.h"
#ifdef WIN32
void DrawRasterizerLine(const float* from,const float* to,int color);
@@ -316,8 +323,10 @@ static void DrawAabb(btIDebugDraw* debugDrawer,const btVector3& from,const btVec
-CcdPhysicsEnvironment::CcdPhysicsEnvironment(btDispatcher* dispatcher,btOverlappingPairCache* pairCache)
-:m_numIterations(10),
+CcdPhysicsEnvironment::CcdPhysicsEnvironment(bool useDbvtCulling,btDispatcher* dispatcher,btOverlappingPairCache* pairCache)
+:m_cullingCache(NULL),
+m_cullingTree(NULL),
+m_numIterations(10),
m_scalingPropagated(false),
m_numTimeSubSteps(1),
m_ccdMode(0),
@@ -350,6 +359,11 @@ m_ownDispatcher(NULL)
//m_broadphase = new btAxisSweep3(btVector3(-1000,-1000,-1000),btVector3(1000,1000,1000));
//m_broadphase = new btSimpleBroadphase();
m_broadphase = new btDbvtBroadphase();
+ // avoid any collision in the culling tree
+ if (useDbvtCulling) {
+ m_cullingCache = new btNullPairCache();
+ m_cullingTree = new btDbvtBroadphase(m_cullingCache);
+ }
m_filterCallback = new CcdOverlapFilterCallBack(this);
m_broadphase->getOverlappingPairCache()->setOverlapFilterCallback(m_filterCallback);
@@ -364,7 +378,6 @@ m_ownDispatcher(NULL)
m_gravity = btVector3(0.f,-10.f,0.f);
m_dynamicsWorld->setGravity(m_gravity);
-
}
void CcdPhysicsEnvironment::addCcdPhysicsController(CcdPhysicsController* ctrl)
@@ -558,6 +571,41 @@ void CcdPhysicsEnvironment::refreshCcdPhysicsController(CcdPhysicsController* ct
}
}
+void CcdPhysicsEnvironment::addCcdGraphicController(CcdGraphicController* ctrl)
+{
+ if (m_cullingTree)
+ {
+ btVector3 minAabb;
+ btVector3 maxAabb;
+ ctrl->getAabb(minAabb, maxAabb);
+
+ ctrl->setBroadphaseHandle(m_cullingTree->createProxy(
+ minAabb,
+ maxAabb,
+ INVALID_SHAPE_PROXYTYPE, // this parameter is not used
+ ctrl,
+ 0, // this object does not collision with anything
+ 0,
+ NULL, // dispatcher => this parameter is not used
+ 0));
+
+ assert(ctrl->getBroadphaseHandle());
+ }
+}
+
+void CcdPhysicsEnvironment::removeCcdGraphicController(CcdGraphicController* ctrl)
+{
+ if (m_cullingTree)
+ {
+ btBroadphaseProxy* bp = ctrl->getBroadphaseHandle();
+ if (bp)
+ {
+ m_cullingTree->destroyProxy(bp,NULL);
+ ctrl->setBroadphaseHandle(0);
+ }
+ }
+}
+
void CcdPhysicsEnvironment::beginFrame()
{
@@ -593,10 +641,10 @@ bool CcdPhysicsEnvironment::proceedDeltaTime(double curTime,float timeStep)
(*it)->SynchronizeMotionStates(timeStep);
}
- for (it=m_controllers.begin(); it!=m_controllers.end(); it++)
- {
- (*it)->SynchronizeMotionStates(timeStep);
- }
+ //for (it=m_controllers.begin(); it!=m_controllers.end(); it++)
+ //{
+ // (*it)->SynchronizeMotionStates(timeStep);
+ //}
for (i=0;i<m_wrapperVehicles.size();i++)
{
@@ -618,9 +666,10 @@ class ClosestRayResultCallbackNotMe : public btCollisionWorld::ClosestRayResultC
public:
ClosestRayResultCallbackNotMe(const btVector3& rayFromWorld,const btVector3& rayToWorld,btCollisionObject* owner,btCollisionObject* parent)
:btCollisionWorld::ClosestRayResultCallback(rayFromWorld,rayToWorld),
- m_owner(owner)
+ m_owner(owner),
+ m_parent(parent)
{
-
+
}
virtual bool needsCollision(btBroadphaseProxy* proxy0) const
@@ -668,7 +717,7 @@ void CcdPhysicsEnvironment::processFhSprings(double curTime,float timeStep)
//btVector3 rayToWorld = rayFromWorld + body->getCenterOfMassTransform().getBasis() * rayDirLocal;
//ray always points down the z axis in world space...
btVector3 rayToWorld = rayFromWorld + rayDirLocal;
-
+
ClosestRayResultCallbackNotMe resultCallback(rayFromWorld,rayToWorld,body,parentBody);
m_dynamicsWorld->rayTest(rayFromWorld,rayToWorld,resultCallback);
@@ -1146,7 +1195,578 @@ PHY_IPhysicsController* CcdPhysicsEnvironment::rayTest(PHY_IRayCastFilterCallbac
return result.m_controller;
}
+// Handles occlusion culling.
+// The implementation is based on the CDTestFramework
+struct OcclusionBuffer
+{
+ struct WriteOCL
+ {
+ static inline bool Process(btScalar& q,btScalar v) { if(q<v) q=v;return(false); }
+ static inline void Occlusion(bool& flag) { flag = true; }
+ };
+ struct QueryOCL
+ {
+ static inline bool Process(btScalar& q,btScalar v) { return(q<=v); }
+ static inline void Occlusion(bool& flag) { }
+ };
+ btScalar* m_buffer;
+ size_t m_bufferSize;
+ bool m_initialized;
+ bool m_occlusion;
+ int m_sizes[2];
+ btScalar m_scales[2];
+ btScalar m_offsets[2];
+ btScalar m_wtc[16]; // world to clip transform
+ btScalar m_mtc[16]; // model to clip transform
+ // constructor: size=largest dimension of the buffer.
+ // Buffer size depends on aspect ratio
+ OcclusionBuffer()
+ {
+ m_initialized=false;
+ m_occlusion = false;
+ m_buffer == NULL;
+ m_bufferSize = 0;
+ }
+ // multiplication of column major matrices: m=m1*m2
+ template<typename T1, typename T2>
+ void CMmat4mul(btScalar* m, const T1* m1, const T2* m2)
+ {
+ m[ 0] = btScalar(m1[ 0]*m2[ 0]+m1[ 4]*m2[ 1]+m1[ 8]*m2[ 2]+m1[12]*m2[ 3]);
+ m[ 1] = btScalar(m1[ 1]*m2[ 0]+m1[ 5]*m2[ 1]+m1[ 9]*m2[ 2]+m1[13]*m2[ 3]);
+ m[ 2] = btScalar(m1[ 2]*m2[ 0]+m1[ 6]*m2[ 1]+m1[10]*m2[ 2]+m1[14]*m2[ 3]);
+ m[ 3] = btScalar(m1[ 3]*m2[ 0]+m1[ 7]*m2[ 1]+m1[11]*m2[ 2]+m1[15]*m2[ 3]);
+
+ m[ 4] = btScalar(m1[ 0]*m2[ 4]+m1[ 4]*m2[ 5]+m1[ 8]*m2[ 6]+m1[12]*m2[ 7]);
+ m[ 5] = btScalar(m1[ 1]*m2[ 4]+m1[ 5]*m2[ 5]+m1[ 9]*m2[ 6]+m1[13]*m2[ 7]);
+ m[ 6] = btScalar(m1[ 2]*m2[ 4]+m1[ 6]*m2[ 5]+m1[10]*m2[ 6]+m1[14]*m2[ 7]);
+ m[ 7] = btScalar(m1[ 3]*m2[ 4]+m1[ 7]*m2[ 5]+m1[11]*m2[ 6]+m1[15]*m2[ 7]);
+
+ m[ 8] = btScalar(m1[ 0]*m2[ 8]+m1[ 4]*m2[ 9]+m1[ 8]*m2[10]+m1[12]*m2[11]);
+ m[ 9] = btScalar(m1[ 1]*m2[ 8]+m1[ 5]*m2[ 9]+m1[ 9]*m2[10]+m1[13]*m2[11]);
+ m[10] = btScalar(m1[ 2]*m2[ 8]+m1[ 6]*m2[ 9]+m1[10]*m2[10]+m1[14]*m2[11]);
+ m[11] = btScalar(m1[ 3]*m2[ 8]+m1[ 7]*m2[ 9]+m1[11]*m2[10]+m1[15]*m2[11]);
+
+ m[12] = btScalar(m1[ 0]*m2[12]+m1[ 4]*m2[13]+m1[ 8]*m2[14]+m1[12]*m2[15]);
+ m[13] = btScalar(m1[ 1]*m2[12]+m1[ 5]*m2[13]+m1[ 9]*m2[14]+m1[13]*m2[15]);
+ m[14] = btScalar(m1[ 2]*m2[12]+m1[ 6]*m2[13]+m1[10]*m2[14]+m1[14]*m2[15]);
+ m[15] = btScalar(m1[ 3]*m2[12]+m1[ 7]*m2[13]+m1[11]*m2[14]+m1[15]*m2[15]);
+ }
+ void setup(int size)
+ {
+ m_initialized=false;
+ m_occlusion=false;
+ // compute the size of the buffer
+ GLint v[4];
+ GLdouble m[16],p[16];
+ int maxsize;
+ double ratio;
+ glGetIntegerv(GL_VIEWPORT,v);
+ maxsize = (v[2] > v[3]) ? v[2] : v[3];
+ assert(maxsize > 0);
+ ratio = 1.0/(2*maxsize);
+ // ensure even number
+ m_sizes[0] = 2*((int)(size*v[2]*ratio+0.5));
+ m_sizes[1] = 2*((int)(size*v[3]*ratio+0.5));
+ m_scales[0]=btScalar(m_sizes[0]/2);
+ m_scales[1]=btScalar(m_sizes[1]/2);
+ m_offsets[0]=m_scales[0]+0.5f;
+ m_offsets[1]=m_scales[1]+0.5f;
+ // prepare matrix
+ // at this time of the rendering, the modelview matrix is the
+ // world to camera transformation and the projection matrix is
+ // camera to clip transformation. combine both so that
+ glGetDoublev(GL_MODELVIEW_MATRIX,m);
+ glGetDoublev(GL_PROJECTION_MATRIX,p);
+ CMmat4mul(m_wtc,p,m);
+ }
+ void initialize()
+ {
+ size_t newsize = (m_sizes[0]*m_sizes[1])*sizeof(btScalar);
+ if (m_buffer)
+ {
+ // see if we can reuse
+ if (newsize > m_bufferSize)
+ {
+ free(m_buffer);
+ m_buffer = NULL;
+ m_bufferSize = 0;
+ }
+ }
+ if (!m_buffer)
+ {
+ m_buffer = (btScalar*)calloc(1, newsize);
+ m_bufferSize = newsize;
+ } else
+ {
+ // buffer exists already, just clears it
+ memset(m_buffer, 0, newsize);
+ }
+ // memory allocate must succeed
+ assert(m_buffer != NULL);
+ m_initialized = true;
+ m_occlusion = false;
+ }
+ void SetModelMatrix(double *fl)
+ {
+ CMmat4mul(m_mtc,m_wtc,fl);
+ if (!m_initialized)
+ initialize();
+ }
+
+ // transform a segment in world coordinate to clip coordinate
+ void transformW(const btVector3& x, btVector4& t)
+ {
+ t[0] = x[0]*m_wtc[0]+x[1]*m_wtc[4]+x[2]*m_wtc[8]+m_wtc[12];
+ t[1] = x[0]*m_wtc[1]+x[1]*m_wtc[5]+x[2]*m_wtc[9]+m_wtc[13];
+ t[2] = x[0]*m_wtc[2]+x[1]*m_wtc[6]+x[2]*m_wtc[10]+m_wtc[14];
+ t[3] = x[0]*m_wtc[3]+x[1]*m_wtc[7]+x[2]*m_wtc[11]+m_wtc[15];
+ }
+ void transformM(const float* x, btVector4& t)
+ {
+ t[0] = x[0]*m_mtc[0]+x[1]*m_mtc[4]+x[2]*m_mtc[8]+m_mtc[12];
+ t[1] = x[0]*m_mtc[1]+x[1]*m_mtc[5]+x[2]*m_mtc[9]+m_mtc[13];
+ t[2] = x[0]*m_mtc[2]+x[1]*m_mtc[6]+x[2]*m_mtc[10]+m_mtc[14];
+ t[3] = x[0]*m_mtc[3]+x[1]*m_mtc[7]+x[2]*m_mtc[11]+m_mtc[15];
+ }
+ // convert polygon to device coordinates
+ static bool project(btVector4* p,int n)
+ {
+ for(int i=0;i<n;++i)
+ {
+ const btScalar iw=1/p[i][3];
+ p[i][2]=1/p[i][3];
+ p[i][0]*=p[i][2];
+ p[i][1]*=p[i][2];
+ }
+ return(true);
+ }
+ // pi: closed polygon in clip coordinate, NP = number of segments
+ // po: same polygon with clipped segments removed
+ template <const int NP>
+ static int clip(const btVector4* pi,btVector4* po)
+ {
+ btScalar s[2*NP];
+ btVector4 pn[2*NP];
+ int i, j, m, n, ni;
+ // deal with near clipping
+ for(i=0, m=0;i<NP;++i)
+ {
+ s[i]=pi[i][2]+pi[i][3];
+ if(s[i]<0) m+=1<<i;
+ }
+ if(m==((1<<NP)-1))
+ return(0);
+ if(m!=0)
+ {
+ for(i=NP-1,j=0,n=0;j<NP;i=j++)
+ {
+ const btVector4& a=pi[i];
+ const btVector4& b=pi[j];
+ const btScalar t=s[i]/(a[3]+a[2]-b[3]-b[2]);
+ if((t>0)&&(t<1))
+ {
+ pn[n][0] = a[0]+(b[0]-a[0])*t;
+ pn[n][1] = a[1]+(b[1]-a[1])*t;
+ pn[n][2] = a[2]+(b[2]-a[2])*t;
+ pn[n][3] = a[3]+(b[3]-a[3])*t;
+ ++n;
+ }
+ if(s[j]>0) pn[n++]=b;
+ }
+ // ready to test far clipping, start from the modified polygon
+ pi = pn;
+ ni = n;
+ } else
+ {
+ // no clipping on the near plane, keep same vector
+ ni = NP;
+ }
+ // now deal with far clipping
+ for(i=0, m=0;i<ni;++i)
+ {
+ s[i]=pi[i][2]-pi[i][3];
+ if(s[i]>0) m+=1<<i;
+ }
+ if(m==((1<<ni)-1))
+ return(0);
+ if(m!=0)
+ {
+ for(i=ni-1,j=0,n=0;j<ni;i=j++)
+ {
+ const btVector4& a=pi[i];
+ const btVector4& b=pi[j];
+ const btScalar t=s[i]/(a[2]-a[3]-b[2]+b[3]);
+ if((t>0)&&(t<1))
+ {
+ po[n][0] = a[0]+(b[0]-a[0])*t;
+ po[n][1] = a[1]+(b[1]-a[1])*t;
+ po[n][2] = a[2]+(b[2]-a[2])*t;
+ po[n][3] = a[3]+(b[3]-a[3])*t;
+ ++n;
+ }
+ if(s[j]<0) po[n++]=b;
+ }
+ return(n);
+ }
+ for(int i=0;i<ni;++i) po[i]=pi[i];
+ return(ni);
+ }
+ // write or check a triangle to buffer. a,b,c in device coordinates (-1,+1)
+ template <typename POLICY>
+ inline bool draw( const btVector4& a,
+ const btVector4& b,
+ const btVector4& c,
+ const float face,
+ const btScalar minarea)
+ {
+ const btScalar a2=cross(b-a,c-a)[2];
+ if((face*a2)<0.f || btFabs(a2)<minarea)
+ return false;
+ // further down we are normally going to write to the Zbuffer, mark it so
+ POLICY::Occlusion(m_occlusion);
+
+ int x[3], y[3], ib=1, ic=2;
+ btScalar z[3];
+ x[0]=(int)(a.x()*m_scales[0]+m_offsets[0]);
+ y[0]=(int)(a.y()*m_scales[1]+m_offsets[1]);
+ z[0]=a.z();
+ if (a2 < 0.f)
+ {
+ // negative aire is possible with double face => must
+ // change the order of b and c otherwise the algorithm doesn't work
+ ib=2;
+ ic=1;
+ }
+ x[ib]=(int)(b.x()*m_scales[0]+m_offsets[0]);
+ x[ic]=(int)(c.x()*m_scales[0]+m_offsets[0]);
+ y[ib]=(int)(b.y()*m_scales[1]+m_offsets[1]);
+ y[ic]=(int)(c.y()*m_scales[1]+m_offsets[1]);
+ z[ib]=b.z();
+ z[ic]=c.z();
+ const int mix=btMax(0,btMin(x[0],btMin(x[1],x[2])));
+ const int mxx=btMin(m_sizes[0],1+btMax(x[0],btMax(x[1],x[2])));
+ const int miy=btMax(0,btMin(y[0],btMin(y[1],y[2])));
+ const int mxy=btMin(m_sizes[1],1+btMax(y[0],btMax(y[1],y[2])));
+ const int width=mxx-mix;
+ const int height=mxy-miy;
+ if ((width*height) <= 1)
+ {
+ // degenerated in at most one single pixel
+ btScalar* scan=&m_buffer[miy*m_sizes[0]+mix];
+ // use for loop to detect the case where width or height == 0
+ for(int iy=miy;iy<mxy;++iy)
+ {
+ for(int ix=mix;ix<mxx;++ix)
+ {
+ if(POLICY::Process(*scan,z[0]))
+ return(true);
+ if(POLICY::Process(*scan,z[1]))
+ return(true);
+ if(POLICY::Process(*scan,z[2]))
+ return(true);
+ }
+ }
+ } else if (width == 1)
+ {
+ // Degenerated in at least 2 vertical lines
+ // The algorithm below doesn't work when face has a single pixel width
+ // We cannot use general formulas because the plane is degenerated.
+ // We have to interpolate along the 3 edges that overlaps and process each pixel.
+ // sort the y coord to make formula simpler
+ int ytmp;
+ btScalar ztmp;
+ if (y[0] > y[1]) { ytmp=y[1];y[1]=y[0];y[0]=ytmp;ztmp=z[1];z[1]=z[0];z[0]=ztmp; }
+ if (y[0] > y[2]) { ytmp=y[2];y[2]=y[0];y[0]=ytmp;ztmp=z[2];z[2]=z[0];z[0]=ztmp; }
+ if (y[1] > y[2]) { ytmp=y[2];y[2]=y[1];y[1]=ytmp;ztmp=z[2];z[2]=z[1];z[1]=ztmp; }
+ int dy[]={ y[0]-y[1],
+ y[1]-y[2],
+ y[2]-y[0]};
+ btScalar dzy[3];
+ dzy[0] = (dy[0]) ? (z[0]-z[1])/dy[0] : btScalar(0.f);
+ dzy[1] = (dy[1]) ? (z[1]-z[2])/dy[1] : btScalar(0.f);
+ dzy[2] = (dy[2]) ? (z[2]-z[0])/dy[2] : btScalar(0.f);
+ btScalar v[3] = { dzy[0]*(miy-y[0])+z[0],
+ dzy[1]*(miy-y[1])+z[1],
+ dzy[2]*(miy-y[2])+z[2] };
+ dy[0] = y[1]-y[0];
+ dy[1] = y[0]-y[1];
+ dy[2] = y[2]-y[0];
+ btScalar* scan=&m_buffer[miy*m_sizes[0]+mix];
+ for(int iy=miy;iy<mxy;++iy)
+ {
+ if(dy[0] >= 0 && POLICY::Process(*scan,v[0]))
+ return(true);
+ if(dy[1] >= 0 && POLICY::Process(*scan,v[1]))
+ return(true);
+ if(dy[2] >= 0 && POLICY::Process(*scan,v[2]))
+ return(true);
+ scan+=m_sizes[0];
+ v[0] += dzy[0]; v[1] += dzy[1]; v[2] += dzy[2];
+ dy[0]--; dy[1]++, dy[2]--;
+ }
+ } else if (height == 1)
+ {
+ // Degenerated in at least 2 horizontal lines
+ // The algorithm below doesn't work when face has a single pixel width
+ // We cannot use general formulas because the plane is degenerated.
+ // We have to interpolate along the 3 edges that overlaps and process each pixel.
+ int xtmp;
+ btScalar ztmp;
+ if (x[0] > x[1]) { xtmp=x[1];x[1]=x[0];x[0]=xtmp;ztmp=z[1];z[1]=z[0];z[0]=ztmp; }
+ if (x[0] > x[2]) { xtmp=x[2];x[2]=x[0];x[0]=xtmp;ztmp=z[2];z[2]=z[0];z[0]=ztmp; }
+ if (x[1] > x[2]) { xtmp=x[2];x[2]=x[1];x[1]=xtmp;ztmp=z[2];z[2]=z[1];z[1]=ztmp; }
+ int dx[]={ x[0]-x[1],
+ x[1]-x[2],
+ x[2]-x[0]};
+ btScalar dzx[3];
+ dzx[0] = (dx[0]) ? (z[0]-z[1])/dx[0] : btScalar(0.f);
+ dzx[1] = (dx[1]) ? (z[1]-z[2])/dx[1] : btScalar(0.f);
+ dzx[2] = (dx[2]) ? (z[2]-z[0])/dx[2] : btScalar(0.f);
+ btScalar v[3] = { dzx[0]*(mix-x[0])+z[0],
+ dzx[1]*(mix-x[1])+z[1],
+ dzx[2]*(mix-x[2])+z[2] };
+ dx[0] = x[1]-x[0];
+ dx[1] = x[0]-x[1];
+ dx[2] = x[2]-x[0];
+ btScalar* scan=&m_buffer[miy*m_sizes[0]+mix];
+ for(int ix=mix;ix<mxx;++ix)
+ {
+ if(dx[0] >= 0 && POLICY::Process(*scan,v[0]))
+ return(true);
+ if(dx[1] >= 0 && POLICY::Process(*scan,v[1]))
+ return(true);
+ if(dx[2] >= 0 && POLICY::Process(*scan,v[2]))
+ return(true);
+ scan++;
+ v[0] += dzx[0]; v[1] += dzx[1]; v[2] += dzx[2];
+ dx[0]--; dx[1]++, dx[2]--;
+ }
+ } else
+ {
+ // general case
+ const int dx[]={ y[0]-y[1],
+ y[1]-y[2],
+ y[2]-y[0]};
+ const int dy[]={ x[1]-x[0]-dx[0]*width,
+ x[2]-x[1]-dx[1]*width,
+ x[0]-x[2]-dx[2]*width};
+ const int a=x[2]*y[0]+x[0]*y[1]-x[2]*y[1]-x[0]*y[2]+x[1]*y[2]-x[1]*y[0];
+ const btScalar ia=1/(btScalar)a;
+ const btScalar dzx=ia*(y[2]*(z[1]-z[0])+y[1]*(z[0]-z[2])+y[0]*(z[2]-z[1]));
+ const btScalar dzy=ia*(x[2]*(z[0]-z[1])+x[0]*(z[1]-z[2])+x[1]*(z[2]-z[0]))-(dzx*width);
+ int c[]={ miy*x[1]+mix*y[0]-x[1]*y[0]-mix*y[1]+x[0]*y[1]-miy*x[0],
+ miy*x[2]+mix*y[1]-x[2]*y[1]-mix*y[2]+x[1]*y[2]-miy*x[1],
+ miy*x[0]+mix*y[2]-x[0]*y[2]-mix*y[0]+x[2]*y[0]-miy*x[2]};
+ btScalar v=ia*((z[2]*c[0])+(z[0]*c[1])+(z[1]*c[2]));
+ btScalar* scan=&m_buffer[miy*m_sizes[0]];
+ for(int iy=miy;iy<mxy;++iy)
+ {
+ for(int ix=mix;ix<mxx;++ix)
+ {
+ if((c[0]>=0)&&(c[1]>=0)&&(c[2]>=0))
+ {
+ if(POLICY::Process(scan[ix],v))
+ return(true);
+ }
+ c[0]+=dx[0];c[1]+=dx[1];c[2]+=dx[2];v+=dzx;
+ }
+ c[0]+=dy[0];c[1]+=dy[1];c[2]+=dy[2];v+=dzy;
+ scan+=m_sizes[0];
+ }
+ }
+ return(false);
+ }
+ // clip than write or check a polygon
+ template <const int NP,typename POLICY>
+ inline bool clipDraw( const btVector4* p,
+ const float face,
+ btScalar minarea)
+ {
+ btVector4 o[NP*2];
+ int n=clip<NP>(p,o);
+ bool earlyexit=false;
+ if (n)
+ {
+ project(o,n);
+ for(int i=2;i<n && !earlyexit;++i)
+ {
+ earlyexit|=draw<POLICY>(o[0],o[i-1],o[i],face,minarea);
+ }
+ }
+ return(earlyexit);
+ }
+ // add a triangle (in model coordinate)
+ // face = 0.f if face is double side,
+ // = 1.f if face is single sided and scale is positive
+ // = -1.f if face is single sided and scale is negative
+ void appendOccluderM(const float* a,
+ const float* b,
+ const float* c,
+ const float face)
+ {
+ btVector4 p[3];
+ transformM(a,p[0]);
+ transformM(b,p[1]);
+ transformM(c,p[2]);
+ clipDraw<3,WriteOCL>(p,face,btScalar(0.f));
+ }
+ // add a quad (in model coordinate)
+ void appendOccluderM(const float* a,
+ const float* b,
+ const float* c,
+ const float* d,
+ const float face)
+ {
+ btVector4 p[4];
+ transformM(a,p[0]);
+ transformM(b,p[1]);
+ transformM(c,p[2]);
+ transformM(d,p[3]);
+ clipDraw<4,WriteOCL>(p,face,btScalar(0.f));
+ }
+ // query occluder for a box (c=center, e=extend) in world coordinate
+ inline bool queryOccluderW( const btVector3& c,
+ const btVector3& e)
+ {
+ if (!m_occlusion)
+ // no occlusion yet, no need to check
+ return true;
+ btVector4 x[8];
+ transformW(btVector3(c[0]-e[0],c[1]-e[1],c[2]-e[2]),x[0]);
+ transformW(btVector3(c[0]+e[0],c[1]-e[1],c[2]-e[2]),x[1]);
+ transformW(btVector3(c[0]+e[0],c[1]+e[1],c[2]-e[2]),x[2]);
+ transformW(btVector3(c[0]-e[0],c[1]+e[1],c[2]-e[2]),x[3]);
+ transformW(btVector3(c[0]-e[0],c[1]-e[1],c[2]+e[2]),x[4]);
+ transformW(btVector3(c[0]+e[0],c[1]-e[1],c[2]+e[2]),x[5]);
+ transformW(btVector3(c[0]+e[0],c[1]+e[1],c[2]+e[2]),x[6]);
+ transformW(btVector3(c[0]-e[0],c[1]+e[1],c[2]+e[2]),x[7]);
+ for(int i=0;i<8;++i)
+ {
+ // the box is clipped, it's probably a large box, don't waste our time to check
+ if((x[i][2]+x[i][3])<=0) return(true);
+ }
+ static const int d[]={ 1,0,3,2,
+ 4,5,6,7,
+ 4,7,3,0,
+ 6,5,1,2,
+ 7,6,2,3,
+ 5,4,0,1};
+ for(int i=0;i<(sizeof(d)/sizeof(d[0]));)
+ {
+ const btVector4 p[]={ x[d[i++]],
+ x[d[i++]],
+ x[d[i++]],
+ x[d[i++]]};
+ if(clipDraw<4,QueryOCL>(p,1.f,0.f))
+ return(true);
+ }
+ return(false);
+ }
+};
+
+
+struct DbvtCullingCallback : btDbvt::ICollide
+{
+ PHY_CullingCallback m_clientCallback;
+ void* m_userData;
+ OcclusionBuffer *m_ocb;
+
+ DbvtCullingCallback(PHY_CullingCallback clientCallback, void* userData)
+ {
+ m_clientCallback = clientCallback;
+ m_userData = userData;
+ m_ocb = NULL;
+ }
+ bool Descent(const btDbvtNode* node)
+ {
+ return(m_ocb->queryOccluderW(node->volume.Center(),node->volume.Extents()));
+ }
+ void Process(const btDbvtNode* node,btScalar depth)
+ {
+ Process(node);
+ }
+ void Process(const btDbvtNode* leaf)
+ {
+ btBroadphaseProxy* proxy=(btBroadphaseProxy*)leaf->data;
+ // the client object is a graphic controller
+ CcdGraphicController* ctrl = static_cast<CcdGraphicController*>(proxy->m_clientObject);
+ KX_ClientObjectInfo* info = (KX_ClientObjectInfo*)ctrl->getNewClientInfo();
+ if (m_ocb)
+ {
+ // means we are doing occlusion culling. Check if this object is an occluders
+ KX_GameObject* gameobj = KX_GameObject::GetClientObject(info);
+ if (gameobj && gameobj->GetOccluder())
+ {
+ double* fl = gameobj->GetOpenGLMatrixPtr()->getPointer();
+ // this will create the occlusion buffer if not already done
+ // and compute the transformation from model local space to clip space
+ m_ocb->SetModelMatrix(fl);
+ float face = (gameobj->IsNegativeScaling()) ? -1.0f : 1.0f;
+ // walk through the meshes and for each add to buffer
+ for (int i=0; i<gameobj->GetMeshCount(); i++)
+ {
+ RAS_MeshObject* meshobj = gameobj->GetMesh(i);
+ const float *v1, *v2, *v3, *v4;
+ int polycount = meshobj->NumPolygons();
+ for (int j=0; j<polycount; j++)
+ {
+ RAS_Polygon* poly = meshobj->GetPolygon(j);
+ switch (poly->VertexCount())
+ {
+ case 3:
+ v1 = poly->GetVertex(0)->getXYZ();
+ v2 = poly->GetVertex(1)->getXYZ();
+ v3 = poly->GetVertex(2)->getXYZ();
+ m_ocb->appendOccluderM(v1,v2,v3,((poly->IsTwoside())?0.f:face));
+ break;
+ case 4:
+ v1 = poly->GetVertex(0)->getXYZ();
+ v2 = poly->GetVertex(1)->getXYZ();
+ v3 = poly->GetVertex(2)->getXYZ();
+ v4 = poly->GetVertex(3)->getXYZ();
+ m_ocb->appendOccluderM(v1,v2,v3,v4,((poly->IsTwoside())?0.f:face));
+ break;
+ }
+ }
+ }
+ }
+ }
+ if (info)
+ (*m_clientCallback)(info, m_userData);
+ }
+};
+
+static OcclusionBuffer gOcb;
+bool CcdPhysicsEnvironment::cullingTest(PHY_CullingCallback callback, void* userData, PHY__Vector4 *planes, int nplanes, int occlusionRes)
+{
+ if (!m_cullingTree)
+ return false;
+ DbvtCullingCallback dispatcher(callback, userData);
+ btVector3 planes_n[6];
+ btScalar planes_o[6];
+ if (nplanes > 6)
+ nplanes = 6;
+ for (int i=0; i<nplanes; i++)
+ {
+ planes_n[i].setValue(planes[i][0], planes[i][1], planes[i][2]);
+ planes_o[i] = planes[i][3];
+ }
+ // if occlusionRes != 0 => occlusion culling
+ if (occlusionRes)
+ {
+ gOcb.setup(occlusionRes);
+ dispatcher.m_ocb = &gOcb;
+ // occlusion culling, the direction of the view is taken from the first plan which MUST be the near plane
+ btDbvt::collideOCL(m_cullingTree->m_sets[1].m_root,planes_n,planes_o,planes_n[0],nplanes,dispatcher);
+ btDbvt::collideOCL(m_cullingTree->m_sets[0].m_root,planes_n,planes_o,planes_n[0],nplanes,dispatcher);
+ }else
+ {
+ btDbvt::collideKDOP(m_cullingTree->m_sets[1].m_root,planes_n,planes_o,nplanes,dispatcher);
+ btDbvt::collideKDOP(m_cullingTree->m_sets[0].m_root,planes_n,planes_o,nplanes,dispatcher);
+ }
+ return true;
+}
int CcdPhysicsEnvironment::getNumContactPoints()
{
@@ -1211,6 +1831,13 @@ CcdPhysicsEnvironment::~CcdPhysicsEnvironment()
if (NULL != m_broadphase)
delete m_broadphase;
+
+ if (NULL != m_cullingTree)
+ delete m_cullingTree;
+
+ if (NULL != m_cullingCache)
+ delete m_cullingCache;
+
}
@@ -1465,8 +2092,8 @@ PHY_IPhysicsController* CcdPhysicsEnvironment::CreateSphereController(float radi
{
CcdConstructionInfo cinfo;
- // memory leak! The shape is not deleted by Bullet and we cannot add it to the KX_Scene.m_shapes list
- cinfo.m_collisionShape = new btSphereShape(radius);
+ memset(&cinfo, 0, sizeof(cinfo)); /* avoid uninitialized values */
+ cinfo.m_collisionShape = new btSphereShape(radius); // memory leak! The shape is not deleted by Bullet and we cannot add it to the KX_Scene.m_shapes list
cinfo.m_MotionState = 0;
cinfo.m_physicsEnv = this;
// declare this object as Dyamic rather then static!!
@@ -1925,7 +2552,7 @@ int CcdPhysicsEnvironment::createConstraint(class PHY_IPhysicsController* ctrl
PHY_IPhysicsController* CcdPhysicsEnvironment::CreateConeController(float coneradius,float coneheight)
{
CcdConstructionInfo cinfo;
-
+ memset(&cinfo, 0, sizeof(cinfo)); /* avoid uninitialized values */
// we don't need a CcdShapeConstructionInfo for this shape:
// it is simple enough for the standard copy constructor (see CcdPhysicsController::GetReplica)
cinfo.m_collisionShape = new btConeShape(coneradius,coneheight);