Welcome to mirror list, hosted at ThFree Co, Russian Federation.

btGImpactQuantizedBvh.cpp « Gimpact « BulletCollision « src « bullet2 « extern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: ea1647a81297a7eea33bf01c3fe2ac484e61560f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
/*! \file gim_box_set.h
\author Francisco Len Nßjera
*/
/*
This source file is part of GIMPACT Library.

For the latest info, see http://gimpact.sourceforge.net/

Copyright (c) 2007 Francisco Leon Najera. C.C. 80087371.
email: projectileman@yahoo.com


This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/

#include "btGImpactQuantizedBvh.h"
#include "LinearMath/btQuickprof.h"

#ifdef TRI_COLLISION_PROFILING
btClock g_q_tree_clock;


float g_q_accum_tree_collision_time = 0;
int g_q_count_traversing = 0;


void bt_begin_gim02_q_tree_time()
{
	g_q_tree_clock.reset();
}

void bt_end_gim02_q_tree_time()
{
	g_q_accum_tree_collision_time += g_q_tree_clock.getTimeMicroseconds();
	g_q_count_traversing++;
}


//! Gets the average time in miliseconds of tree collisions
float btGImpactQuantizedBvh::getAverageTreeCollisionTime()
{
	if(g_q_count_traversing == 0) return 0;

	float avgtime = g_q_accum_tree_collision_time;
	avgtime /= (float)g_q_count_traversing;

	g_q_accum_tree_collision_time = 0;
	g_q_count_traversing = 0;
	return avgtime;

//	float avgtime = g_q_count_traversing;
//	g_q_count_traversing = 0;
//	return avgtime;

}

#endif //TRI_COLLISION_PROFILING

/////////////////////// btQuantizedBvhTree /////////////////////////////////

void btQuantizedBvhTree::calc_quantization(
	GIM_BVH_DATA_ARRAY & primitive_boxes, btScalar boundMargin)
{
	//calc globa box
	btAABB global_bound;
	global_bound.invalidate();

	for (int i=0;i<primitive_boxes.size() ;i++ )
	{
		global_bound.merge(primitive_boxes[i].m_bound);
	}

	bt_calc_quantization_parameters(
		m_global_bound.m_min,m_global_bound.m_max,m_bvhQuantization,global_bound.m_min,global_bound.m_max,boundMargin);

}



int btQuantizedBvhTree::_calc_splitting_axis(
	GIM_BVH_DATA_ARRAY & primitive_boxes, int startIndex,  int endIndex)
{

	int i;

	btVector3 means(btScalar(0.),btScalar(0.),btScalar(0.));
	btVector3 variance(btScalar(0.),btScalar(0.),btScalar(0.));
	int numIndices = endIndex-startIndex;

	for (i=startIndex;i<endIndex;i++)
	{
		btVector3 center = btScalar(0.5)*(primitive_boxes[i].m_bound.m_max +
					 primitive_boxes[i].m_bound.m_min);
		means+=center;
	}
	means *= (btScalar(1.)/(btScalar)numIndices);

	for (i=startIndex;i<endIndex;i++)
	{
		btVector3 center = btScalar(0.5)*(primitive_boxes[i].m_bound.m_max +
					 primitive_boxes[i].m_bound.m_min);
		btVector3 diff2 = center-means;
		diff2 = diff2 * diff2;
		variance += diff2;
	}
	variance *= (btScalar(1.)/	((btScalar)numIndices-1)	);

	return variance.maxAxis();
}


int btQuantizedBvhTree::_sort_and_calc_splitting_index(
	GIM_BVH_DATA_ARRAY & primitive_boxes, int startIndex,
	int endIndex, int splitAxis)
{
	int i;
	int splitIndex =startIndex;
	int numIndices = endIndex - startIndex;

	// average of centers
	btScalar splitValue = 0.0f;

	btVector3 means(btScalar(0.),btScalar(0.),btScalar(0.));
	for (i=startIndex;i<endIndex;i++)
	{
		btVector3 center = btScalar(0.5)*(primitive_boxes[i].m_bound.m_max +
					 primitive_boxes[i].m_bound.m_min);
		means+=center;
	}
	means *= (btScalar(1.)/(btScalar)numIndices);

	splitValue = means[splitAxis];


	//sort leafNodes so all values larger then splitValue comes first, and smaller values start from 'splitIndex'.
	for (i=startIndex;i<endIndex;i++)
	{
		btVector3 center = btScalar(0.5)*(primitive_boxes[i].m_bound.m_max +
					 primitive_boxes[i].m_bound.m_min);
		if (center[splitAxis] > splitValue)
		{
			//swap
			primitive_boxes.swap(i,splitIndex);
			//swapLeafNodes(i,splitIndex);
			splitIndex++;
		}
	}

	//if the splitIndex causes unbalanced trees, fix this by using the center in between startIndex and endIndex
	//otherwise the tree-building might fail due to stack-overflows in certain cases.
	//unbalanced1 is unsafe: it can cause stack overflows
	//bool unbalanced1 = ((splitIndex==startIndex) || (splitIndex == (endIndex-1)));

	//unbalanced2 should work too: always use center (perfect balanced trees)
	//bool unbalanced2 = true;

	//this should be safe too:
	int rangeBalancedIndices = numIndices/3;
	bool unbalanced = ((splitIndex<=(startIndex+rangeBalancedIndices)) || (splitIndex >=(endIndex-1-rangeBalancedIndices)));

	if (unbalanced)
	{
		splitIndex = startIndex+ (numIndices>>1);
	}

	btAssert(!((splitIndex==startIndex) || (splitIndex == (endIndex))));

	return splitIndex;

}


void btQuantizedBvhTree::_build_sub_tree(GIM_BVH_DATA_ARRAY & primitive_boxes, int startIndex,  int endIndex)
{
	int curIndex = m_num_nodes;
	m_num_nodes++;

	btAssert((endIndex-startIndex)>0);

	if ((endIndex-startIndex)==1)
	{
	    //We have a leaf node
	    setNodeBound(curIndex,primitive_boxes[startIndex].m_bound);
		m_node_array[curIndex].setDataIndex(primitive_boxes[startIndex].m_data);

		return;
	}
	//calculate Best Splitting Axis and where to split it. Sort the incoming 'leafNodes' array within range 'startIndex/endIndex'.

	//split axis
	int splitIndex = _calc_splitting_axis(primitive_boxes,startIndex,endIndex);

	splitIndex = _sort_and_calc_splitting_index(
			primitive_boxes,startIndex,endIndex,
			splitIndex//split axis
			);


	//calc this node bounding box

	btAABB node_bound;
	node_bound.invalidate();

	for (int i=startIndex;i<endIndex;i++)
	{
		node_bound.merge(primitive_boxes[i].m_bound);
	}

	setNodeBound(curIndex,node_bound);


	//build left branch
	_build_sub_tree(primitive_boxes, startIndex, splitIndex );


	//build right branch
	 _build_sub_tree(primitive_boxes, splitIndex ,endIndex);

	m_node_array[curIndex].setEscapeIndex(m_num_nodes - curIndex);


}

//! stackless build tree
void btQuantizedBvhTree::build_tree(
	GIM_BVH_DATA_ARRAY & primitive_boxes)
{
	calc_quantization(primitive_boxes);
	// initialize node count to 0
	m_num_nodes = 0;
	// allocate nodes
	m_node_array.resize(primitive_boxes.size()*2);

	_build_sub_tree(primitive_boxes, 0, primitive_boxes.size());
}

////////////////////////////////////class btGImpactQuantizedBvh

void btGImpactQuantizedBvh::refit()
{
	int nodecount = getNodeCount();
	while(nodecount--)
	{
		if(isLeafNode(nodecount))
		{
			btAABB leafbox;
			m_primitive_manager->get_primitive_box(getNodeData(nodecount),leafbox);
			setNodeBound(nodecount,leafbox);
		}
		else
		{
			//const GIM_BVH_TREE_NODE * nodepointer = get_node_pointer(nodecount);
			//get left bound
			btAABB bound;
			bound.invalidate();

			btAABB temp_box;

			int child_node = getLeftNode(nodecount);
			if(child_node)
			{
				getNodeBound(child_node,temp_box);
				bound.merge(temp_box);
			}

			child_node = getRightNode(nodecount);
			if(child_node)
			{
				getNodeBound(child_node,temp_box);
				bound.merge(temp_box);
			}

			setNodeBound(nodecount,bound);
		}
	}
}

//! this rebuild the entire set
void btGImpactQuantizedBvh::buildSet()
{
	//obtain primitive boxes
	GIM_BVH_DATA_ARRAY primitive_boxes;
	primitive_boxes.resize(m_primitive_manager->get_primitive_count());

	for (int i = 0;i<primitive_boxes.size() ;i++ )
	{
		 m_primitive_manager->get_primitive_box(i,primitive_boxes[i].m_bound);
		 primitive_boxes[i].m_data = i;
	}

	m_box_tree.build_tree(primitive_boxes);
}

//! returns the indices of the primitives in the m_primitive_manager
bool btGImpactQuantizedBvh::boxQuery(const btAABB & box, btAlignedObjectArray<int> & collided_results) const
{
	int curIndex = 0;
	int numNodes = getNodeCount();

	//quantize box

	unsigned short quantizedMin[3];
	unsigned short quantizedMax[3];

	m_box_tree.quantizePoint(quantizedMin,box.m_min);
	m_box_tree.quantizePoint(quantizedMax,box.m_max);


	while (curIndex < numNodes)
	{

		//catch bugs in tree data

		bool aabbOverlap = m_box_tree.testQuantizedBoxOverlapp(curIndex, quantizedMin,quantizedMax);
		bool isleafnode = isLeafNode(curIndex);

		if (isleafnode && aabbOverlap)
		{
			collided_results.push_back(getNodeData(curIndex));
		}

		if (aabbOverlap || isleafnode)
		{
			//next subnode
			curIndex++;
		}
		else
		{
			//skip node
			curIndex+= getEscapeNodeIndex(curIndex);
		}
	}
	if(collided_results.size()>0) return true;
	return false;
}



//! returns the indices of the primitives in the m_primitive_manager
bool btGImpactQuantizedBvh::rayQuery(
	const btVector3 & ray_dir,const btVector3 & ray_origin ,
	btAlignedObjectArray<int> & collided_results) const
{
	int curIndex = 0;
	int numNodes = getNodeCount();

	while (curIndex < numNodes)
	{
		btAABB bound;
		getNodeBound(curIndex,bound);

		//catch bugs in tree data

		bool aabbOverlap = bound.collide_ray(ray_origin,ray_dir);
		bool isleafnode = isLeafNode(curIndex);

		if (isleafnode && aabbOverlap)
		{
			collided_results.push_back(getNodeData( curIndex));
		}

		if (aabbOverlap || isleafnode)
		{
			//next subnode
			curIndex++;
		}
		else
		{
			//skip node
			curIndex+= getEscapeNodeIndex(curIndex);
		}
	}
	if(collided_results.size()>0) return true;
	return false;
}


SIMD_FORCE_INLINE bool _quantized_node_collision(
	btGImpactQuantizedBvh * boxset0, btGImpactQuantizedBvh * boxset1,
	const BT_BOX_BOX_TRANSFORM_CACHE & trans_cache_1to0,
	int node0 ,int node1, bool complete_primitive_tests)
{
	btAABB box0;
	boxset0->getNodeBound(node0,box0);
	btAABB box1;
	boxset1->getNodeBound(node1,box1);

	return box0.overlapping_trans_cache(box1,trans_cache_1to0,complete_primitive_tests );
//	box1.appy_transform_trans_cache(trans_cache_1to0);
//	return box0.has_collision(box1);

}


//stackless recursive collision routine
static void _find_quantized_collision_pairs_recursive(
	btGImpactQuantizedBvh * boxset0, btGImpactQuantizedBvh * boxset1,
	btPairSet * collision_pairs,
	const BT_BOX_BOX_TRANSFORM_CACHE & trans_cache_1to0,
	int node0, int node1, bool complete_primitive_tests)
{



	if( _quantized_node_collision(
		boxset0,boxset1,trans_cache_1to0,
		node0,node1,complete_primitive_tests) ==false) return;//avoid colliding internal nodes

	if(boxset0->isLeafNode(node0))
	{
		if(boxset1->isLeafNode(node1))
		{
			// collision result
			collision_pairs->push_pair(
				boxset0->getNodeData(node0),boxset1->getNodeData(node1));
			return;
		}
		else
		{

			//collide left recursive

			_find_quantized_collision_pairs_recursive(
								boxset0,boxset1,
								collision_pairs,trans_cache_1to0,
								node0,boxset1->getLeftNode(node1),false);

			//collide right recursive
			_find_quantized_collision_pairs_recursive(
								boxset0,boxset1,
								collision_pairs,trans_cache_1to0,
								node0,boxset1->getRightNode(node1),false);


		}
	}
	else
	{
		if(boxset1->isLeafNode(node1))
		{

			//collide left recursive
			_find_quantized_collision_pairs_recursive(
								boxset0,boxset1,
								collision_pairs,trans_cache_1to0,
								boxset0->getLeftNode(node0),node1,false);


			//collide right recursive

			_find_quantized_collision_pairs_recursive(
								boxset0,boxset1,
								collision_pairs,trans_cache_1to0,
								boxset0->getRightNode(node0),node1,false);


		}
		else
		{
			//collide left0 left1



			_find_quantized_collision_pairs_recursive(
				boxset0,boxset1,
				collision_pairs,trans_cache_1to0,
				boxset0->getLeftNode(node0),boxset1->getLeftNode(node1),false);

			//collide left0 right1

			_find_quantized_collision_pairs_recursive(
				boxset0,boxset1,
				collision_pairs,trans_cache_1to0,
				boxset0->getLeftNode(node0),boxset1->getRightNode(node1),false);


			//collide right0 left1

			_find_quantized_collision_pairs_recursive(
				boxset0,boxset1,
				collision_pairs,trans_cache_1to0,
				boxset0->getRightNode(node0),boxset1->getLeftNode(node1),false);

			//collide right0 right1

			_find_quantized_collision_pairs_recursive(
				boxset0,boxset1,
				collision_pairs,trans_cache_1to0,
				boxset0->getRightNode(node0),boxset1->getRightNode(node1),false);

		}// else if node1 is not a leaf
	}// else if node0 is not a leaf
}


void btGImpactQuantizedBvh::find_collision(btGImpactQuantizedBvh * boxset0, const btTransform & trans0,
		btGImpactQuantizedBvh * boxset1, const btTransform & trans1,
		btPairSet & collision_pairs)
{

	if(boxset0->getNodeCount()==0 || boxset1->getNodeCount()==0 ) return;

	BT_BOX_BOX_TRANSFORM_CACHE trans_cache_1to0;

	trans_cache_1to0.calc_from_homogenic(trans0,trans1);

#ifdef TRI_COLLISION_PROFILING
	bt_begin_gim02_q_tree_time();
#endif //TRI_COLLISION_PROFILING

	_find_quantized_collision_pairs_recursive(
		boxset0,boxset1,
		&collision_pairs,trans_cache_1to0,0,0,true);
#ifdef TRI_COLLISION_PROFILING
	bt_end_gim02_q_tree_time();
#endif //TRI_COLLISION_PROFILING

}