Welcome to mirror list, hosted at ThFree Co, Russian Federation.

btHingeConstraint.h « ConstraintSolver « BulletDynamics « src « bullet2 « extern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 7c33ac24e05752f15d599a6a3d8d5cf53eaeb4b3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/

This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose, 
including commercial applications, and to alter it and redistribute it freely, 
subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/

/* Hinge Constraint by Dirk Gregorius. Limits added by Marcus Hennix at Starbreeze Studios */

#ifndef BT_HINGECONSTRAINT_H
#define BT_HINGECONSTRAINT_H

#define _BT_USE_CENTER_LIMIT_ 1


#include "LinearMath/btVector3.h"
#include "btJacobianEntry.h"
#include "btTypedConstraint.h"

class btRigidBody;

#ifdef BT_USE_DOUBLE_PRECISION
#define btHingeConstraintData	btHingeConstraintDoubleData2 //rename to 2 for backwards compatibility, so we can still load the 'btHingeConstraintDoubleData' version
#define btHingeConstraintDataName	"btHingeConstraintDoubleData2" 
#else
#define btHingeConstraintData	btHingeConstraintFloatData
#define btHingeConstraintDataName	"btHingeConstraintFloatData"
#endif //BT_USE_DOUBLE_PRECISION



enum btHingeFlags
{
	BT_HINGE_FLAGS_CFM_STOP = 1,
	BT_HINGE_FLAGS_ERP_STOP = 2,
	BT_HINGE_FLAGS_CFM_NORM = 4
};


/// hinge constraint between two rigidbodies each with a pivotpoint that descibes the axis location in local space
/// axis defines the orientation of the hinge axis
ATTRIBUTE_ALIGNED16(class) btHingeConstraint : public btTypedConstraint
{
#ifdef IN_PARALLELL_SOLVER
public:
#endif
	btJacobianEntry	m_jac[3]; //3 orthogonal linear constraints
	btJacobianEntry	m_jacAng[3]; //2 orthogonal angular constraints+ 1 for limit/motor

	btTransform m_rbAFrame; // constraint axii. Assumes z is hinge axis.
	btTransform m_rbBFrame;

	btScalar	m_motorTargetVelocity;
	btScalar	m_maxMotorImpulse;


#ifdef	_BT_USE_CENTER_LIMIT_
	btAngularLimit	m_limit;
#else
	btScalar	m_lowerLimit;	
	btScalar	m_upperLimit;	
	btScalar	m_limitSign;
	btScalar	m_correction;

	btScalar	m_limitSoftness; 
	btScalar	m_biasFactor; 
	btScalar	m_relaxationFactor; 

	bool		m_solveLimit;
#endif

	btScalar	m_kHinge;


	btScalar	m_accLimitImpulse;
	btScalar	m_hingeAngle;
	btScalar	m_referenceSign;

	bool		m_angularOnly;
	bool		m_enableAngularMotor;
	bool		m_useSolveConstraintObsolete;
	bool		m_useOffsetForConstraintFrame;
	bool		m_useReferenceFrameA;

	btScalar	m_accMotorImpulse;

	int			m_flags;
	btScalar	m_normalCFM;
	btScalar	m_stopCFM;
	btScalar	m_stopERP;

	
public:

	BT_DECLARE_ALIGNED_ALLOCATOR();
	
	btHingeConstraint(btRigidBody& rbA,btRigidBody& rbB, const btVector3& pivotInA,const btVector3& pivotInB, const btVector3& axisInA,const btVector3& axisInB, bool useReferenceFrameA = false);

	btHingeConstraint(btRigidBody& rbA,const btVector3& pivotInA,const btVector3& axisInA, bool useReferenceFrameA = false);
	
	btHingeConstraint(btRigidBody& rbA,btRigidBody& rbB, const btTransform& rbAFrame, const btTransform& rbBFrame, bool useReferenceFrameA = false);

	btHingeConstraint(btRigidBody& rbA,const btTransform& rbAFrame, bool useReferenceFrameA = false);


	virtual void	buildJacobian();

	virtual void getInfo1 (btConstraintInfo1* info);

	void getInfo1NonVirtual(btConstraintInfo1* info);

	virtual void getInfo2 (btConstraintInfo2* info);

	void	getInfo2NonVirtual(btConstraintInfo2* info,const btTransform& transA,const btTransform& transB,const btVector3& angVelA,const btVector3& angVelB);

	void	getInfo2Internal(btConstraintInfo2* info,const btTransform& transA,const btTransform& transB,const btVector3& angVelA,const btVector3& angVelB);
	void	getInfo2InternalUsingFrameOffset(btConstraintInfo2* info,const btTransform& transA,const btTransform& transB,const btVector3& angVelA,const btVector3& angVelB);
		

	void	updateRHS(btScalar	timeStep);

	const btRigidBody& getRigidBodyA() const
	{
		return m_rbA;
	}
	const btRigidBody& getRigidBodyB() const
	{
		return m_rbB;
	}

	btRigidBody& getRigidBodyA()	
	{		
		return m_rbA;	
	}	

	btRigidBody& getRigidBodyB()	
	{		
		return m_rbB;	
	}

	btTransform& getFrameOffsetA()
	{
	return m_rbAFrame;
	}

	btTransform& getFrameOffsetB()
	{
		return m_rbBFrame;
	}

	void setFrames(const btTransform& frameA, const btTransform& frameB);
	
	void	setAngularOnly(bool angularOnly)
	{
		m_angularOnly = angularOnly;
	}

	void	enableAngularMotor(bool enableMotor,btScalar targetVelocity,btScalar maxMotorImpulse)
	{
		m_enableAngularMotor  = enableMotor;
		m_motorTargetVelocity = targetVelocity;
		m_maxMotorImpulse = maxMotorImpulse;
	}

	// extra motor API, including ability to set a target rotation (as opposed to angular velocity)
	// note: setMotorTarget sets angular velocity under the hood, so you must call it every tick to
	//       maintain a given angular target.
	void enableMotor(bool enableMotor) 	{ m_enableAngularMotor = enableMotor; }
	void setMaxMotorImpulse(btScalar maxMotorImpulse) { m_maxMotorImpulse = maxMotorImpulse; }
	void setMotorTarget(const btQuaternion& qAinB, btScalar dt); // qAinB is rotation of body A wrt body B.
	void setMotorTarget(btScalar targetAngle, btScalar dt);


	void	setLimit(btScalar low,btScalar high,btScalar _softness = 0.9f, btScalar _biasFactor = 0.3f, btScalar _relaxationFactor = 1.0f)
	{
#ifdef	_BT_USE_CENTER_LIMIT_
		m_limit.set(low, high, _softness, _biasFactor, _relaxationFactor);
#else
		m_lowerLimit = btNormalizeAngle(low);
		m_upperLimit = btNormalizeAngle(high);
		m_limitSoftness =  _softness;
		m_biasFactor = _biasFactor;
		m_relaxationFactor = _relaxationFactor;
#endif
	}

	void	setAxis(btVector3& axisInA)
	{
		btVector3 rbAxisA1, rbAxisA2;
		btPlaneSpace1(axisInA, rbAxisA1, rbAxisA2);
		btVector3 pivotInA = m_rbAFrame.getOrigin();
//		m_rbAFrame.getOrigin() = pivotInA;
		m_rbAFrame.getBasis().setValue( rbAxisA1.getX(),rbAxisA2.getX(),axisInA.getX(),
										rbAxisA1.getY(),rbAxisA2.getY(),axisInA.getY(),
										rbAxisA1.getZ(),rbAxisA2.getZ(),axisInA.getZ() );

		btVector3 axisInB = m_rbA.getCenterOfMassTransform().getBasis() * axisInA;

		btQuaternion rotationArc = shortestArcQuat(axisInA,axisInB);
		btVector3 rbAxisB1 =  quatRotate(rotationArc,rbAxisA1);
		btVector3 rbAxisB2 = axisInB.cross(rbAxisB1);

		m_rbBFrame.getOrigin() = m_rbB.getCenterOfMassTransform().inverse()(m_rbA.getCenterOfMassTransform()(pivotInA));

		m_rbBFrame.getBasis().setValue( rbAxisB1.getX(),rbAxisB2.getX(),axisInB.getX(),
										rbAxisB1.getY(),rbAxisB2.getY(),axisInB.getY(),
										rbAxisB1.getZ(),rbAxisB2.getZ(),axisInB.getZ() );
		m_rbBFrame.getBasis() = m_rbB.getCenterOfMassTransform().getBasis().inverse() * m_rbBFrame.getBasis();

	}

	btScalar	getLowerLimit() const
	{
#ifdef	_BT_USE_CENTER_LIMIT_
	return m_limit.getLow();
#else
	return m_lowerLimit;
#endif
	}

	btScalar	getUpperLimit() const
	{
#ifdef	_BT_USE_CENTER_LIMIT_
	return m_limit.getHigh();
#else		
	return m_upperLimit;
#endif
	}


	btScalar getHingeAngle();

	btScalar getHingeAngle(const btTransform& transA,const btTransform& transB);

	void testLimit(const btTransform& transA,const btTransform& transB);


	const btTransform& getAFrame() const { return m_rbAFrame; };	
	const btTransform& getBFrame() const { return m_rbBFrame; };

	btTransform& getAFrame() { return m_rbAFrame; };	
	btTransform& getBFrame() { return m_rbBFrame; };

	inline int getSolveLimit()
	{
#ifdef	_BT_USE_CENTER_LIMIT_
	return m_limit.isLimit();
#else
	return m_solveLimit;
#endif
	}

	inline btScalar getLimitSign()
	{
#ifdef	_BT_USE_CENTER_LIMIT_
	return m_limit.getSign();
#else
		return m_limitSign;
#endif
	}

	inline bool getAngularOnly() 
	{ 
		return m_angularOnly; 
	}
	inline bool getEnableAngularMotor() 
	{ 
		return m_enableAngularMotor; 
	}
	inline btScalar getMotorTargetVelosity() 
	{ 
		return m_motorTargetVelocity; 
	}
	inline btScalar getMaxMotorImpulse() 
	{ 
		return m_maxMotorImpulse; 
	}
	// access for UseFrameOffset
	bool getUseFrameOffset() { return m_useOffsetForConstraintFrame; }
	void setUseFrameOffset(bool frameOffsetOnOff) { m_useOffsetForConstraintFrame = frameOffsetOnOff; }


	///override the default global value of a parameter (such as ERP or CFM), optionally provide the axis (0..5). 
	///If no axis is provided, it uses the default axis for this constraint.
	virtual	void	setParam(int num, btScalar value, int axis = -1);
	///return the local value of parameter
	virtual	btScalar getParam(int num, int axis = -1) const;

	virtual	int	calculateSerializeBufferSize() const;

	///fills the dataBuffer and returns the struct name (and 0 on failure)
	virtual	const char*	serialize(void* dataBuffer, btSerializer* serializer) const;


};


//only for backward compatibility
#ifdef BT_BACKWARDS_COMPATIBLE_SERIALIZATION
///this structure is not used, except for loading pre-2.82 .bullet files
struct	btHingeConstraintDoubleData
{
	btTypedConstraintData	m_typeConstraintData;
	btTransformDoubleData m_rbAFrame; // constraint axii. Assumes z is hinge axis.
	btTransformDoubleData m_rbBFrame;
	int			m_useReferenceFrameA;
	int			m_angularOnly;
	int			m_enableAngularMotor;
	float	m_motorTargetVelocity;
	float	m_maxMotorImpulse;

	float	m_lowerLimit;
	float	m_upperLimit;
	float	m_limitSoftness;
	float	m_biasFactor;
	float	m_relaxationFactor;

};
#endif //BT_BACKWARDS_COMPATIBLE_SERIALIZATION


struct	btHingeConstraintFloatData
{
	btTypedConstraintData	m_typeConstraintData;
	btTransformFloatData m_rbAFrame; // constraint axii. Assumes z is hinge axis.
	btTransformFloatData m_rbBFrame;
	int			m_useReferenceFrameA;
	int			m_angularOnly;
	
	int			m_enableAngularMotor;
	float	m_motorTargetVelocity;
	float	m_maxMotorImpulse;

	float	m_lowerLimit;
	float	m_upperLimit;
	float	m_limitSoftness;
	float	m_biasFactor;
	float	m_relaxationFactor;

};



///do not change those serialization structures, it requires an updated sBulletDNAstr/sBulletDNAstr64
struct	btHingeConstraintDoubleData2
{
	btTypedConstraintDoubleData	m_typeConstraintData;
	btTransformDoubleData m_rbAFrame; // constraint axii. Assumes z is hinge axis.
	btTransformDoubleData m_rbBFrame;
	int			m_useReferenceFrameA;
	int			m_angularOnly;
	int			m_enableAngularMotor;
	double		m_motorTargetVelocity;
	double		m_maxMotorImpulse;

	double		m_lowerLimit;
	double		m_upperLimit;
	double		m_limitSoftness;
	double		m_biasFactor;
	double		m_relaxationFactor;
	char	m_padding1[4];

};




SIMD_FORCE_INLINE	int	btHingeConstraint::calculateSerializeBufferSize() const
{
	return sizeof(btHingeConstraintData);
}

	///fills the dataBuffer and returns the struct name (and 0 on failure)
SIMD_FORCE_INLINE	const char*	btHingeConstraint::serialize(void* dataBuffer, btSerializer* serializer) const
{
	btHingeConstraintData* hingeData = (btHingeConstraintData*)dataBuffer;
	btTypedConstraint::serialize(&hingeData->m_typeConstraintData,serializer);

	m_rbAFrame.serialize(hingeData->m_rbAFrame);
	m_rbBFrame.serialize(hingeData->m_rbBFrame);

	hingeData->m_angularOnly = m_angularOnly;
	hingeData->m_enableAngularMotor = m_enableAngularMotor;
	hingeData->m_maxMotorImpulse = float(m_maxMotorImpulse);
	hingeData->m_motorTargetVelocity = float(m_motorTargetVelocity);
	hingeData->m_useReferenceFrameA = m_useReferenceFrameA;
#ifdef	_BT_USE_CENTER_LIMIT_
	hingeData->m_lowerLimit = float(m_limit.getLow());
	hingeData->m_upperLimit = float(m_limit.getHigh());
	hingeData->m_limitSoftness = float(m_limit.getSoftness());
	hingeData->m_biasFactor = float(m_limit.getBiasFactor());
	hingeData->m_relaxationFactor = float(m_limit.getRelaxationFactor());
#else
	hingeData->m_lowerLimit = float(m_lowerLimit);
	hingeData->m_upperLimit = float(m_upperLimit);
	hingeData->m_limitSoftness = float(m_limitSoftness);
	hingeData->m_biasFactor = float(m_biasFactor);
	hingeData->m_relaxationFactor = float(m_relaxationFactor);
#endif

	return btHingeConstraintDataName;
}

#endif //BT_HINGECONSTRAINT_H