Welcome to mirror list, hosted at ThFree Co, Russian Federation.

corner_table.cc « mesh « draco « src « draco « draco « extern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 6066e58bd8b30efdbefb58826c998ce9c5234793 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
// Copyright 2016 The Draco Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#include "draco/mesh/corner_table.h"

#include <limits>

#include "draco/attributes/geometry_indices.h"
#include "draco/mesh/corner_table_iterators.h"

namespace draco {

CornerTable::CornerTable()
    : num_original_vertices_(0),
      num_degenerated_faces_(0),
      num_isolated_vertices_(0),
      valence_cache_(*this) {}

std::unique_ptr<CornerTable> CornerTable::Create(
    const IndexTypeVector<FaceIndex, FaceType> &faces) {
  std::unique_ptr<CornerTable> ct(new CornerTable());
  if (!ct->Init(faces)) {
    return nullptr;
  }
  return ct;
}

bool CornerTable::Init(const IndexTypeVector<FaceIndex, FaceType> &faces) {
  valence_cache_.ClearValenceCache();
  valence_cache_.ClearValenceCacheInaccurate();
  corner_to_vertex_map_.resize(faces.size() * 3);
  for (FaceIndex fi(0); fi < static_cast<uint32_t>(faces.size()); ++fi) {
    for (int i = 0; i < 3; ++i) {
      corner_to_vertex_map_[FirstCorner(fi) + i] = faces[fi][i];
    }
  }
  int num_vertices = -1;
  if (!ComputeOppositeCorners(&num_vertices)) {
    return false;
  }
  if (!BreakNonManifoldEdges()) {
    return false;
  }
  if (!ComputeVertexCorners(num_vertices)) {
    return false;
  }
  return true;
}

bool CornerTable::Reset(int num_faces) {
  return Reset(num_faces, num_faces * 3);
}

bool CornerTable::Reset(int num_faces, int num_vertices) {
  if (num_faces < 0 || num_vertices < 0) {
    return false;
  }
  if (static_cast<unsigned int>(num_faces) >
      std::numeric_limits<CornerIndex::ValueType>::max() / 3) {
    return false;
  }
  corner_to_vertex_map_.assign(num_faces * 3, kInvalidVertexIndex);
  opposite_corners_.assign(num_faces * 3, kInvalidCornerIndex);
  vertex_corners_.reserve(num_vertices);
  valence_cache_.ClearValenceCache();
  valence_cache_.ClearValenceCacheInaccurate();
  return true;
}

bool CornerTable::ComputeOppositeCorners(int *num_vertices) {
  DRACO_DCHECK(GetValenceCache().IsCacheEmpty());
  if (num_vertices == nullptr) {
    return false;
  }
  opposite_corners_.resize(num_corners(), kInvalidCornerIndex);

  // Out implementation for finding opposite corners is based on keeping track
  // of outgoing half-edges for each vertex of the mesh. Half-edges (defined by
  // their opposite corners) are processed one by one and whenever a new
  // half-edge (corner) is processed, we check whether the sink vertex of
  // this half-edge contains its sibling half-edge. If yes, we connect them and
  // remove the sibling half-edge from the sink vertex, otherwise we add the new
  // half-edge to its source vertex.

  // First compute the number of outgoing half-edges (corners) attached to each
  // vertex.
  std::vector<int> num_corners_on_vertices;
  num_corners_on_vertices.reserve(num_corners());
  for (CornerIndex c(0); c < num_corners(); ++c) {
    const VertexIndex v1 = Vertex(c);
    if (v1.value() >= static_cast<int>(num_corners_on_vertices.size())) {
      num_corners_on_vertices.resize(v1.value() + 1, 0);
    }
    // For each corner there is always exactly one outgoing half-edge attached
    // to its vertex.
    num_corners_on_vertices[v1.value()]++;
  }

  // Create a storage for half-edges on each vertex. We store all half-edges in
  // one array, where each entry is identified by the half-edge's sink vertex id
  // and the associated half-edge corner id (corner opposite to the half-edge).
  // Each vertex will be assigned storage for up to
  // |num_corners_on_vertices[vert_id]| half-edges. Unused half-edges are marked
  // with |sink_vert| == kInvalidVertexIndex.
  struct VertexEdgePair {
    VertexEdgePair()
        : sink_vert(kInvalidVertexIndex), edge_corner(kInvalidCornerIndex) {}
    VertexIndex sink_vert;
    CornerIndex edge_corner;
  };
  std::vector<VertexEdgePair> vertex_edges(num_corners(), VertexEdgePair());

  // For each vertex compute the offset (location where the first half-edge
  // entry of a given vertex is going to be stored). This way each vertex is
  // guaranteed to have a non-overlapping storage with respect to the other
  // vertices.
  std::vector<int> vertex_offset(num_corners_on_vertices.size());
  int offset = 0;
  for (size_t i = 0; i < num_corners_on_vertices.size(); ++i) {
    vertex_offset[i] = offset;
    offset += num_corners_on_vertices[i];
  }

  // Now go over the all half-edges (using their opposite corners) and either
  // insert them to the |vertex_edge| array or connect them with existing
  // half-edges.
  for (CornerIndex c(0); c < num_corners(); ++c) {
    const VertexIndex tip_v = Vertex(c);
    const VertexIndex source_v = Vertex(Next(c));
    const VertexIndex sink_v = Vertex(Previous(c));

    const FaceIndex face_index = Face(c);
    if (c == FirstCorner(face_index)) {
      // Check whether the face is degenerated, if so ignore it.
      const VertexIndex v0 = Vertex(c);
      if (v0 == source_v || v0 == sink_v || source_v == sink_v) {
        ++num_degenerated_faces_;
        c += 2;  // Ignore the next two corners of the same face.
        continue;
      }
    }

    CornerIndex opposite_c(kInvalidCornerIndex);
    // The maximum number of half-edges attached to the sink vertex.
    const int num_corners_on_vert = num_corners_on_vertices[sink_v.value()];
    // Where to look for the first half-edge on the sink vertex.
    offset = vertex_offset[sink_v.value()];
    for (int i = 0; i < num_corners_on_vert; ++i, ++offset) {
      const VertexIndex other_v = vertex_edges[offset].sink_vert;
      if (other_v == kInvalidVertexIndex) {
        break;  // No matching half-edge found on the sink vertex.
      }
      if (other_v == source_v) {
        if (tip_v == Vertex(vertex_edges[offset].edge_corner)) {
          continue;  // Don't connect mirrored faces.
        }
        // A matching half-edge was found on the sink vertex. Mark the
        // half-edge's opposite corner.
        opposite_c = vertex_edges[offset].edge_corner;
        // Remove the half-edge from the sink vertex. We remap all subsequent
        // half-edges one slot down.
        // TODO(ostava): This can be optimized a little bit, by remapping only
        // the half-edge on the last valid slot into the deleted half-edge's
        // slot.
        for (int j = i + 1; j < num_corners_on_vert; ++j, ++offset) {
          vertex_edges[offset] = vertex_edges[offset + 1];
          if (vertex_edges[offset].sink_vert == kInvalidVertexIndex) {
            break;  // Unused half-edge reached.
          }
        }
        // Mark the last entry as unused.
        vertex_edges[offset].sink_vert = kInvalidVertexIndex;
        break;
      }
    }
    if (opposite_c == kInvalidCornerIndex) {
      // No opposite corner found. Insert the new edge
      const int num_corners_on_source_vert =
          num_corners_on_vertices[source_v.value()];
      offset = vertex_offset[source_v.value()];
      for (int i = 0; i < num_corners_on_source_vert; ++i, ++offset) {
        // Find the first unused half-edge slot on the source vertex.
        if (vertex_edges[offset].sink_vert == kInvalidVertexIndex) {
          vertex_edges[offset].sink_vert = sink_v;
          vertex_edges[offset].edge_corner = c;
          break;
        }
      }
    } else {
      // Opposite corner found.
      opposite_corners_[c] = opposite_c;
      opposite_corners_[opposite_c] = c;
    }
  }
  *num_vertices = static_cast<int>(num_corners_on_vertices.size());
  return true;
}

bool CornerTable::BreakNonManifoldEdges() {
  // This function detects and breaks non-manifold edges that are caused by
  // folds in 1-ring neighborhood around a vertex. Non-manifold edges can occur
  // when the 1-ring surface around a vertex self-intersects in a common edge.
  // For example imagine a surface around a pivot vertex 0, where the 1-ring
  // is defined by vertices |1, 2, 3, 1, 4|. The surface passes edge <0, 1>
  // twice which would result in a non-manifold edge that needs to be broken.
  // For now all faces connected to these non-manifold edges are disconnected
  // resulting in open boundaries on the mesh. New vertices will be created
  // automatically for each new disjoint patch in the ComputeVertexCorners()
  // method.
  // Note that all other non-manifold edges are implicitly handled by the
  // function ComputeVertexCorners() that automatically creates new vertices
  // on disjoint 1-ring surface patches.

  std::vector<bool> visited_corners(num_corners(), false);
  std::vector<std::pair<VertexIndex, CornerIndex>> sink_vertices;
  bool mesh_connectivity_updated = false;
  do {
    mesh_connectivity_updated = false;
    for (CornerIndex c(0); c < num_corners(); ++c) {
      if (visited_corners[c.value()]) {
        continue;
      }
      sink_vertices.clear();

      // First swing all the way to find the left-most corner connected to the
      // corner's vertex.
      CornerIndex first_c = c;
      CornerIndex current_c = c;
      CornerIndex next_c;
      while (next_c = SwingLeft(current_c),
             next_c != first_c && next_c != kInvalidCornerIndex &&
                 !visited_corners[next_c.value()]) {
        current_c = next_c;
      }

      first_c = current_c;

      // Swing right from the first corner and check if all visited edges
      // are unique.
      do {
        visited_corners[current_c.value()] = true;
        // Each new edge is defined by the pivot vertex (that is the same for
        // all faces) and by the sink vertex (that is the |next| vertex from the
        // currently processed pivot corner. I.e., each edge is uniquely defined
        // by the sink vertex index.
        const CornerIndex sink_c = Next(current_c);
        const VertexIndex sink_v = corner_to_vertex_map_[sink_c];

        // Corner that defines the edge on the face.
        const CornerIndex edge_corner = Previous(current_c);
        bool vertex_connectivity_updated = false;
        // Go over all processed edges (sink vertices). If the current sink
        // vertex has been already encountered before it may indicate a
        // non-manifold edge that needs to be broken.
        for (auto &&attached_sink_vertex : sink_vertices) {
          if (attached_sink_vertex.first == sink_v) {
            // Sink vertex has been already processed.
            const CornerIndex other_edge_corner = attached_sink_vertex.second;
            const CornerIndex opp_edge_corner = Opposite(edge_corner);

            if (opp_edge_corner == other_edge_corner) {
              // We are closing the loop so no need to change the connectivity.
              continue;
            }

            // Break the connectivity on the non-manifold edge.
            // TODO(ostava): It may be possible to reconnect the faces in a way
            // that the final surface would be manifold.
            const CornerIndex opp_other_edge_corner =
                Opposite(other_edge_corner);
            if (opp_edge_corner != kInvalidCornerIndex) {
              SetOppositeCorner(opp_edge_corner, kInvalidCornerIndex);
            }
            if (opp_other_edge_corner != kInvalidCornerIndex) {
              SetOppositeCorner(opp_other_edge_corner, kInvalidCornerIndex);
            }

            SetOppositeCorner(edge_corner, kInvalidCornerIndex);
            SetOppositeCorner(other_edge_corner, kInvalidCornerIndex);

            vertex_connectivity_updated = true;
            break;
          }
        }
        if (vertex_connectivity_updated) {
          // Because of the updated connectivity, not all corners connected to
          // this vertex have been processed and we need to go over them again.
          // TODO(ostava): This can be optimized as we don't really need to
          // iterate over all corners.
          mesh_connectivity_updated = true;
          break;
        }
        // Insert new sink vertex information <sink vertex index, edge corner>.
        std::pair<VertexIndex, CornerIndex> new_sink_vert;
        new_sink_vert.first = corner_to_vertex_map_[Previous(current_c)];
        new_sink_vert.second = sink_c;
        sink_vertices.push_back(new_sink_vert);

        current_c = SwingRight(current_c);
      } while (current_c != first_c && current_c != kInvalidCornerIndex);
    }
  } while (mesh_connectivity_updated);
  return true;
}

bool CornerTable::ComputeVertexCorners(int num_vertices) {
  DRACO_DCHECK(GetValenceCache().IsCacheEmpty());
  num_original_vertices_ = num_vertices;
  vertex_corners_.resize(num_vertices, kInvalidCornerIndex);
  // Arrays for marking visited vertices and corners that allow us to detect
  // non-manifold vertices.
  std::vector<bool> visited_vertices(num_vertices, false);
  std::vector<bool> visited_corners(num_corners(), false);

  for (FaceIndex f(0); f < num_faces(); ++f) {
    const CornerIndex first_face_corner = FirstCorner(f);
    // Check whether the face is degenerated. If so ignore it.
    if (IsDegenerated(f)) {
      continue;
    }

    for (int k = 0; k < 3; ++k) {
      const CornerIndex c = first_face_corner + k;
      if (visited_corners[c.value()]) {
        continue;
      }
      VertexIndex v = corner_to_vertex_map_[c];
      // Note that one vertex maps to many corners, but we just keep track
      // of the vertex which has a boundary on the left if the vertex lies on
      // the boundary. This means that all the related corners can be accessed
      // by iterating over the SwingRight() operator.
      // In case of a vertex inside the mesh, the choice is arbitrary.
      bool is_non_manifold_vertex = false;
      if (visited_vertices[v.value()]) {
        // A visited vertex of an unvisited corner found. Must be a non-manifold
        // vertex.
        // Create a new vertex for it.
        vertex_corners_.push_back(kInvalidCornerIndex);
        non_manifold_vertex_parents_.push_back(v);
        visited_vertices.push_back(false);
        v = VertexIndex(num_vertices++);
        is_non_manifold_vertex = true;
      }
      // Mark the vertex as visited.
      visited_vertices[v.value()] = true;

      // First swing all the way to the left and mark all corners on the way.
      CornerIndex act_c(c);
      while (act_c != kInvalidCornerIndex) {
        visited_corners[act_c.value()] = true;
        // Vertex will eventually point to the left most corner.
        vertex_corners_[v] = act_c;
        if (is_non_manifold_vertex) {
          // Update vertex index in the corresponding face.
          corner_to_vertex_map_[act_c] = v;
        }
        act_c = SwingLeft(act_c);
        if (act_c == c) {
          break;  // Full circle reached.
        }
      }
      if (act_c == kInvalidCornerIndex) {
        // If we have reached an open boundary we need to swing right from the
        // initial corner to mark all corners in the opposite direction.
        act_c = SwingRight(c);
        while (act_c != kInvalidCornerIndex) {
          visited_corners[act_c.value()] = true;
          if (is_non_manifold_vertex) {
            // Update vertex index in the corresponding face.
            corner_to_vertex_map_[act_c] = v;
          }
          act_c = SwingRight(act_c);
        }
      }
    }
  }

  // Count the number of isolated (unprocessed) vertices.
  num_isolated_vertices_ = 0;
  for (bool visited : visited_vertices) {
    if (!visited) {
      ++num_isolated_vertices_;
    }
  }
  return true;
}

bool CornerTable::IsDegenerated(FaceIndex face) const {
  if (face == kInvalidFaceIndex) {
    return true;
  }
  const CornerIndex first_face_corner = FirstCorner(face);
  const VertexIndex v0 = Vertex(first_face_corner);
  const VertexIndex v1 = Vertex(Next(first_face_corner));
  const VertexIndex v2 = Vertex(Previous(first_face_corner));
  if (v0 == v1 || v0 == v2 || v1 == v2) {
    return true;
  }
  return false;
}

int CornerTable::Valence(VertexIndex v) const {
  if (v == kInvalidVertexIndex) {
    return -1;
  }
  return ConfidentValence(v);
}

int CornerTable::ConfidentValence(VertexIndex v) const {
  DRACO_DCHECK_GE(v.value(), 0);
  DRACO_DCHECK_LT(v.value(), num_vertices());
  VertexRingIterator<CornerTable> vi(this, v);
  int valence = 0;
  for (; !vi.End(); vi.Next()) {
    ++valence;
  }
  return valence;
}

void CornerTable::UpdateFaceToVertexMap(const VertexIndex vertex) {
  DRACO_DCHECK(GetValenceCache().IsCacheEmpty());
  VertexCornersIterator<CornerTable> it(this, vertex);
  for (; !it.End(); ++it) {
    const CornerIndex corner = *it;
    corner_to_vertex_map_[corner] = vertex;
  }
}

}  // namespace draco