Welcome to mirror list, hosted at ThFree Co, Russian Federation.

admmpd_embeddedmesh.cpp « src « softbody « extern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 7e677b424554865c01bd951433c2453e5e177461 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
// Copyright Matt Overby 2020.
// Distributed under the MIT License.

#include "admmpd_embeddedmesh.h"
#include "admmpd_geom.h"
#include "admmpd_bvh.h"
#include "admmpd_bvh_traverse.h"

#include <iostream>
#include <fstream>
#include <unordered_map>
#include <set>
#include <numeric>

#include "BLI_task.h" // threading
#include "BLI_assert.h"

namespace admmpd {
using namespace Eigen;

// Gen lattice with subdivision
struct LatticeData {
	//SDF<double> *emb_sdf;
	const Eigen::MatrixXd *V;
	const Eigen::MatrixXi *F;
	std::vector<Vector3d> verts;
	std::vector<Vector4i> tets;
};

static inline void merge_close_vertices(LatticeData *data, double eps=1e-12)
{
	int nv = data->verts.size();
	std::vector<Vector3d> new_v(nv); // new verts
	std::vector<int> idx(nv,0); // index mapping
	std::vector<int> visited(nv,0);
	int count = 0;
	for (int i=0; i<nv; ++i)
	{
		if(!visited[i])
		{
			visited[i] = 1;
			new_v[count] = data->verts[i];
			idx[i] = count;
			Vector3d vi = data->verts[i];
			for (int j = i+1; j<nv; ++j)
			{
				if((data->verts[j]-vi).norm() < eps)
				{
					visited[j] = 1;
					idx[j] = count;
				}
			}
			count++;
		}
	}
	new_v.resize(count);
	data->verts = new_v;
	int nt = data->tets.size();
	for (int i=0; i<nt; ++i)
	{
		for (int j=0; j<4; ++j)
		{
			data->tets[i][j] = idx[data->tets[i][j]];
		}
	}
}

static inline void add_tets_from_box(
	const Vector3d &min,
	const Vector3d &max,
	std::vector<Vector3d> &verts,
	std::vector<Vector4i> &tets)
{
	std::vector<Vector3d> v = {
		// Top plane, clockwise looking down
		max,
		Vector3d(min[0], max[1], max[2]),
		Vector3d(min[0], max[1], min[2]),
		Vector3d(max[0], max[1], min[2]),
		// Bottom plane, clockwise looking down
		Vector3d(max[0], min[1], max[2]),
		Vector3d(min[0], min[1], max[2]),
		min,
		Vector3d(max[0], min[1], min[2])
	};
	// Add vertices and get indices of the box
	std::vector<int> b;
	for(int i=0; i<8; ++i)
	{
		b.emplace_back(verts.size());
		verts.emplace_back(v[i]);
	}
	// From the box, create five new tets
	std::vector<Vector4i> new_tets = {
		Vector4i( b[0], b[5], b[7], b[4] ),
		Vector4i( b[5], b[7], b[2], b[0] ),
		Vector4i( b[5], b[0], b[2], b[1] ),
		Vector4i( b[7], b[2], b[0], b[3] ),
		Vector4i( b[5], b[2], b[7], b[6] )
	};
	for(int i=0; i<5; ++i)
		tets.emplace_back(new_tets[i]);
};

static void gather_octree_tets(
	Octree<double,3>::Node *node,
	const MatrixXd *V, const MatrixXi *F,
	AABBTree<double,3> *face_tree,
	std::vector<Vector3d> &verts,
	std::vector<Vector4i> &tets
	)
{
	if (node == nullptr)
	{
		return;
	}

	bool is_leaf = node->is_leaf();
	bool has_prims = (int)node->prims.size()>0;
	if (is_leaf)
	{
		Vector3d bmin = node->center-Vector3d::Ones()*node->halfwidth;
		Vector3d bmax = node->center+Vector3d::Ones()*node->halfwidth;

		// If we have primitives in the cell,
		// create tets. Otherwise, launch a ray
		// to determine if we are inside or outside
		// the mesh. If we're outside, don't create tets.
		if (has_prims)
		{
			add_tets_from_box(bmin,bmax,verts,tets);
		}
		else
		{
			PointInTriangleMeshTraverse<double> pt_in_mesh(node->center,V,F);
			face_tree->traverse(pt_in_mesh);
			if (pt_in_mesh.output.is_inside())
				add_tets_from_box(bmin,bmax,verts,tets);
		}
		return;
	}
	for (int i=0; i<8; ++i)
	{
		gather_octree_tets(node->children[i],V,F,face_tree,verts,tets);
	}

} // end gather octree tets


bool EmbeddedMesh::generate(
	const Eigen::MatrixXd &V, // embedded verts
	const Eigen::MatrixXi &F, // embedded faces
	bool trim_lattice,
	int subdiv_levels)
{
	emb_faces = F;
	emb_rest_x = V;

	if (F.rows()==0 || V.rows()==0)
		throw std::runtime_error("EmbeddedMesh::generate Error: Missing data");

	LatticeData data;
	data.V = &V;
	data.F = &F;

	Octree<double,3> octree;
	octree.init(&V,&F,subdiv_levels);

	int nf = F.rows();
	std::vector<AlignedBox<double,3> > face_boxes(nf);
	for (int i=0; i<nf; ++i)
	{
		face_boxes[i].extend(V.row(F(i,0)).transpose());
		face_boxes[i].extend(V.row(F(i,1)).transpose());
		face_boxes[i].extend(V.row(F(i,2)).transpose());
	}

	AABBTree<double,3> face_tree;
	face_tree.init(face_boxes);

	Octree<double,3>::Node *root = octree.root().get();
	gather_octree_tets(root,&V,&F,&face_tree,data.verts,data.tets);
	merge_close_vertices(&data);

	int nv = data.verts.size();
	lat_rest_x.resize(nv,3);
	for (int i=0; i<nv; ++i)
	{
		for(int j=0; j<3; ++j){
			lat_rest_x(i,j) = data.verts[i][j];
		}
	}
	int nt = data.tets.size();
	lat_tets.resize(nt,4);
	for(int i=0; i<nt; ++i){
		for(int j=0; j<4; ++j){
			lat_tets(i,j) = data.tets[i][j];
		}
	}

	if (lat_rest_x.rows()==0)
		throw std::runtime_error("EmbeddedMesh::generate Error: Failed to create verts");
	if (lat_tets.rows()==0)
		throw std::runtime_error("EmbeddedMesh::generate Error: Failed to create tets");
	if (emb_faces.rows()==0)
		throw std::runtime_error("EmbeddedMesh::generate Error: Did not set faces");
	if (emb_rest_x.rows()==0)
		throw std::runtime_error("EmbeddedMesh::generate Error: Did not set verts");

	// Now compute the baryweighting for embedded vertices
	bool embed_success = compute_embedding();

	// Export the mesh for funsies
	std::ofstream of("v_lattice.txt"); of << lat_rest_x; of.close();
	std::ofstream of2("t_lattice.txt"); of2 << lat_tets; of2.close();

	return embed_success;

} // end gen lattice

void EmbeddedMesh::compute_masses(
	Eigen::VectorXd *masses_tets, // masses of the lattice verts
	double density_kgm3)
{
	BLI_assert(masses_tets != NULL);
	BLI_assert(density_kgm3 > 0);

	// TODO
	// map the area of the surface to the tet vertices

	// Source: https://github.com/mattoverby/mclscene/blob/master/include/MCL/TetMesh.hpp
	// Computes volume-weighted masses for each vertex
	// density_kgm3 is the unit-volume density
	int nx = lat_rest_x.rows();
	masses_tets->resize(nx);
	masses_tets->setZero();
	int n_tets = lat_tets.rows();
	for (int t=0; t<n_tets; ++t)
	{
		RowVector4i tet = lat_tets.row(t);
		RowVector3d tet_v0 = lat_rest_x.row(tet[0]);
		Matrix3d edges;
		edges.col(0) = lat_rest_x.row(tet[1]) - tet_v0;
		edges.col(1) = lat_rest_x.row(tet[2]) - tet_v0;
		edges.col(2) = lat_rest_x.row(tet[3]) - tet_v0;
		double vol = std::abs((edges).determinant()/6.f);
		double tet_mass = density_kgm3 * vol;
		masses_tets->operator[](tet[0]) += tet_mass / 4.f;
		masses_tets->operator[](tet[1]) += tet_mass / 4.f;
		masses_tets->operator[](tet[2]) += tet_mass / 4.f;
		masses_tets->operator[](tet[3]) += tet_mass / 4.f;
	}

	// Verify masses
	for (int i=0; i<nx; ++i)
	{
		if (masses_tets->operator[](i) <= 0.0)
		{
			printf("**EmbeddedMesh::compute_masses Error: unreferenced vertex\n");
			masses_tets->operator[](i)=1;
		}
	}
} // end compute masses

typedef struct FindTetThreadData {
	AABBTree<double,3> *tree;
	EmbeddedMesh *emb_mesh; // thread sets vtx_to_tet and barys
} FindTetThreadData;

static void parallel_point_in_tet(
	void *__restrict userdata,
	const int i,
	const TaskParallelTLS *__restrict UNUSED(tls))
{
	FindTetThreadData *td = (FindTetThreadData*)userdata;
	Vector3d pt = td->emb_mesh->emb_rest_x.row(i);
	PointInTetMeshTraverse<double> traverser(
			pt,
			&td->emb_mesh->lat_rest_x,
			&td->emb_mesh->lat_tets);
	bool success = td->tree->traverse(traverser);
	int tet_idx = traverser.output.prim;
	if (success && tet_idx >= 0)
	{
		RowVector4i tet = td->emb_mesh->lat_tets.row(tet_idx);
		Vector3d t[4] = {
			td->emb_mesh->lat_rest_x.row(tet[0]),
			td->emb_mesh->lat_rest_x.row(tet[1]),
			td->emb_mesh->lat_rest_x.row(tet[2]),
			td->emb_mesh->lat_rest_x.row(tet[3])
		};
		td->emb_mesh->emb_vtx_to_tet[i] = tet_idx;
		Vector4d b = geom::point_tet_barys(pt,t[0],t[1],t[2],t[3]);
		td->emb_mesh->emb_barys.row(i) = b;
	}
} // end parallel lin solve

bool EmbeddedMesh::compute_embedding()
{
	int nv = emb_rest_x.rows();
	if (nv==0)
	{
		printf("**EmbeddedMesh::compute_embedding: No embedded vertices");
		return false;
	}

	emb_barys.resize(nv,4);
	emb_barys.setOnes();
	emb_vtx_to_tet.resize(nv);
	int nt = lat_tets.rows();

	// BVH tree for finding point-in-tet and computing
	// barycoords for each embedded vertex
	std::vector<AlignedBox<double,3> > tet_aabbs;
	tet_aabbs.resize(nt);
	Vector3d veta = Vector3d::Ones()*1e-12;
	for (int i=0; i<nt; ++i)
	{
		tet_aabbs[i].setEmpty();
		RowVector4i tet = lat_tets.row(i);
		for (int j=0; j<4; ++j)
			tet_aabbs[i].extend(lat_rest_x.row(tet[j]).transpose());

		tet_aabbs[i].extend(tet_aabbs[i].min()-veta);
		tet_aabbs[i].extend(tet_aabbs[i].max()+veta);
	}

	AABBTree<double,3> tree;
	tree.init(tet_aabbs);

	FindTetThreadData thread_data = {
		.tree = &tree,
		.emb_mesh = this
	};
	TaskParallelSettings settings;
	BLI_parallel_range_settings_defaults(&settings);
	BLI_task_parallel_range(0, nv, &thread_data, parallel_point_in_tet, &settings);

	// Double check we set (valid) barycoords for every embedded vertex
	const double eps = 1e-8;
	for (int i=0; i<nv; ++i)
	{
		RowVector4d b = emb_barys.row(i);
		if (b.minCoeff() < -eps)
		{
			printf("**Lattice::generate Error: negative barycoords\n");
			return false;
		}
		if (b.maxCoeff() > 1 + eps)
		{
			printf("**Lattice::generate Error: max barycoord > 1\n");
			return false;
		}
		if (b.sum() > 1 + eps)
		{
			printf("**Lattice::generate Error: barycoord sum > 1\n");
			return false;
		}
	}

	return true;

} // end compute vtx to tet mapping

Eigen::Vector3d EmbeddedMesh::get_mapped_vertex(
	const Eigen::MatrixXd *x_data, int idx) const
{
    int t_idx = emb_vtx_to_tet[idx];
    RowVector4i tet = lat_tets.row(t_idx);
    RowVector4d b = emb_barys.row(idx);
    return Vector3d(
		x_data->row(tet[0]) * b[0] +
		x_data->row(tet[1]) * b[1] +
		x_data->row(tet[2]) * b[2] +
		x_data->row(tet[3]) * b[3]);
}

} // namespace admmpd