Welcome to mirror list, hosted at ThFree Co, Russian Federation.

device_cuda.cpp « device « cycles « intern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 0fbb48cf43157600459d8d40316e9ae9d13d1d08 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
/*
 * Copyright 2011-2013 Blender Foundation
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License
 */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "device.h"
#include "device_intern.h"

#include "buffers.h"

#include "util_cuda.h"
#include "util_debug.h"
#include "util_map.h"
#include "util_opengl.h"
#include "util_path.h"
#include "util_system.h"
#include "util_types.h"
#include "util_time.h"

CCL_NAMESPACE_BEGIN

class CUDADevice : public Device
{
public:
	DedicatedTaskPool task_pool;
	CUdevice cuDevice;
	CUcontext cuContext;
	CUmodule cuModule;
	map<device_ptr, bool> tex_interp_map;
	int cuDevId;
	int cuDevArchitecture;
	bool first_error;
	bool use_texture_storage;

	struct PixelMem {
		GLuint cuPBO;
		CUgraphicsResource cuPBOresource;
		GLuint cuTexId;
		int w, h;
	};

	map<device_ptr, PixelMem> pixel_mem_map;

	CUdeviceptr cuda_device_ptr(device_ptr mem)
	{
		return (CUdeviceptr)mem;
	}

	static const char *cuda_error_string(CUresult result)
	{
		switch(result) {
			case CUDA_SUCCESS: return "No errors";
			case CUDA_ERROR_INVALID_VALUE: return "Invalid value";
			case CUDA_ERROR_OUT_OF_MEMORY: return "Out of memory";
			case CUDA_ERROR_NOT_INITIALIZED: return "Driver not initialized";
			case CUDA_ERROR_DEINITIALIZED: return "Driver deinitialized";

			case CUDA_ERROR_NO_DEVICE: return "No CUDA-capable device available";
			case CUDA_ERROR_INVALID_DEVICE: return "Invalid device";

			case CUDA_ERROR_INVALID_IMAGE: return "Invalid kernel image";
			case CUDA_ERROR_INVALID_CONTEXT: return "Invalid context";
			case CUDA_ERROR_CONTEXT_ALREADY_CURRENT: return "Context already current";
			case CUDA_ERROR_MAP_FAILED: return "Map failed";
			case CUDA_ERROR_UNMAP_FAILED: return "Unmap failed";
			case CUDA_ERROR_ARRAY_IS_MAPPED: return "Array is mapped";
			case CUDA_ERROR_ALREADY_MAPPED: return "Already mapped";
			case CUDA_ERROR_NO_BINARY_FOR_GPU: return "No binary for GPU";
			case CUDA_ERROR_ALREADY_ACQUIRED: return "Already acquired";
			case CUDA_ERROR_NOT_MAPPED: return "Not mapped";
			case CUDA_ERROR_NOT_MAPPED_AS_ARRAY: return "Mapped resource not available for access as an array";
			case CUDA_ERROR_NOT_MAPPED_AS_POINTER: return "Mapped resource not available for access as a pointer";
			case CUDA_ERROR_ECC_UNCORRECTABLE: return "Uncorrectable ECC error detected";
			case CUDA_ERROR_UNSUPPORTED_LIMIT: return "CUlimit not supported by device";

			case CUDA_ERROR_INVALID_SOURCE: return "Invalid source";
			case CUDA_ERROR_FILE_NOT_FOUND: return "File not found";
			case CUDA_ERROR_SHARED_OBJECT_SYMBOL_NOT_FOUND: return "Link to a shared object failed to resolve";
			case CUDA_ERROR_SHARED_OBJECT_INIT_FAILED: return "Shared object initialization failed";

			case CUDA_ERROR_INVALID_HANDLE: return "Invalid handle";

			case CUDA_ERROR_NOT_FOUND: return "Not found";

			case CUDA_ERROR_NOT_READY: return "CUDA not ready";

			case CUDA_ERROR_LAUNCH_FAILED: return "Launch failed";
			case CUDA_ERROR_LAUNCH_OUT_OF_RESOURCES: return "Launch exceeded resources";
			case CUDA_ERROR_LAUNCH_TIMEOUT: return "Launch exceeded timeout";
			case CUDA_ERROR_LAUNCH_INCOMPATIBLE_TEXTURING: return "Launch with incompatible texturing";

			case CUDA_ERROR_UNKNOWN: return "Unknown error";

			default: return "Unknown CUDA error value";
		}
	}

/*#ifdef NDEBUG
#define cuda_abort()
#else
#define cuda_abort() abort()
#endif*/
	void cuda_error_documentation()
	{
		if(first_error) {
			fprintf(stderr, "\nRefer to the Cycles GPU rendering documentation for possible solutions:\n");
			fprintf(stderr, "http://wiki.blender.org/index.php/Doc:2.6/Manual/Render/Cycles/GPU_Rendering\n\n");
			first_error = false;
		}
	}

#define cuda_assert(stmt) \
	{ \
		CUresult result = stmt; \
		\
		if(result != CUDA_SUCCESS) { \
			string message = string_printf("CUDA error: %s in %s", cuda_error_string(result), #stmt); \
			if(error_msg == "") \
				error_msg = message; \
			fprintf(stderr, "%s\n", message.c_str()); \
			/*cuda_abort();*/ \
			cuda_error_documentation(); \
		} \
	}

	bool cuda_error_(CUresult result, const string& stmt)
	{
		if(result == CUDA_SUCCESS)
			return false;

		string message = string_printf("CUDA error at %s: %s", stmt.c_str(), cuda_error_string(result));
		if(error_msg == "")
			error_msg = message;
		fprintf(stderr, "%s\n", message.c_str());
		cuda_error_documentation();
		return true;
	}

#define cuda_error(stmt) cuda_error_(stmt, #stmt)

	void cuda_error_message(const string& message)
	{
		if(error_msg == "")
			error_msg = message;
		fprintf(stderr, "%s\n", message.c_str());
		cuda_error_documentation();
	}

	void cuda_push_context()
	{
		cuda_assert(cuCtxSetCurrent(cuContext))
	}

	void cuda_pop_context()
	{
		cuda_assert(cuCtxSetCurrent(NULL));
	}

    CUDADevice(DeviceInfo& info, Stats &stats, bool background_)
	: Device(info, stats, background_)
	{
		first_error = true;
		background = background_;
		use_texture_storage = true;

		cuDevId = info.num;
		cuDevice = 0;
		cuContext = 0;

		/* intialize */
		if(cuda_error(cuInit(0)))
			return;

		/* setup device and context */
		if(cuda_error(cuDeviceGet(&cuDevice, cuDevId)))
			return;

		CUresult result;

		if(background) {
			result = cuCtxCreate(&cuContext, 0, cuDevice);
		}
		else {
			result = cuGLCtxCreate(&cuContext, 0, cuDevice);

			if(result != CUDA_SUCCESS) {
				result = cuCtxCreate(&cuContext, 0, cuDevice);
				background = true;
			}
		}

		if(cuda_error_(result, "cuCtxCreate"))
			return;

		int major, minor;
		cuDeviceComputeCapability(&major, &minor, cuDevId);
		cuDevArchitecture = major*100 + minor*10;

		/* In order to use full 6GB of memory on Titan cards, use arrays instead
		 * of textures. On earlier cards this seems slower, but on Titan it is
		 * actually slightly faster in tests. */
		use_texture_storage = (cuDevArchitecture < 350);

		cuda_pop_context();
	}

	~CUDADevice()
	{
		task_pool.stop();

		cuda_assert(cuCtxDestroy(cuContext))
	}

	bool support_device(bool experimental)
	{
		int major, minor;
		cuDeviceComputeCapability(&major, &minor, cuDevId);

		if(major < 2) {
			cuda_error_message(string_printf("CUDA device supported only with compute capability 2.0 or up, found %d.%d.", major, minor));
			return false;
		}

		return true;
	}

	string compile_kernel()
	{
		/* compute cubin name */
		int major, minor;
		cuDeviceComputeCapability(&major, &minor, cuDevId);

		/* attempt to use kernel provided with blender */
		string cubin = path_get(string_printf("lib/kernel_sm_%d%d.cubin", major, minor));
		if(path_exists(cubin))
			return cubin;

		/* not found, try to use locally compiled kernel */
		string kernel_path = path_get("kernel");
		string md5 = path_files_md5_hash(kernel_path);

		cubin = string_printf("cycles_kernel_sm%d%d_%s.cubin", major, minor, md5.c_str());
		cubin = path_user_get(path_join("cache", cubin));

		/* if exists already, use it */
		if(path_exists(cubin))
			return cubin;

#ifdef _WIN32
		if(cuHavePrecompiledKernels()) {
			if(major < 2)
				cuda_error_message(string_printf("CUDA device requires compute capability 2.0 or up, found %d.%d. Your GPU is not supported.", major, minor));
			else
				cuda_error_message(string_printf("CUDA binary kernel for this graphics card compute capability (%d.%d) not found.", major, minor));
			return "";
		}
#endif

		/* if not, find CUDA compiler */
		string nvcc = cuCompilerPath();

		if(nvcc == "") {
			cuda_error_message("CUDA nvcc compiler not found. Install CUDA toolkit in default location.");
			return "";
		}

		int cuda_version = cuCompilerVersion();

		if(cuda_version == 0) {
			cuda_error_message("CUDA nvcc compiler version could not be parsed.");
			return "";
		}
		if(cuda_version < 50) {
			printf("Unsupported CUDA version %d.%d detected, you need CUDA 5.0.\n", cuda_version/10, cuda_version%10);
			return "";
		}

		else if(cuda_version > 50)
			printf("CUDA version %d.%d detected, build may succeed but only CUDA 5.0 is officially supported.\n", cuda_version/10, cuda_version%10);

		/* compile */
		string kernel = path_join(kernel_path, "kernel.cu");
		string include = kernel_path;
		const int machine = system_cpu_bits();
		string arch_flags;

		/* CUDA 5.x build flags for different archs */
		if(major == 2) {
			/* sm_2x */
			arch_flags = "--maxrregcount=32 --use_fast_math";
		}
		else if(major == 3) {
			/* sm_3x */
			arch_flags = "--maxrregcount=32 --use_fast_math";
		}

		double starttime = time_dt();
		printf("Compiling CUDA kernel ...\n");

		path_create_directories(cubin);

		string command = string_printf("\"%s\" -arch=sm_%d%d -m%d --cubin \"%s\" "
			"-o \"%s\" --ptxas-options=\"-v\" %s -I\"%s\" -DNVCC -D__KERNEL_CUDA_VERSION__=%d",
			nvcc.c_str(), major, minor, machine, kernel.c_str(), cubin.c_str(), arch_flags.c_str(), include.c_str(), cuda_version);

		printf("%s\n", command.c_str());

		if(system(command.c_str()) == -1) {
			cuda_error_message("Failed to execute compilation command, see console for details.");
			return "";
		}

		/* verify if compilation succeeded */
		if(!path_exists(cubin)) {
			cuda_error_message("CUDA kernel compilation failed, see console for details.");
			return "";
		}

		printf("Kernel compilation finished in %.2lfs.\n", time_dt() - starttime);

		return cubin;
	}

	bool load_kernels(bool experimental)
	{
		/* check if cuda init succeeded */
		if(cuContext == 0)
			return false;
		
		/* check if GPU is supported with current feature set */
		if(!support_device(experimental))
			return false;

		/* get kernel */
		string cubin = compile_kernel();

		if(cubin == "")
			return false;

		/* open module */
		cuda_push_context();

		string cubin_data;
		CUresult result;

		if (path_read_text(cubin, cubin_data))
			result = cuModuleLoadData(&cuModule, cubin_data.c_str());
		else
			result = CUDA_ERROR_FILE_NOT_FOUND;

		if(cuda_error_(result, "cuModuleLoad"))
			cuda_error_message(string_printf("Failed loading CUDA kernel %s.", cubin.c_str()));

		cuda_pop_context();

		return (result == CUDA_SUCCESS);
	}

	void mem_alloc(device_memory& mem, MemoryType type)
	{
		cuda_push_context();
		CUdeviceptr device_pointer;
		size_t size = mem.memory_size();
		cuda_assert(cuMemAlloc(&device_pointer, size))
		mem.device_pointer = (device_ptr)device_pointer;
		stats.mem_alloc(size);
		cuda_pop_context();
	}

	void mem_copy_to(device_memory& mem)
	{
		cuda_push_context();
		if(mem.device_pointer)
			cuda_assert(cuMemcpyHtoD(cuda_device_ptr(mem.device_pointer), (void*)mem.data_pointer, mem.memory_size()))
		cuda_pop_context();
	}

	void mem_copy_from(device_memory& mem, int y, int w, int h, int elem)
	{
		size_t offset = elem*y*w;
		size_t size = elem*w*h;

		cuda_push_context();
		if(mem.device_pointer) {
			cuda_assert(cuMemcpyDtoH((uchar*)mem.data_pointer + offset,
				(CUdeviceptr)((uchar*)mem.device_pointer + offset), size))
		}
		else {
			memset((char*)mem.data_pointer + offset, 0, size);
		}
		cuda_pop_context();
	}

	void mem_zero(device_memory& mem)
	{
		memset((void*)mem.data_pointer, 0, mem.memory_size());

		cuda_push_context();
		if(mem.device_pointer)
			cuda_assert(cuMemsetD8(cuda_device_ptr(mem.device_pointer), 0, mem.memory_size()))
		cuda_pop_context();
	}

	void mem_free(device_memory& mem)
	{
		if(mem.device_pointer) {
			cuda_push_context();
			cuda_assert(cuMemFree(cuda_device_ptr(mem.device_pointer)))
			cuda_pop_context();

			mem.device_pointer = 0;

			stats.mem_free(mem.memory_size());
		}
	}

	void const_copy_to(const char *name, void *host, size_t size)
	{
		CUdeviceptr mem;
		size_t bytes;

		cuda_push_context();
		cuda_assert(cuModuleGetGlobal(&mem, &bytes, cuModule, name))
		//assert(bytes == size);
		cuda_assert(cuMemcpyHtoD(mem, host, size))
		cuda_pop_context();
	}

	void tex_alloc(const char *name, device_memory& mem, bool interpolation, bool periodic)
	{
		/* determine format */
		CUarray_format_enum format;
		size_t dsize = datatype_size(mem.data_type);
		size_t size = mem.memory_size();
		bool use_texture = interpolation || use_texture_storage;

		if(use_texture) {

			switch(mem.data_type) {
				case TYPE_UCHAR: format = CU_AD_FORMAT_UNSIGNED_INT8; break;
				case TYPE_UINT: format = CU_AD_FORMAT_UNSIGNED_INT32; break;
				case TYPE_INT: format = CU_AD_FORMAT_SIGNED_INT32; break;
				case TYPE_FLOAT: format = CU_AD_FORMAT_FLOAT; break;
				default: assert(0); return;
			}

			CUtexref texref = NULL;

			cuda_push_context();
			cuda_assert(cuModuleGetTexRef(&texref, cuModule, name))

			if(!texref) {
				cuda_pop_context();
				return;
			}

			if(interpolation) {
				CUarray handle = NULL;
				CUDA_ARRAY_DESCRIPTOR desc;

				desc.Width = mem.data_width;
				desc.Height = mem.data_height;
				desc.Format = format;
				desc.NumChannels = mem.data_elements;

				cuda_assert(cuArrayCreate(&handle, &desc))

				if(!handle) {
					cuda_pop_context();
					return;
				}

				if(mem.data_height > 1) {
					CUDA_MEMCPY2D param;
					memset(&param, 0, sizeof(param));
					param.dstMemoryType = CU_MEMORYTYPE_ARRAY;
					param.dstArray = handle;
					param.srcMemoryType = CU_MEMORYTYPE_HOST;
					param.srcHost = (void*)mem.data_pointer;
					param.srcPitch = mem.data_width*dsize*mem.data_elements;
					param.WidthInBytes = param.srcPitch;
					param.Height = mem.data_height;

					cuda_assert(cuMemcpy2D(&param))
				}
				else
					cuda_assert(cuMemcpyHtoA(handle, 0, (void*)mem.data_pointer, size))

				cuda_assert(cuTexRefSetArray(texref, handle, CU_TRSA_OVERRIDE_FORMAT))

				cuda_assert(cuTexRefSetFilterMode(texref, CU_TR_FILTER_MODE_LINEAR))
				cuda_assert(cuTexRefSetFlags(texref, CU_TRSF_NORMALIZED_COORDINATES))

				mem.device_pointer = (device_ptr)handle;

				stats.mem_alloc(size);
			}
			else {
				cuda_pop_context();

				mem_alloc(mem, MEM_READ_ONLY);
				mem_copy_to(mem);

				cuda_push_context();

				cuda_assert(cuTexRefSetAddress(NULL, texref, cuda_device_ptr(mem.device_pointer), size))
				cuda_assert(cuTexRefSetFilterMode(texref, CU_TR_FILTER_MODE_POINT))
				cuda_assert(cuTexRefSetFlags(texref, CU_TRSF_READ_AS_INTEGER))
			}

			if(periodic) {
				cuda_assert(cuTexRefSetAddressMode(texref, 0, CU_TR_ADDRESS_MODE_WRAP))
				cuda_assert(cuTexRefSetAddressMode(texref, 1, CU_TR_ADDRESS_MODE_WRAP))
			}
			else {
				cuda_assert(cuTexRefSetAddressMode(texref, 0, CU_TR_ADDRESS_MODE_CLAMP))
				cuda_assert(cuTexRefSetAddressMode(texref, 1, CU_TR_ADDRESS_MODE_CLAMP))
			}
			cuda_assert(cuTexRefSetFormat(texref, format, mem.data_elements))

			cuda_pop_context();
		}
		else {
			mem_alloc(mem, MEM_READ_ONLY);
			mem_copy_to(mem);

			cuda_push_context();

			CUdeviceptr cumem;
			size_t cubytes;

			cuda_assert(cuModuleGetGlobal(&cumem, &cubytes, cuModule, name))

			if(cubytes == 8) {
				/* 64 bit device pointer */
				uint64_t ptr = mem.device_pointer;
				cuda_assert(cuMemcpyHtoD(cumem, (void*)&ptr, cubytes))
			}
			else {
				/* 32 bit device pointer */
				uint32_t ptr = (uint32_t)mem.device_pointer;
				cuda_assert(cuMemcpyHtoD(cumem, (void*)&ptr, cubytes))
			}

			cuda_pop_context();
		}

		tex_interp_map[mem.device_pointer] = interpolation;
	}

	void tex_free(device_memory& mem)
	{
		if(mem.device_pointer) {
			if(tex_interp_map[mem.device_pointer]) {
				cuda_push_context();
				cuArrayDestroy((CUarray)mem.device_pointer);
				cuda_pop_context();

				tex_interp_map.erase(tex_interp_map.find(mem.device_pointer));
				mem.device_pointer = 0;

				stats.mem_free(mem.memory_size());
			}
			else {
				tex_interp_map.erase(tex_interp_map.find(mem.device_pointer));
				mem_free(mem);
			}
		}
	}

	void path_trace(RenderTile& rtile, int sample, bool branched)
	{
		if(have_error())
			return;

		cuda_push_context();

		CUfunction cuPathTrace;
		CUdeviceptr d_buffer = cuda_device_ptr(rtile.buffer);
		CUdeviceptr d_rng_state = cuda_device_ptr(rtile.rng_state);

		/* get kernel function */
		if(branched)
			cuda_assert(cuModuleGetFunction(&cuPathTrace, cuModule, "kernel_cuda_branched_path_trace"))
		else
			cuda_assert(cuModuleGetFunction(&cuPathTrace, cuModule, "kernel_cuda_path_trace"))

		if(have_error())
			return;
	
		/* pass in parameters */
		int offset = 0;
		
		cuda_assert(cuParamSetv(cuPathTrace, offset, &d_buffer, sizeof(d_buffer)))
		offset += sizeof(d_buffer);

		cuda_assert(cuParamSetv(cuPathTrace, offset, &d_rng_state, sizeof(d_rng_state)))
		offset += sizeof(d_rng_state);

		offset = align_up(offset, __alignof(sample));

		cuda_assert(cuParamSeti(cuPathTrace, offset, sample))
		offset += sizeof(sample);

		cuda_assert(cuParamSeti(cuPathTrace, offset, rtile.x))
		offset += sizeof(rtile.x);

		cuda_assert(cuParamSeti(cuPathTrace, offset, rtile.y))
		offset += sizeof(rtile.y);

		cuda_assert(cuParamSeti(cuPathTrace, offset, rtile.w))
		offset += sizeof(rtile.w);

		cuda_assert(cuParamSeti(cuPathTrace, offset, rtile.h))
		offset += sizeof(rtile.h);

		cuda_assert(cuParamSeti(cuPathTrace, offset, rtile.offset))
		offset += sizeof(rtile.offset);

		cuda_assert(cuParamSeti(cuPathTrace, offset, rtile.stride))
		offset += sizeof(rtile.stride);

		cuda_assert(cuParamSetSize(cuPathTrace, offset))

		/* launch kernel: todo find optimal size, cache config for fermi */
		int xthreads = 16;
		int ythreads = 16;
		int xblocks = (rtile.w + xthreads - 1)/xthreads;
		int yblocks = (rtile.h + ythreads - 1)/ythreads;

		cuda_assert(cuFuncSetCacheConfig(cuPathTrace, CU_FUNC_CACHE_PREFER_L1))
		cuda_assert(cuFuncSetBlockShape(cuPathTrace, xthreads, ythreads, 1))
		cuda_assert(cuLaunchGrid(cuPathTrace, xblocks, yblocks))

		cuda_assert(cuCtxSynchronize())

		cuda_pop_context();
	}

	void film_convert(DeviceTask& task, device_ptr buffer, device_ptr rgba_byte, device_ptr rgba_half)
	{
		if(have_error())
			return;

		cuda_push_context();

		CUfunction cuFilmConvert;
		CUdeviceptr d_rgba = map_pixels((rgba_byte)? rgba_byte: rgba_half);
		CUdeviceptr d_buffer = cuda_device_ptr(buffer);

		/* get kernel function */
		if(rgba_half)
			cuda_assert(cuModuleGetFunction(&cuFilmConvert, cuModule, "kernel_cuda_convert_to_half_float"))
		else
			cuda_assert(cuModuleGetFunction(&cuFilmConvert, cuModule, "kernel_cuda_convert_to_byte"))

		/* pass in parameters */
		int offset = 0;

		cuda_assert(cuParamSetv(cuFilmConvert, offset, &d_rgba, sizeof(d_rgba)))
		offset += sizeof(d_rgba);
		
		cuda_assert(cuParamSetv(cuFilmConvert, offset, &d_buffer, sizeof(d_buffer)))
		offset += sizeof(d_buffer);

		float sample_scale = 1.0f/(task.sample + 1);
		offset = align_up(offset, __alignof(sample_scale));

		cuda_assert(cuParamSetf(cuFilmConvert, offset, sample_scale))
		offset += sizeof(sample_scale);

		cuda_assert(cuParamSeti(cuFilmConvert, offset, task.x))
		offset += sizeof(task.x);

		cuda_assert(cuParamSeti(cuFilmConvert, offset, task.y))
		offset += sizeof(task.y);

		cuda_assert(cuParamSeti(cuFilmConvert, offset, task.w))
		offset += sizeof(task.w);

		cuda_assert(cuParamSeti(cuFilmConvert, offset, task.h))
		offset += sizeof(task.h);

		cuda_assert(cuParamSeti(cuFilmConvert, offset, task.offset))
		offset += sizeof(task.offset);

		cuda_assert(cuParamSeti(cuFilmConvert, offset, task.stride))
		offset += sizeof(task.stride);

		cuda_assert(cuParamSetSize(cuFilmConvert, offset))

		/* launch kernel: todo find optimal size, cache config for fermi */
		int xthreads = 16;
		int ythreads = 16;
		int xblocks = (task.w + xthreads - 1)/xthreads;
		int yblocks = (task.h + ythreads - 1)/ythreads;

		cuda_assert(cuFuncSetCacheConfig(cuFilmConvert, CU_FUNC_CACHE_PREFER_L1))
		cuda_assert(cuFuncSetBlockShape(cuFilmConvert, xthreads, ythreads, 1))
		cuda_assert(cuLaunchGrid(cuFilmConvert, xblocks, yblocks))

		unmap_pixels((rgba_byte)? rgba_byte: rgba_half);

		cuda_pop_context();
	}

	void shader(DeviceTask& task)
	{
		if(have_error())
			return;

		cuda_push_context();

		CUfunction cuDisplace;
		CUdeviceptr d_input = cuda_device_ptr(task.shader_input);
		CUdeviceptr d_output = cuda_device_ptr(task.shader_output);

		/* get kernel function */
		cuda_assert(cuModuleGetFunction(&cuDisplace, cuModule, "kernel_cuda_shader"))
		
		/* pass in parameters */
		int offset = 0;
		
		cuda_assert(cuParamSetv(cuDisplace, offset, &d_input, sizeof(d_input)))
		offset += sizeof(d_input);

		cuda_assert(cuParamSetv(cuDisplace, offset, &d_output, sizeof(d_output)))
		offset += sizeof(d_output);

		int shader_eval_type = task.shader_eval_type;
		offset = align_up(offset, __alignof(shader_eval_type));

		cuda_assert(cuParamSeti(cuDisplace, offset, task.shader_eval_type))
		offset += sizeof(task.shader_eval_type);

		cuda_assert(cuParamSeti(cuDisplace, offset, task.shader_x))
		offset += sizeof(task.shader_x);

		cuda_assert(cuParamSetSize(cuDisplace, offset))

		/* launch kernel: todo find optimal size, cache config for fermi */
		int xthreads = 16;
		int xblocks = (task.shader_w + xthreads - 1)/xthreads;

		cuda_assert(cuFuncSetCacheConfig(cuDisplace, CU_FUNC_CACHE_PREFER_L1))
		cuda_assert(cuFuncSetBlockShape(cuDisplace, xthreads, 1, 1))
		cuda_assert(cuLaunchGrid(cuDisplace, xblocks, 1))

		cuda_pop_context();
	}

	CUdeviceptr map_pixels(device_ptr mem)
	{
		if(!background) {
			PixelMem pmem = pixel_mem_map[mem];
			CUdeviceptr buffer;
			
			size_t bytes;
			cuda_assert(cuGraphicsMapResources(1, &pmem.cuPBOresource, 0))
			cuda_assert(cuGraphicsResourceGetMappedPointer(&buffer, &bytes, pmem.cuPBOresource))
			
			return buffer;
		}

		return cuda_device_ptr(mem);
	}

	void unmap_pixels(device_ptr mem)
	{
		if(!background) {
			PixelMem pmem = pixel_mem_map[mem];

			cuda_assert(cuGraphicsUnmapResources(1, &pmem.cuPBOresource, 0))
		}
	}

	void pixels_alloc(device_memory& mem)
	{
		if(!background) {
			PixelMem pmem;

			pmem.w = mem.data_width;
			pmem.h = mem.data_height;

			cuda_push_context();

			glGenBuffers(1, &pmem.cuPBO);
			glBindBuffer(GL_PIXEL_UNPACK_BUFFER, pmem.cuPBO);
			if(mem.data_type == TYPE_HALF)
				glBufferData(GL_PIXEL_UNPACK_BUFFER, pmem.w*pmem.h*sizeof(GLhalf)*4, NULL, GL_DYNAMIC_DRAW);
			else
				glBufferData(GL_PIXEL_UNPACK_BUFFER, pmem.w*pmem.h*sizeof(uint8_t)*4, NULL, GL_DYNAMIC_DRAW);
			
			glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
			
			glGenTextures(1, &pmem.cuTexId);
			glBindTexture(GL_TEXTURE_2D, pmem.cuTexId);
			if(mem.data_type == TYPE_HALF)
				glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA16F_ARB, pmem.w, pmem.h, 0, GL_RGBA, GL_HALF_FLOAT, NULL);
			else
				glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, pmem.w, pmem.h, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);
			glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
			glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
			glBindTexture(GL_TEXTURE_2D, 0);
			
			CUresult result = cuGraphicsGLRegisterBuffer(&pmem.cuPBOresource, pmem.cuPBO, CU_GRAPHICS_MAP_RESOURCE_FLAGS_NONE);

			if(result == CUDA_SUCCESS) {
				cuda_pop_context();

				mem.device_pointer = pmem.cuTexId;
				pixel_mem_map[mem.device_pointer] = pmem;

				stats.mem_alloc(mem.memory_size());

				return;
			}
			else {
				/* failed to register buffer, fallback to no interop */
				glDeleteBuffers(1, &pmem.cuPBO);
				glDeleteTextures(1, &pmem.cuTexId);

				cuda_pop_context();

				background = true;
			}
		}

		Device::pixels_alloc(mem);
	}

	void pixels_copy_from(device_memory& mem, int y, int w, int h)
	{
		if(!background) {
			PixelMem pmem = pixel_mem_map[mem.device_pointer];

			cuda_push_context();

			glBindBuffer(GL_PIXEL_UNPACK_BUFFER, pmem.cuPBO);
			uchar *pixels = (uchar*)glMapBuffer(GL_PIXEL_UNPACK_BUFFER, GL_READ_ONLY);
			size_t offset = sizeof(uchar)*4*y*w;
			memcpy((uchar*)mem.data_pointer + offset, pixels + offset, sizeof(uchar)*4*w*h);
			glUnmapBuffer(GL_PIXEL_UNPACK_BUFFER);
			glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);

			cuda_pop_context();

			return;
		}

		Device::pixels_copy_from(mem, y, w, h);
	}

	void pixels_free(device_memory& mem)
	{
		if(mem.device_pointer) {
			if(!background) {
				PixelMem pmem = pixel_mem_map[mem.device_pointer];

				cuda_push_context();

				cuda_assert(cuGraphicsUnregisterResource(pmem.cuPBOresource))
				glDeleteBuffers(1, &pmem.cuPBO);
				glDeleteTextures(1, &pmem.cuTexId);

				cuda_pop_context();

				pixel_mem_map.erase(pixel_mem_map.find(mem.device_pointer));
				mem.device_pointer = 0;

				stats.mem_free(mem.memory_size());

				return;
			}

			Device::pixels_free(mem);
		}
	}

	void draw_pixels(device_memory& mem, int y, int w, int h, int dy, int width, int height, bool transparent)
	{
		if(!background) {
			PixelMem pmem = pixel_mem_map[mem.device_pointer];

			cuda_push_context();

			/* for multi devices, this assumes the ineffecient method that we allocate
			 * all pixels on the device even though we only render to a subset */
			size_t offset = 4*y*w;

			if(mem.data_type == TYPE_HALF)
				offset *= sizeof(GLhalf);
			else
				offset *= sizeof(uint8_t);

			glBindBufferARB(GL_PIXEL_UNPACK_BUFFER_ARB, pmem.cuPBO);
			glBindTexture(GL_TEXTURE_2D, pmem.cuTexId);
			if(mem.data_type == TYPE_HALF)
				glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, w, h, GL_RGBA, GL_HALF_FLOAT, (void*)offset);
			else
				glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, w, h, GL_RGBA, GL_UNSIGNED_BYTE, (void*)offset);
			glBindBufferARB(GL_PIXEL_UNPACK_BUFFER_ARB, 0);
			
			glEnable(GL_TEXTURE_2D);
			
			if(transparent) {
				glEnable(GL_BLEND);
				glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
			}

			glColor3f(1.0f, 1.0f, 1.0f);

			glPushMatrix();
			glTranslatef(0.0f, (float)dy, 0.0f);
				
			glBegin(GL_QUADS);
			
			glTexCoord2f(0.0f, 0.0f);
			glVertex2f(0.0f, 0.0f);
			glTexCoord2f((float)w/(float)pmem.w, 0.0f);
			glVertex2f((float)width, 0.0f);
			glTexCoord2f((float)w/(float)pmem.w, (float)h/(float)pmem.h);
			glVertex2f((float)width, (float)height);
			glTexCoord2f(0.0f, (float)h/(float)pmem.h);
			glVertex2f(0.0f, (float)height);

			glEnd();

			glPopMatrix();

			if(transparent)
				glDisable(GL_BLEND);
			
			glBindTexture(GL_TEXTURE_2D, 0);
			glDisable(GL_TEXTURE_2D);

			cuda_pop_context();

			return;
		}

		Device::draw_pixels(mem, y, w, h, dy, width, height, transparent);
	}

	void thread_run(DeviceTask *task)
	{
		if(task->type == DeviceTask::PATH_TRACE) {
			RenderTile tile;
			
			bool branched = task->integrator_branched;
			
			/* keep rendering tiles until done */
			while(task->acquire_tile(this, tile)) {
				int start_sample = tile.start_sample;
				int end_sample = tile.start_sample + tile.num_samples;

				for(int sample = start_sample; sample < end_sample; sample++) {
					if (task->get_cancel()) {
						if(task->need_finish_queue == false)
							break;
					}

					path_trace(tile, sample, branched);

					tile.sample = sample + 1;

					task->update_progress(tile);
				}

				task->release_tile(tile);
			}
		}
		else if(task->type == DeviceTask::SHADER) {
			shader(*task);

			cuda_push_context();
			cuda_assert(cuCtxSynchronize())
			cuda_pop_context();
		}
	}

	class CUDADeviceTask : public DeviceTask {
	public:
		CUDADeviceTask(CUDADevice *device, DeviceTask& task)
		: DeviceTask(task)
		{
			run = function_bind(&CUDADevice::thread_run, device, this);
		}
	};

	void task_add(DeviceTask& task)
	{
		if(task.type == DeviceTask::FILM_CONVERT) {
			/* must be done in main thread due to opengl access */
			film_convert(task, task.buffer, task.rgba_byte, task.rgba_half);

			cuda_push_context();
			cuda_assert(cuCtxSynchronize())
			cuda_pop_context();
		}
		else {
			task_pool.push(new CUDADeviceTask(this, task));
		}
	}

	void task_wait()
	{
		task_pool.wait();
	}

	void task_cancel()
	{
		task_pool.cancel();
	}
};

Device *device_cuda_create(DeviceInfo& info, Stats &stats, bool background)
{
	return new CUDADevice(info, stats, background);
}

void device_cuda_info(vector<DeviceInfo>& devices)
{
	CUresult result;
	int count = 0;

	result = cuInit(0);
	if(result != CUDA_SUCCESS) {
		if(result != CUDA_ERROR_NO_DEVICE)
			fprintf(stderr, "CUDA cuInit: %s\n", CUDADevice::cuda_error_string(result));
		return;
	}

	result = cuDeviceGetCount(&count);
	if(result != CUDA_SUCCESS) {
		fprintf(stderr, "CUDA cuDeviceGetCount: %s\n", CUDADevice::cuda_error_string(result));
		return;
	}
	
	vector<DeviceInfo> display_devices;
	
	for(int num = 0; num < count; num++) {
		char name[256];
		int attr;
		
		if(cuDeviceGetName(name, 256, num) != CUDA_SUCCESS)
			continue;

		DeviceInfo info;

		info.type = DEVICE_CUDA;
		info.description = string(name);
		info.id = string_printf("CUDA_%d", num);
		info.num = num;

		int major, minor;
		cuDeviceComputeCapability(&major, &minor, num);
		info.advanced_shading = (major >= 2);
		info.pack_images = false;

		/* if device has a kernel timeout, assume it is used for display */
		if(cuDeviceGetAttribute(&attr, CU_DEVICE_ATTRIBUTE_KERNEL_EXEC_TIMEOUT, num) == CUDA_SUCCESS && attr == 1) {
			info.display_device = true;
			display_devices.push_back(info);
		}
		else
			devices.push_back(info);
	}

	if(!display_devices.empty())
		devices.insert(devices.end(), display_devices.begin(), display_devices.end());
}

CCL_NAMESPACE_END