Welcome to mirror list, hosted at ThFree Co, Russian Federation.

solver_adap.cpp « intern « elbeem « intern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: ef516a578bd1a5741d1b273b6f5a0f1bd55420de (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
/******************************************************************************
 *
 * El'Beem - Free Surface Fluid Simulation with the Lattice Boltzmann Method
 * Copyright 2003-2006 Nils Thuerey
 *
 * Adaptivity functions
 *
 *****************************************************************************/

#include "solver_class.h"
#include "solver_relax.h"
#include "particletracer.h"



/*****************************************************************************/
//! coarse step functions
/*****************************************************************************/



void LbmFsgrSolver::coarseCalculateFluxareas(int lev)
{
	FSGR_FORIJK_BOUNDS(lev) {
		if( RFLAG(lev, i,j,k,mLevel[lev].setCurr) & CFFluid) {
			if( RFLAG(lev+1, i*2,j*2,k*2,mLevel[lev+1].setCurr) & CFGrFromCoarse) {
				LbmFloat totArea = mFsgrCellArea[0]; // for l=0
				for(int l=1; l<this->cDirNum; l++) { 
					int ni=(2*i)+this->dfVecX[l], nj=(2*j)+this->dfVecY[l], nk=(2*k)+this->dfVecZ[l];
					if(RFLAG(lev+1, ni,nj,nk, mLevel[lev+1].setCurr)&
							(CFGrFromCoarse|CFUnused|CFEmpty) //? (CFBnd|CFEmpty|CFGrFromCoarse|CFUnused)
							) { 
						totArea += mFsgrCellArea[l];
					}
				} // l
				QCELL(lev, i,j,k,mLevel[lev].setCurr, dFlux) = totArea;
				//continue;
			} else
			if( RFLAG(lev+1, i*2,j*2,k*2,mLevel[lev+1].setCurr) & (CFEmpty|CFUnused)) {
				QCELL(lev, i,j,k,mLevel[lev].setCurr, dFlux) = 1.0;
				//continue;
			} else {
				QCELL(lev, i,j,k,mLevel[lev].setCurr, dFlux) = 0.0;
			}
		//errMsg("DFINI"," at l"<<lev<<" "<<PRINT_IJK<<" v:"<<QCELL(lev, i,j,k,mLevel[lev].setCurr, dFlux) ); 
		}
	} // } TEST DEBUG
	if(!this->mSilent){ debMsgStd("coarseCalculateFluxareas",DM_MSG,"level "<<lev<<" calculated", 7); }
}
	
void LbmFsgrSolver::coarseAdvance(int lev)
{
	LbmFloat calcCurrentMass = 0.0;
	LbmFloat calcCurrentVolume = 0.0;

	LbmFloat *ccel = NULL;
	LbmFloat *tcel = NULL;
	LbmFloat m[LBM_DFNUM];
	LbmFloat rho, ux, uy, uz, tmp, usqr, lcsmqo;
#if OPT3D==1 
	LbmFloat lcsmqadd, lcsmeq[LBM_DFNUM], lcsmomega;
#endif // OPT3D==true 
	m[0] = tmp = usqr = 0.0;

	coarseCalculateFluxareas(lev);
	// copied from fineAdv.
	CellFlagType *pFlagSrc = &RFLAG(lev, 1,1,getForZMin1(),SRCS(lev));
	CellFlagType *pFlagDst = &RFLAG(lev, 1,1,getForZMin1(),TSET(lev));
	pFlagSrc -= 1;
	pFlagDst -= 1;
	ccel = RACPNT(lev, 1,1,getForZMin1() ,SRCS(lev)); // QTEST
	ccel -= QCELLSTEP;
	tcel = RACPNT(lev, 1,1,getForZMin1() ,TSET(lev)); // QTEST
	tcel -= QCELLSTEP;
	//if(strstr(this->getName().c_str(),"Debug")){ errMsg("DEBUG","DEBUG!!!!!!!!!!!!!!!!!!!!!!!"); }

	for(int k= getForZMin1(); k< getForZMax1(lev); ++k) {
  for(int j=1;j<mLevel[lev].lSizey-1;++j) {
  for(int i=1;i<mLevel[lev].lSizex-1;++i) {
#if FSGR_STRICT_DEBUG==1
		rho = ux = uy = uz = tmp = usqr = -100.0; // DEBUG
#endif
		pFlagSrc++;
		pFlagDst++;
		ccel += QCELLSTEP;
		tcel += QCELLSTEP;

		// from coarse cells without unused nbs are not necessary...! -> remove
		if( ((*pFlagSrc) & (CFGrFromCoarse)) ) { 
			bool invNb = false;
			FORDF1 { if(RFLAG_NB(lev, i, j, k, SRCS(lev), l) & CFUnused) { invNb = true; } }   
			if(!invNb) {
				// WARNING - this modifies source flag array...
				*pFlagSrc = CFFluid|CFGrNorm;
#if ELBEEM_PLUGIN!=1
				errMsg("coarseAdvance","FC2NRM_CHECK Converted CFGrFromCoarse to Norm at "<<lev<<" "<<PRINT_IJK);
#endif // ELBEEM_PLUGIN!=1
				// move to perform coarsening?
			}
		} // */

#if FSGR_STRICT_DEBUG==1
		*pFlagDst = *pFlagSrc; // always set other set...
#else
		*pFlagDst = (*pFlagSrc & (~CFGrCoarseInited)); // always set other set... , remove coarse inited flag
#endif

		// old INTCFCOARSETEST==1
		if((*pFlagSrc) & CFGrFromCoarse) {  // interpolateFineFromCoarse test!
			if(( this->mStepCnt & (1<<(mMaxRefine-lev)) ) ==1) {
				FORDF0 { RAC(tcel,l) = RAC(ccel,l); }
			} else {
				interpolateCellFromCoarse( lev, i,j,k, TSET(lev), 0.0, CFFluid|CFGrFromCoarse, false);
				this->mNumUsedCells++;
			}
			continue; // interpolateFineFromCoarse test!
		} // interpolateFineFromCoarse test! old INTCFCOARSETEST==1

		if( ((*pFlagSrc) & (CFFluid)) ) { 
			ccel = RACPNT(lev, i,j,k ,SRCS(lev)); 
			tcel = RACPNT(lev, i,j,k ,TSET(lev));

			if( ((*pFlagSrc) & (CFGrFromFine)) ) { 
				FORDF0 { RAC(tcel,l) = RAC(ccel,l); }    // always copy...?
				continue; // comes from fine grid
			}
			// also ignore CFGrFromCoarse
			else if( ((*pFlagSrc) & (CFGrFromCoarse)) ) { 
				FORDF0 { RAC(tcel,l) = RAC(ccel,l); }    // always copy...?
				continue; 
			}

			OPTIMIZED_STREAMCOLLIDE;
			*pFlagDst |= CFNoBndFluid; // test?
			calcCurrentVolume += RAC(ccel,dFlux); 
			calcCurrentMass   += RAC(ccel,dFlux)*rho;
			//ebugMarkCell(lev+1, 2*i+1,2*j+1,2*k  );
#if FSGR_STRICT_DEBUG==1
			if(rho<-1.0){ debugMarkCell(lev, i,j,k ); 
				errMsg("INVRHOCELL_CHECK"," l"<<lev<<" "<< PRINT_IJK<<" rho:"<<rho ); 
				CAUSE_PANIC;
			}
#endif // FSGR_STRICT_DEBUG==1
			this->mNumUsedCells++;

		}
	} 
	pFlagSrc+=2; // after x
	pFlagDst+=2; // after x
	ccel += (QCELLSTEP*2);
	tcel += (QCELLSTEP*2);
	} 
	pFlagSrc+= mLevel[lev].lSizex*2; // after y
	pFlagDst+= mLevel[lev].lSizex*2; // after y
	ccel += (QCELLSTEP*mLevel[lev].lSizex*2);
	tcel += (QCELLSTEP*mLevel[lev].lSizex*2);
	} // all cell loop k,j,i
	

	//errMsg("coarseAdvance","level "<<lev<<" stepped from "<<mLevel[lev].setCurr<<" to "<<mLevel[lev].setOther);
	if(!this->mSilent){ errMsg("coarseAdvance","level "<<lev<<" stepped from "<<SRCS(lev)<<" to "<<TSET(lev)); }
	// */

	// update other set
  mLevel[lev].setOther   = mLevel[lev].setCurr;
  mLevel[lev].setCurr   ^= 1;
  mLevel[lev].lsteps++;
  mLevel[lev].lmass   = calcCurrentMass   * mLevel[lev].lcellfactor;
  mLevel[lev].lvolume = calcCurrentVolume * mLevel[lev].lcellfactor;
#if ELBEEM_PLUGIN!=1
  debMsgStd("LbmFsgrSolver::coarseAdvance",DM_NOTIFY, "mass: lev="<<lev<<" m="<<mLevel[lev].lmass<<" c="<<calcCurrentMass<<"  lcf="<< mLevel[lev].lcellfactor, 8 );
  debMsgStd("LbmFsgrSolver::coarseAdvance",DM_NOTIFY, "volume: lev="<<lev<<" v="<<mLevel[lev].lvolume<<" c="<<calcCurrentVolume<<"  lcf="<< mLevel[lev].lcellfactor, 8 );
#endif // ELBEEM_PLUGIN
}

/*****************************************************************************/
//! multi level functions
/*****************************************************************************/


// get dfs from level (lev+1) to (lev) coarse border nodes
void LbmFsgrSolver::coarseRestrictFromFine(int lev)
{
	if((lev<0) || ((lev+1)>mMaxRefine)) return;
#if FSGR_STRICT_DEBUG==1
	// reset all unused cell values to invalid
	int unuCnt = 0;
	for(int k= getForZMin1(); k< getForZMax1(lev); ++k) {
	for(int j=1;j<mLevel[lev].lSizey-1;++j) {
	for(int i=1;i<mLevel[lev].lSizex-1;++i) {
		CellFlagType *pFlagSrc = &RFLAG(lev, i,j,k,mLevel[lev].setCurr);
		if( ((*pFlagSrc) & (CFFluid|CFGrFromFine)) == (CFFluid|CFGrFromFine) ) { 
			FORDF0{	QCELL(lev, i,j,k,mLevel[lev].setCurr, l) = -10000.0;	}
			unuCnt++;
			// set here
		} else if( ((*pFlagSrc) & (CFFluid|CFGrNorm)) == (CFFluid|CFGrNorm) ) { 
			// simulated...
		} else {
			// reset in interpolation
			//errMsg("coarseRestrictFromFine"," reset l"<<lev<<" "<<PRINT_IJK);
		}
		if( ((*pFlagSrc) & (CFEmpty|CFUnused)) ) {  // test, also reset?
			FORDF0{	QCELL(lev, i,j,k,mLevel[lev].setCurr, l) = -10000.0;	}
		} // test
	} } }
	errMsg("coarseRestrictFromFine"," reset l"<<lev<<" fluid|coarseBorder cells: "<<unuCnt);
#endif // FSGR_STRICT_DEBUG==1
	const int srcSet = mLevel[lev+1].setCurr;
	const int dstSet = mLevel[lev].setCurr;

	//restrict
	for(int k= getForZMin1(); k< getForZMax1(lev); ++k) {
	for(int j=1;j<mLevel[lev].lSizey-1;++j) {
	for(int i=1;i<mLevel[lev].lSizex-1;++i) {
		CellFlagType *pFlagSrc = &RFLAG(lev, i,j,k,dstSet);
		if((*pFlagSrc) & (CFFluid)) { 
			if( ((*pFlagSrc) & (CFFluid|CFGrFromFine)) == (CFFluid|CFGrFromFine) ) { 
				// do resctriction
				mNumInterdCells++;
				coarseRestrictCell(lev, i,j,k,srcSet,dstSet);

				this->mNumUsedCells++;
			} // from fine & fluid
			else {
				if(RFLAG(lev+1, 2*i,2*j,2*k,srcSet) & CFGrFromCoarse) {
					RFLAG(lev, i,j,k,dstSet) |= CFGrToFine;
				} else {
					RFLAG(lev, i,j,k,dstSet) &= (~CFGrToFine);
				}
			}
		} // & fluid
	}}}
	if(!this->mSilent){ errMsg("coarseRestrictFromFine"," from l"<<(lev+1)<<",s"<<mLevel[lev+1].setCurr<<" to l"<<lev<<",s"<<mLevel[lev].setCurr); }
}

bool LbmFsgrSolver::adaptGrid(int lev) {
	if((lev<0) || ((lev+1)>mMaxRefine)) return false;
	bool change = false;
	{ // refinement, PASS 1-3

	//bool nbsok;
	// FIXME remove TIMEINTORDER ?
	LbmFloat interTime = 0.0;
	// update curr from other, as streaming afterwards works on curr
	// thus read only from srcSet, modify other
	const int srcSet = mLevel[lev].setOther;
	const int dstSet = mLevel[lev].setCurr;
	const int srcFineSet = mLevel[lev+1].setCurr;
	const bool debugRefinement = false;

	// use //template functions for 2D/3D
			/*if(strstr(this->getName().c_str(),"Debug"))
			if(lev+1==mMaxRefine) { // mixborder
				for(int l=0;((l<this->cDirNum) && (!removeFromFine)); l++) {  // FARBORD
					int ni=2*i+2*this->dfVecX[l], nj=2*j+2*this->dfVecY[l], nk=2*k+2*this->dfVecZ[l];
					if(RFLAG(lev+1, ni,nj,nk, srcFineSet)&CFBnd) { // NEWREFT
						removeFromFine=true;
					}
				}
			} // FARBORD */
	for(int k= getForZMin1(); k< getForZMax1(lev); ++k) {
  for(int j=1;j<mLevel[lev].lSizey-1;++j) {
  for(int i=1;i<mLevel[lev].lSizex-1;++i) {

		if(RFLAG(lev, i,j,k, srcSet) & CFGrFromFine) {
			bool removeFromFine = false;
			const CellFlagType notAllowed = (CFInter|CFGrFromFine|CFGrToFine);
			CellFlagType reqType = CFGrNorm;
			if(lev+1==mMaxRefine) reqType = CFNoBndFluid;
			
			if(   (RFLAG(lev+1, (2*i),(2*j),(2*k), srcFineSet) & reqType) &&
			    (!(RFLAG(lev+1, (2*i),(2*j),(2*k), srcFineSet) & (notAllowed)) )  ){ // ok
			} else {
				removeFromFine=true;
			}

			if(removeFromFine) {
				// dont turn CFGrFromFine above interface cells into CFGrNorm
				//errMsg("performRefinement","Removing CFGrFromFine on lev"<<lev<<" " <<PRINT_IJK<<" srcflag:"<<convertCellFlagType2String(RFLAG(lev+1, (2*i),(2*j),(2*k), srcFineSet)) <<" set:"<<dstSet );
				RFLAG(lev, i,j,k, dstSet) = CFEmpty;
#if FSGR_STRICT_DEBUG==1
				// for interpolation later on during fine grid fixing
				// these cells are still correctly inited
				RFLAG(lev, i,j,k, dstSet) |= CFGrCoarseInited;  // remove later on? FIXME?
#endif // FSGR_STRICT_DEBUG==1
				//RFLAG(lev, i,j,k, mLevel[lev].setOther) = CFEmpty; // FLAGTEST
				if((LBMDIM==2)&&(debugRefinement)) debugMarkCell(lev,i,j,k); 
				change=true;
				mNumFsgrChanges++;
				for(int l=1; l<this->cDirNum; l++) { 
					int ni=i+this->dfVecX[l], nj=j+this->dfVecY[l], nk=k+this->dfVecZ[l];
					//errMsg("performRefinement","On lev:"<<lev<<" check: "<<PRINT_VEC(ni,nj,nk)<<" set:"<<dstSet<<" = "<<convertCellFlagType2String(RFLAG(lev, ni,nj,nk, srcSet)) );
					if( (  RFLAG(lev, ni,nj,nk, srcSet)&CFFluid      ) &&
							(!(RFLAG(lev, ni,nj,nk, srcSet)&CFGrFromFine)) ) { // dont change status of nb. from fine cells
						// tag as inited for debugging, cell contains fluid DFs anyway
						RFLAG(lev, ni,nj,nk, dstSet) = CFFluid|CFGrFromFine|CFGrCoarseInited;
						//errMsg("performRefinement","On lev:"<<lev<<" set to from fine: "<<PRINT_VEC(ni,nj,nk)<<" set:"<<dstSet);
						//if((LBMDIM==2)&&(debugRefinement)) debugMarkCell(lev,ni,nj,nk); 
					}
				} // l 

				// FIXME fix fine level?
			}

			// recheck from fine flag
		}
	}}} // TEST
	// PASS 1 */


		/*if( ((*pFlagSrc) & (CFGrFromCoarse)) ) { 
			bool invNb = false;
			FORDF1 { 
				if(RFLAG_NB(lev, i, j, k, SRCS(lev), l) & CFUnused) { invNb = true; }
			}   
			if(!invNb) {
				*pFlagSrc = CFFluid|CFGrNorm;
				errMsg("coarseAdvance","FC2NRM_CHECK Converted CFGrFromCoarse to Norm at "<<lev<<" "<<PRINT_IJK);
			}
		} // */
	for(int k= getForZMin1(); k< getForZMax1(lev); ++k) { // TEST
  for(int j=1;j<mLevel[lev].lSizey-1;++j) { // TEST
  for(int i=1;i<mLevel[lev].lSizex-1;++i) { // TEST

		// test from coarseAdvance
		// from coarse cells without unused nbs are not necessary...! -> remove

		if(RFLAG(lev, i,j,k, srcSet) & CFGrFromCoarse) {

			// from coarse cells without unused nbs are not necessary...! -> remove
			bool invNb = false;
			bool fluidNb = false;
			for(int l=1; l<this->cDirNum; l++) { 
				if(RFLAG_NB(lev, i, j, k, srcSet, l) & CFUnused) { invNb = true; }
				if(RFLAG_NB(lev, i, j, k, srcSet, l) & (CFGrNorm)) { fluidNb = true; }
			}   
			if(!invNb) {
				// no unused cells around -> calculate normally from now on
				RFLAG(lev, i,j,k, dstSet) = CFFluid|CFGrNorm;
				if((LBMDIM==2)&&(debugRefinement)) debugMarkCell(lev, i, j, k); 
				change=true;
				mNumFsgrChanges++;
			} // from advance 
			if(!fluidNb) {
				// no fluid cells near -> no transfer necessary
				RFLAG(lev, i,j,k, dstSet) = CFUnused;
				//RFLAG(lev, i,j,k, mLevel[lev].setOther) = CFUnused; // FLAGTEST
				if((LBMDIM==2)&&(debugRefinement)) debugMarkCell(lev, i, j, k); 
				change=true;
				mNumFsgrChanges++;
			} // from advance 


			// dont allow double transfer
			// this might require fixing the neighborhood
			if(RFLAG(lev+1, 2*i,2*j,2*k, srcFineSet)&(CFGrFromCoarse)) { 
				// dont turn CFGrFromFine above interface cells into CFGrNorm
				//errMsg("performRefinement","Removing CFGrFromCoarse on lev"<<lev<<" " <<PRINT_IJK<<" due to finer from coarse cell " );
				RFLAG(lev, i,j,k, dstSet) = CFFluid|CFGrNorm;
				if(lev>0) RFLAG(lev-1, i/2,j/2,k/2, mLevel[lev-1].setCurr) &= (~CFGrToFine); // TODO add more of these?
				if((LBMDIM==2)&&(debugRefinement)) debugMarkCell(lev, i, j, k); 
				change=true;
				mNumFsgrChanges++;
				for(int l=1; l<this->cDirNum; l++) { 
					int ni=i+this->dfVecX[l], nj=j+this->dfVecY[l], nk=k+this->dfVecZ[l];
					if(RFLAG(lev, ni,nj,nk, srcSet)&(CFGrNorm)) { //ok
						for(int m=1; m<this->cDirNum; m++) { 
							int mi=  ni +this->dfVecX[m], mj=  nj +this->dfVecY[m], mk=  nk +this->dfVecZ[m];
							if(RFLAG(lev,  mi, mj, mk, srcSet)&CFUnused) {
								// norm cells in neighborhood with unused nbs have to be new border...
								RFLAG(lev, ni,nj,nk, dstSet) = CFFluid|CFGrFromCoarse;
								if((LBMDIM==2)&&(debugRefinement)) debugMarkCell(lev,ni,nj,nk); 
							}
						}
						// these alreay have valid values...
					}
					else if(RFLAG(lev, ni,nj,nk, srcSet)&(CFUnused)) { //ok
						// this should work because we have a valid neighborhood here for now
						interpolateCellFromCoarse(lev,  ni, nj, nk, dstSet, interTime, CFFluid|CFGrFromCoarse, false);
						if((LBMDIM==2)&&(debugRefinement)) debugMarkCell(lev,ni,nj,nk); 
						mNumFsgrChanges++;
					}
				} // l 
			} // double transer

		} // from coarse

	} } }
	// PASS 2 */


	// fix dstSet from fine cells here
	// warning - checks CFGrFromFine on dstset changed before!
	for(int k= getForZMin1(); k< getForZMax1(lev); ++k) { // TEST
  for(int j=1;j<mLevel[lev].lSizey-1;++j) { // TEST
  for(int i=1;i<mLevel[lev].lSizex-1;++i) { // TEST

		//if(RFLAG(lev, i,j,k, srcSet) & CFGrFromFine) {
		if(RFLAG(lev, i,j,k, dstSet) & CFGrFromFine) {
			// modify finer level border
			if((RFLAG(lev+1, 2*i,2*j,2*k, srcFineSet)&(CFGrFromCoarse))) { 
				//errMsg("performRefinement","Removing CFGrFromCoarse on lev"<<(lev+1)<<" from l"<<lev<<" " <<PRINT_IJK );
				CellFlagType setf = CFFluid;
				if(lev+1 < mMaxRefine) setf = CFFluid|CFGrNorm;
				RFLAG(lev+1, 2*i,2*j,2*k, srcFineSet)=setf;
				change=true;
				mNumFsgrChanges++;
				for(int l=1; l<this->cDirNum; l++) { 
					int bi=(2*i)+this->dfVecX[l], bj=(2*j)+this->dfVecY[l], bk=(2*k)+this->dfVecZ[l];
					if(RFLAG(lev+1,  bi, bj, bk, srcFineSet)&(CFGrFromCoarse)) {
						//errMsg("performRefinement","Removing CFGrFromCoarse on lev"<<(lev+1)<<" "<<PRINT_VEC(bi,bj,bk) );
						RFLAG(lev+1,  bi, bj, bk, srcFineSet) = setf;
						if((LBMDIM==2)&&(debugRefinement)) debugMarkCell(lev+1,bi,bj,bk); 
					}
					else if(RFLAG(lev+1,  bi, bj, bk, srcFineSet)&(CFUnused      )) { 
						//errMsg("performRefinement","Removing CFUnused on lev"<<(lev+1)<<" "<<PRINT_VEC(bi,bj,bk) );
						interpolateCellFromCoarse(lev+1,  bi, bj, bk, srcFineSet, interTime, setf, false);
						if((LBMDIM==2)&&(debugRefinement)) debugMarkCell(lev+1,bi,bj,bk); 
						mNumFsgrChanges++;
					}
				}
				for(int l=1; l<this->cDirNum; l++) { 
					int bi=(2*i)+this->dfVecX[l], bj=(2*j)+this->dfVecY[l], bk=(2*k)+this->dfVecZ[l];
					if(   (RFLAG(lev+1,  bi, bj, bk, srcFineSet)&CFFluid       ) &&
							(!(RFLAG(lev+1,  bi, bj, bk, srcFineSet)&CFGrFromCoarse)) ) {
						// all unused nbs now of coarse have to be from coarse
						for(int m=1; m<this->cDirNum; m++) { 
							int mi=  bi +this->dfVecX[m], mj=  bj +this->dfVecY[m], mk=  bk +this->dfVecZ[m];
							if(RFLAG(lev+1,  mi, mj, mk, srcFineSet)&CFUnused) {
								//errMsg("performRefinement","Changing CFUnused on lev"<<(lev+1)<<" "<<PRINT_VEC(mi,mj,mk) );
								interpolateCellFromCoarse(lev+1,  mi, mj, mk, srcFineSet, interTime, CFFluid|CFGrFromCoarse, false);
								if((LBMDIM==2)&&(debugRefinement)) debugMarkCell(lev+1,mi,mj,mk); 
								mNumFsgrChanges++;
							}
						}
						// nbs prepared...
					}
				}
			}
			
		} // convert regions of from fine
	}}} // TEST
	// PASS 3 */

	if(!this->mSilent){ errMsg("performRefinement"," for l"<<lev<<" done ("<<change<<") " ); }
	} // PASS 1-3
	// refinement done

	//LbmFsgrSolver::performCoarsening(int lev) {
	{ // PASS 4,5
	bool nbsok;
	// WARNING
	// now work on modified curr set
	const int srcSet = mLevel[lev].setCurr;
	const int dstlev = lev+1;
	const int dstFineSet = mLevel[dstlev].setCurr;
	const bool debugCoarsening = false;

	// PASS 5 test DEBUG
	/*if(this->mInitDone) {
	for(int k= getForZMin1(); k< getForZMax1(lev); ++k) {
  for(int j=1;j<mLevel[lev].lSizey-1;++j) {
  for(int i=1;i<mLevel[lev].lSizex-1;++i) {
			if(RFLAG(lev, i,j,k, srcSet) & CFEmpty) {
				// check empty -> from fine conversion
				bool changeToFromFine = false;
				const CellFlagType notAllowed = (CFInter|CFGrFromFine|CFGrToFine);
				CellFlagType reqType = CFGrNorm;
				if(lev+1==mMaxRefine) reqType = CFNoBndFluid;
				if(   (RFLAG(lev+1, (2*i),(2*j),(2*k), dstFineSet) & reqType) &&
				    (!(RFLAG(lev+1, (2*i),(2*j),(2*k), dstFineSet) & (notAllowed)) )  ){
					changeToFromFine=true; }
				if(changeToFromFine) {
					change = true;
					mNumFsgrChanges++;
					RFLAG(lev, i,j,k, srcSet) = CFFluid|CFGrFromFine;
					if((LBMDIM==2)&&(debugCoarsening)) debugMarkCell(lev,i,j,k); 
					// same as restr from fine func! not necessary ?!
					// coarseRestrictFromFine part 
					coarseRestrictCell(lev, i,j,k,srcSet, dstFineSet);
				}
			} // only check empty cells
	}}} // TEST!
	} // PASS 5 */

	// use //template functions for 2D/3D
					/*if(strstr(this->getName().c_str(),"Debug"))
					if((nbsok)&&(lev+1==mMaxRefine)) { // mixborder
						for(int l=0;((l<this->cDirNum) && (nbsok)); l++) {  // FARBORD
							int ni=2*i+2*this->dfVecX[l], nj=2*j+2*this->dfVecY[l], nk=2*k+2*this->dfVecZ[l];
							if(RFLAG(lev+1, ni,nj,nk, dstFineSet)&CFBnd) { // NEWREFT
								nbsok=false;
							}
						}
					} // FARBORD */
	for(int k= getForZMin1(); k< getForZMax1(lev); ++k) {
  for(int j=1;j<mLevel[lev].lSizey-1;++j) {
  for(int i=1;i<mLevel[lev].lSizex-1;++i) {

			// from coarse cells without unused nbs are not necessary...! -> remove
			// perform check from coarseAdvance here?
			if(RFLAG(lev, i,j,k, srcSet) & CFGrFromFine) {
				// remove from fine cells now that are completely in fluid
				// FIXME? check that new from fine in performRefinement never get deleted here afterwards?
				// or more general, one cell never changed more than once?
				const CellFlagType notAllowed = (CFInter|CFGrFromFine|CFGrToFine);
				//const CellFlagType notNbAllowed = (CFInter|CFBnd|CFGrFromFine); unused
				CellFlagType reqType = CFGrNorm;
				if(lev+1==mMaxRefine) reqType = CFNoBndFluid;

				nbsok = true;
				for(int l=0; l<this->cDirNum && nbsok; l++) { 
					int ni=(2*i)+this->dfVecX[l], nj=(2*j)+this->dfVecY[l], nk=(2*k)+this->dfVecZ[l];
					if(   (RFLAG(lev+1, ni,nj,nk, dstFineSet) & reqType) &&
							(!(RFLAG(lev+1, ni,nj,nk, dstFineSet) & (notAllowed)) )  ){
						// ok
					} else {
						nbsok=false;
					}
					// FARBORD
				}
				// dont turn CFGrFromFine above interface cells into CFGrNorm
				// now check nbs on same level
				for(int l=1; l<this->cDirNum && nbsok; l++) { 
					int ni=i+this->dfVecX[l], nj=j+this->dfVecY[l], nk=k+this->dfVecZ[l];
					if(RFLAG(lev, ni,nj,nk, srcSet)&(CFFluid)) { //ok
					} else {
						nbsok = false;
					}
				} // l

				if(nbsok) {
					// conversion to coarse fluid cell
					change = true;
					mNumFsgrChanges++;
					RFLAG(lev, i,j,k, srcSet) = CFFluid|CFGrNorm;
					// dfs are already ok...
					//if(this->mInitDone) errMsg("performCoarsening","CFGrFromFine changed to CFGrNorm at lev"<<lev<<" " <<PRINT_IJK );
					if((LBMDIM==2)&&(debugCoarsening)) debugMarkCell(lev,i,j,k); 

					// only check complete cubes
					for(int dx=-1;dx<=1;dx+=2) {
					for(int dy=-1;dy<=1;dy+=2) {
					for(int dz=-1*(LBMDIM&1);dz<=1*(LBMDIM&1);dz+=2) { // 2d/3d
						// check for norm and from coarse, as the coarse level might just have been refined...
						if( 
								// we now the flag of the current cell! ( RFLAG(lev, i   , j   , k   ,  srcSet)&(CFGrNorm)) &&
								( RFLAG(lev, i+dx, j   , k   ,  srcSet)&(CFGrNorm|CFGrFromCoarse)) &&
								( RFLAG(lev, i   , j+dy, k   ,  srcSet)&(CFGrNorm|CFGrFromCoarse)) &&
								( RFLAG(lev, i   , j   , k+dz,  srcSet)&(CFGrNorm|CFGrFromCoarse)) &&

								( RFLAG(lev, i+dx, j+dy, k   ,  srcSet)&(CFGrNorm|CFGrFromCoarse)) &&
								( RFLAG(lev, i+dx, j   , k+dz,  srcSet)&(CFGrNorm|CFGrFromCoarse)) &&
								( RFLAG(lev, i   , j+dy, k+dz,  srcSet)&(CFGrNorm|CFGrFromCoarse)) &&
								( RFLAG(lev, i+dx, j+dy, k+dz,  srcSet)&(CFGrNorm|CFGrFromCoarse)) 
							) {
							// middle source node on higher level
							int dstx = (2*i)+dx;
							int dsty = (2*j)+dy;
							int dstz = (2*k)+dz;

							mNumFsgrChanges++;
							RFLAG(dstlev, dstx,dsty,dstz, dstFineSet) = CFUnused;
							RFLAG(dstlev, dstx,dsty,dstz, mLevel[dstlev].setOther) = CFUnused; // FLAGTEST
							//if(this->mInitDone) errMsg("performCoarsening","CFGrFromFine subcube init center unused set l"<<dstlev<<" at "<<PRINT_VEC(dstx,dsty,dstz) );

							for(int l=1; l<this->cDirNum; l++) { 
								int dstni=dstx+this->dfVecX[l], dstnj=dsty+this->dfVecY[l], dstnk=dstz+this->dfVecZ[l];
								if(RFLAG(dstlev, dstni,dstnj,dstnk, dstFineSet)&(CFFluid)) { 
									RFLAG(dstlev, dstni,dstnj,dstnk, dstFineSet) = CFFluid|CFGrFromCoarse;
								}
								if(RFLAG(dstlev, dstni,dstnj,dstnk, dstFineSet)&(CFInter)) { 
									//if(this->mInitDone) errMsg("performCoarsening","CFGrFromFine subcube init CHECK Warning - deleting interface cell...");
									this->mFixMass += QCELL( dstlev, dstni,dstnj,dstnk, dstFineSet, dMass);
									RFLAG(dstlev, dstni,dstnj,dstnk, dstFineSet) = CFFluid|CFGrFromCoarse;
								}
							} // l

							// again check nb flags of all surrounding cells to see if any from coarse
							// can be convted to unused
							for(int l=1; l<this->cDirNum; l++) { 
								int dstni=dstx+this->dfVecX[l], dstnj=dsty+this->dfVecY[l], dstnk=dstz+this->dfVecZ[l];
								// have to be at least from coarse here...
								//errMsg("performCoarsening","CFGrFromFine subcube init unused check l"<<dstlev<<" at "<<PRINT_VEC(dstni,dstnj,dstnk)<<" "<< convertCellFlagType2String(RFLAG(dstlev, dstni,dstnj,dstnk, dstFineSet)) );
								if(!(RFLAG(dstlev, dstni,dstnj,dstnk, dstFineSet)&(CFUnused) )) { 
									bool delok = true;
									// careful long range here... check domain bounds?
									for(int m=1; m<this->cDirNum; m++) { 										
										int chkni=dstni+this->dfVecX[m], chknj=dstnj+this->dfVecY[m], chknk=dstnk+this->dfVecZ[m];
										if(RFLAG(dstlev, chkni,chknj,chknk, dstFineSet)&(CFUnused|CFGrFromCoarse)) { 
											// this nb cell is ok for deletion
										} else { 
											delok=false; // keep it!
										}
										//errMsg("performCoarsening"," CHECK "<<PRINT_VEC(dstni,dstnj,dstnk)<<" to "<<PRINT_VEC( chkni,chknj,chknk )<<" f:"<< convertCellFlagType2String( RFLAG(dstlev, chkni,chknj,chknk, dstFineSet))<<" nbsok"<<delok );
									}
									//errMsg("performCoarsening","CFGrFromFine subcube init unused check l"<<dstlev<<" at "<<PRINT_VEC(dstni,dstnj,dstnk)<<" ok"<<delok );
									if(delok) {
										mNumFsgrChanges++;
										RFLAG(dstlev, dstni,dstnj,dstnk, dstFineSet) = CFUnused;
										RFLAG(dstlev, dstni,dstnj,dstnk, mLevel[dstlev].setOther) = CFUnused; // FLAGTEST
										if((LBMDIM==2)&&(debugCoarsening)) debugMarkCell(dstlev,dstni,dstnj,dstnk); 
									}
								}
							} // l
							// treat subcube
							//ebugMarkCell(lev,i+dx,j+dy,k+dz); 
							//if(this->mInitDone) errMsg("performCoarsening","CFGrFromFine subcube init, dir:"<<PRINT_VEC(dx,dy,dz) );
						}
					} } }

				}   // ?
			} // convert regions of from fine
	}}} // TEST!
	// PASS 4 */

		// reinit cell area value
		/*if( RFLAG(lev, i,j,k,srcSet) & CFFluid) {
			if( RFLAG(lev+1, i*2,j*2,k*2,dstFineSet) & CFGrFromCoarse) {
				LbmFloat totArea = mFsgrCellArea[0]; // for l=0
				for(int l=1; l<this->cDirNum; l++) { 
					int ni=(2*i)+this->dfVecX[l], nj=(2*j)+this->dfVecY[l], nk=(2*k)+this->dfVecZ[l];
					if(RFLAG(lev+1, ni,nj,nk, dstFineSet)&
							(CFGrFromCoarse|CFUnused|CFEmpty) //? (CFBnd|CFEmpty|CFGrFromCoarse|CFUnused)
							//(CFUnused|CFEmpty) //? (CFBnd|CFEmpty|CFGrFromCoarse|CFUnused)
							) { 
						//LbmFloat area = 0.25; if(this->dfVecX[l]!=0) area *= 0.5; if(this->dfVecY[l]!=0) area *= 0.5; if(this->dfVecZ[l]!=0) area *= 0.5;
						totArea += mFsgrCellArea[l];
					}
				} // l
				QCELL(lev, i,j,k,mLevel[lev].setOther, dFlux) = 
				QCELL(lev, i,j,k,srcSet, dFlux) = totArea;
			} else {
				QCELL(lev, i,j,k,mLevel[lev].setOther, dFlux) = 
				QCELL(lev, i,j,k,srcSet, dFlux) = 1.0;
			}
			//errMsg("DFINI"," at l"<<lev<<" "<<PRINT_IJK<<" v:"<<QCELL(lev, i,j,k,srcSet, dFlux) );
		}
	// */


	// PASS 5 org
	/*if(strstr(this->getName().c_str(),"Debug"))
	if((changeToFromFine)&&(lev+1==mMaxRefine)) { // mixborder
		for(int l=0;((l<this->cDirNum) && (changeToFromFine)); l++) {  // FARBORD
			int ni=2*i+2*this->dfVecX[l], nj=2*j+2*this->dfVecY[l], nk=2*k+2*this->dfVecZ[l];
			if(RFLAG(lev+1, ni,nj,nk, dstFineSet)&CFBnd) { // NEWREFT
				changeToFromFine=false; }
		} 
	}// FARBORD */
	//if(!this->mInitDone) {
	for(int k= getForZMin1(); k< getForZMax1(lev); ++k) {
  for(int j=1;j<mLevel[lev].lSizey-1;++j) {
  for(int i=1;i<mLevel[lev].lSizex-1;++i) {


			if(RFLAG(lev, i,j,k, srcSet) & CFEmpty) {
				// check empty -> from fine conversion
				bool changeToFromFine = false;
				const CellFlagType notAllowed = (CFInter|CFGrFromFine|CFGrToFine);
				CellFlagType reqType = CFGrNorm;
				if(lev+1==mMaxRefine) reqType = CFNoBndFluid;

				if(   (RFLAG(lev+1, (2*i),(2*j),(2*k), dstFineSet) & reqType) &&
				    (!(RFLAG(lev+1, (2*i),(2*j),(2*k), dstFineSet) & (notAllowed)) )  ){
					// DEBUG 
					changeToFromFine=true;
				}

				// FARBORD

				if(changeToFromFine) {
					change = true;
					mNumFsgrChanges++;
					RFLAG(lev, i,j,k, srcSet) = CFFluid|CFGrFromFine;
					if((LBMDIM==2)&&(debugCoarsening)) debugMarkCell(lev,i,j,k); 
					// same as restr from fine func! not necessary ?!
					// coarseRestrictFromFine part 
				}
			} // only check empty cells

	}}} // TEST!
	//} // init done
	// PASS 5 */
	} // coarsening, PASS 4,5

	if(!this->mSilent){ errMsg("adaptGrid"," for l"<<lev<<" done " ); }
	return change;
}

/*****************************************************************************/
//! cell restriction and prolongation
/*****************************************************************************/

void LbmFsgrSolver::coarseRestrictCell(int lev, int i,int j,int k, int srcSet, int dstSet)
{
	LbmFloat *ccel = RACPNT(lev+1, 2*i,2*j,2*k,srcSet);
	LbmFloat *tcel = RACPNT(lev  , i,j,k      ,dstSet);

	LbmFloat rho=0.0, ux=0.0, uy=0.0, uz=0.0;			
	//LbmFloat *ccel = NULL;
	//LbmFloat *tcel = NULL;
#if OPT3D==1 
	LbmFloat m[LBM_DFNUM];
	// for macro add
	LbmFloat usqr;
	//LbmFloat *addfcel, *dstcell;
	LbmFloat lcsmqadd, lcsmqo, lcsmeq[LBM_DFNUM];
	LbmFloat lcsmDstOmega, lcsmSrcOmega, lcsmdfscale;
#else // OPT3D==true 
	LbmFloat df[LBM_DFNUM];
	LbmFloat omegaDst, omegaSrc;
	LbmFloat feq[LBM_DFNUM];
	LbmFloat dfScale = mDfScaleUp;
#endif // OPT3D==true 

#				if OPT3D==0
	// add up weighted dfs
	FORDF0{ df[l] = 0.0;}
	for(int n=0;(n<this->cDirNum); n++) { 
		int ni=2*i+1*this->dfVecX[n], nj=2*j+1*this->dfVecY[n], nk=2*k+1*this->dfVecZ[n];
		ccel = RACPNT(lev+1, ni,nj,nk,srcSet);// CFINTTEST
		const LbmFloat weight = mGaussw[n];
		FORDF0{
			LbmFloat cdf = weight * RAC(ccel,l);
#						if FSGR_STRICT_DEBUG==1
			if( cdf<-1.0 ){ errMsg("INVDFCREST_DFCHECK", PRINT_IJK<<" s"<<dstSet<<" from "<<PRINT_VEC(2*i,2*j,2*k)<<" s"<<srcSet<<" df"<<l<<":"<< df[l]); }
#						endif
			//errMsg("INVDFCREST_DFCHECK", PRINT_IJK<<" s"<<dstSet<<" from "<<PRINT_VEC(2*i,2*j,2*k)<<" s"<<srcSet<<" df"<<l<<":"<< df[l]<<" = "<<cdf<<" , w"<<weight); 
			df[l] += cdf;
		}
	}

	// calc rho etc. from weighted dfs
	rho = ux  = uy  = uz  = 0.0;
	FORDF0{
		LbmFloat cdf = df[l];
		rho += cdf; 
		ux  += (this->dfDvecX[l]*cdf); 
		uy  += (this->dfDvecY[l]*cdf);  
		uz  += (this->dfDvecZ[l]*cdf);  
	}

	FORDF0{ feq[l] = this->getCollideEq(l, rho,ux,uy,uz); }
	if(mLevel[lev  ].lcsmago>0.0) {
		const LbmFloat Qo = this->getLesNoneqTensorCoeff(df,feq);
		omegaDst  = this->getLesOmega(mLevel[lev  ].omega,mLevel[lev  ].lcsmago,Qo);
		omegaSrc = this->getLesOmega(mLevel[lev+1].omega,mLevel[lev+1].lcsmago,Qo);
	} else {
		omegaDst = mLevel[lev+0].omega; /* NEWSMAGOT*/ 
		omegaSrc = mLevel[lev+1].omega;
	}
	dfScale   = (mLevel[lev  ].timestep/mLevel[lev+1].timestep)* (1.0/omegaDst-1.0)/ (1.0/omegaSrc-1.0); // yu
	FORDF0{
		RAC(tcel, l) = feq[l]+ (df[l]-feq[l])*dfScale;
	} 
#				else // OPT3D
	// similar to OPTIMIZED_STREAMCOLLIDE_UNUSED
								
	//rho = ux = uy = uz = 0.0;
	MSRC_C  = CCELG_C(0) ;
	MSRC_N  = CCELG_N(0) ;
	MSRC_S  = CCELG_S(0) ;
	MSRC_E  = CCELG_E(0) ;
	MSRC_W  = CCELG_W(0) ;
	MSRC_T  = CCELG_T(0) ;
	MSRC_B  = CCELG_B(0) ;
	MSRC_NE = CCELG_NE(0);
	MSRC_NW = CCELG_NW(0);
	MSRC_SE = CCELG_SE(0);
	MSRC_SW = CCELG_SW(0);
	MSRC_NT = CCELG_NT(0);
	MSRC_NB = CCELG_NB(0);
	MSRC_ST = CCELG_ST(0);
	MSRC_SB = CCELG_SB(0);
	MSRC_ET = CCELG_ET(0);
	MSRC_EB = CCELG_EB(0);
	MSRC_WT = CCELG_WT(0);
	MSRC_WB = CCELG_WB(0);
	for(int n=1;(n<this->cDirNum); n++) { 
		ccel = RACPNT(lev+1,  2*i+1*this->dfVecX[n], 2*j+1*this->dfVecY[n], 2*k+1*this->dfVecZ[n]  ,srcSet);
		MSRC_C  += CCELG_C(n) ;
		MSRC_N  += CCELG_N(n) ;
		MSRC_S  += CCELG_S(n) ;
		MSRC_E  += CCELG_E(n) ;
		MSRC_W  += CCELG_W(n) ;
		MSRC_T  += CCELG_T(n) ;
		MSRC_B  += CCELG_B(n) ;
		MSRC_NE += CCELG_NE(n);
		MSRC_NW += CCELG_NW(n);
		MSRC_SE += CCELG_SE(n);
		MSRC_SW += CCELG_SW(n);
		MSRC_NT += CCELG_NT(n);
		MSRC_NB += CCELG_NB(n);
		MSRC_ST += CCELG_ST(n);
		MSRC_SB += CCELG_SB(n);
		MSRC_ET += CCELG_ET(n);
		MSRC_EB += CCELG_EB(n);
		MSRC_WT += CCELG_WT(n);
		MSRC_WB += CCELG_WB(n);
	}
	rho = MSRC_C  + MSRC_N + MSRC_S  + MSRC_E + MSRC_W  + MSRC_T  
		+ MSRC_B  + MSRC_NE + MSRC_NW + MSRC_SE + MSRC_SW + MSRC_NT 
		+ MSRC_NB + MSRC_ST + MSRC_SB + MSRC_ET + MSRC_EB + MSRC_WT + MSRC_WB; 
	ux = MSRC_E - MSRC_W + MSRC_NE - MSRC_NW + MSRC_SE - MSRC_SW 
		+ MSRC_ET + MSRC_EB - MSRC_WT - MSRC_WB;  
	uy = MSRC_N - MSRC_S + MSRC_NE + MSRC_NW - MSRC_SE - MSRC_SW 
		+ MSRC_NT + MSRC_NB - MSRC_ST - MSRC_SB;  
	uz = MSRC_T - MSRC_B + MSRC_NT - MSRC_NB + MSRC_ST - MSRC_SB 
		+ MSRC_ET - MSRC_EB + MSRC_WT - MSRC_WB;  
	usqr = 1.5 * (ux*ux + uy*uy + uz*uz);  \
	\
	lcsmeq[dC] = EQC ; \
	COLL_CALCULATE_DFEQ(lcsmeq); \
	COLL_CALCULATE_NONEQTENSOR(lev+0, MSRC_ )\
	COLL_CALCULATE_CSMOMEGAVAL(lev+0, lcsmDstOmega); \
	COLL_CALCULATE_CSMOMEGAVAL(lev+1, lcsmSrcOmega); \
	\
	lcsmdfscale   = (mLevel[lev+0].timestep/mLevel[lev+1].timestep)* (1.0/lcsmDstOmega-1.0)/ (1.0/lcsmSrcOmega-1.0);  \
	RAC(tcel, dC ) = (lcsmeq[dC ] + (MSRC_C -lcsmeq[dC ] )*lcsmdfscale);
	RAC(tcel, dN ) = (lcsmeq[dN ] + (MSRC_N -lcsmeq[dN ] )*lcsmdfscale);
	RAC(tcel, dS ) = (lcsmeq[dS ] + (MSRC_S -lcsmeq[dS ] )*lcsmdfscale);
	RAC(tcel, dE ) = (lcsmeq[dE ] + (MSRC_E -lcsmeq[dE ] )*lcsmdfscale);
	RAC(tcel, dW ) = (lcsmeq[dW ] + (MSRC_W -lcsmeq[dW ] )*lcsmdfscale);
	RAC(tcel, dT ) = (lcsmeq[dT ] + (MSRC_T -lcsmeq[dT ] )*lcsmdfscale);
	RAC(tcel, dB ) = (lcsmeq[dB ] + (MSRC_B -lcsmeq[dB ] )*lcsmdfscale);
	RAC(tcel, dNE) = (lcsmeq[dNE] + (MSRC_NE-lcsmeq[dNE] )*lcsmdfscale);
	RAC(tcel, dNW) = (lcsmeq[dNW] + (MSRC_NW-lcsmeq[dNW] )*lcsmdfscale);
	RAC(tcel, dSE) = (lcsmeq[dSE] + (MSRC_SE-lcsmeq[dSE] )*lcsmdfscale);
	RAC(tcel, dSW) = (lcsmeq[dSW] + (MSRC_SW-lcsmeq[dSW] )*lcsmdfscale);
	RAC(tcel, dNT) = (lcsmeq[dNT] + (MSRC_NT-lcsmeq[dNT] )*lcsmdfscale);
	RAC(tcel, dNB) = (lcsmeq[dNB] + (MSRC_NB-lcsmeq[dNB] )*lcsmdfscale);
	RAC(tcel, dST) = (lcsmeq[dST] + (MSRC_ST-lcsmeq[dST] )*lcsmdfscale);
	RAC(tcel, dSB) = (lcsmeq[dSB] + (MSRC_SB-lcsmeq[dSB] )*lcsmdfscale);
	RAC(tcel, dET) = (lcsmeq[dET] + (MSRC_ET-lcsmeq[dET] )*lcsmdfscale);
	RAC(tcel, dEB) = (lcsmeq[dEB] + (MSRC_EB-lcsmeq[dEB] )*lcsmdfscale);
	RAC(tcel, dWT) = (lcsmeq[dWT] + (MSRC_WT-lcsmeq[dWT] )*lcsmdfscale);
	RAC(tcel, dWB) = (lcsmeq[dWB] + (MSRC_WB-lcsmeq[dWB] )*lcsmdfscale);
#				endif // OPT3D==0
}

void LbmFsgrSolver::interpolateCellFromCoarse(int lev, int i, int j,int k, int dstSet, LbmFloat t, CellFlagType flagSet, bool markNbs) {
	LbmFloat rho=0.0, ux=0.0, uy=0.0, uz=0.0;
	LbmFloat intDf[19] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };

#if OPT3D==1 
	// for macro add
	LbmFloat addDfFacT, addVal, usqr;
	LbmFloat *addfcel, *dstcell;
	LbmFloat lcsmqadd, lcsmqo, lcsmeq[LBM_DFNUM];
	LbmFloat lcsmDstOmega, lcsmSrcOmega, lcsmdfscale;
#endif // OPT3D==true 

	// SET required nbs to from coarse (this might overwrite flag several times)
	// this is not necessary for interpolateFineFromCoarse
	if(markNbs) {
	FORDF1{ 
		int ni=i+this->dfVecX[l], nj=j+this->dfVecY[l], nk=k+this->dfVecZ[l];
		if(RFLAG(lev,ni,nj,nk,dstSet)&CFUnused) {
			// parents have to be inited!
			interpolateCellFromCoarse(lev, ni, nj, nk, dstSet, t, CFFluid|CFGrFromCoarse, false);
		}
	} }

	// change flag of cell to be interpolated
	RFLAG(lev,i,j,k, dstSet) = flagSet;
	mNumInterdCells++;

	// interpolation lines...
	int betx = i&1;
	int bety = j&1;
	int betz = k&1;
	
	if((!betx) && (!bety) && (!betz)) {
		ADD_INT_DFS(lev-1, i/2  ,j/2  ,k/2  , 0.0, 1.0);
	}
	else if(( betx) && (!bety) && (!betz)) {
		ADD_INT_DFS(lev-1, (i/2)  ,(j/2)  ,(k/2)  , t, WO1D1);
		ADD_INT_DFS(lev-1, (i/2)+1,(j/2)  ,(k/2)  , t, WO1D1);
	}
	else if((!betx) && ( bety) && (!betz)) {
		ADD_INT_DFS(lev-1, (i/2)  ,(j/2)  ,(k/2)  , t, WO1D1);
		ADD_INT_DFS(lev-1, (i/2)  ,(j/2)+1,(k/2)  , t, WO1D1);
	}
	else if((!betx) && (!bety) && ( betz)) {
		ADD_INT_DFS(lev-1, (i/2)  ,(j/2)  ,(k/2)  , t, WO1D1);
		ADD_INT_DFS(lev-1, (i/2)  ,(j/2)  ,(k/2)+1, t, WO1D1);
	}
	else if(( betx) && ( bety) && (!betz)) {
		ADD_INT_DFS(lev-1, (i/2)  ,(j/2)  ,(k/2)  , t, WO1D2);
		ADD_INT_DFS(lev-1, (i/2)+1,(j/2)  ,(k/2)  , t, WO1D2);
		ADD_INT_DFS(lev-1, (i/2)  ,(j/2)+1,(k/2)  , t, WO1D2);
		ADD_INT_DFS(lev-1, (i/2)+1,(j/2)+1,(k/2)  , t, WO1D2);
	}
	else if((!betx) && ( bety) && ( betz)) {
		ADD_INT_DFS(lev-1, (i/2)  ,(j/2)  ,(k/2)  , t, WO1D2);
		ADD_INT_DFS(lev-1, (i/2)  ,(j/2)  ,(k/2)+1, t, WO1D2);
		ADD_INT_DFS(lev-1, (i/2)  ,(j/2)+1,(k/2)  , t, WO1D2);
		ADD_INT_DFS(lev-1, (i/2)  ,(j/2)+1,(k/2)+1, t, WO1D2);
	}
	else if(( betx) && (!bety) && ( betz)) {
		ADD_INT_DFS(lev-1, (i/2)  ,(j/2)  ,(k/2)  , t, WO1D2);
		ADD_INT_DFS(lev-1, (i/2)+1,(j/2)  ,(k/2)  , t, WO1D2);
		ADD_INT_DFS(lev-1, (i/2)  ,(j/2)  ,(k/2)+1, t, WO1D2);
		ADD_INT_DFS(lev-1, (i/2)+1,(j/2)  ,(k/2)+1, t, WO1D2);
	}
	else if(( betx) && ( bety) && ( betz)) {
		ADD_INT_DFS(lev-1, (i/2)  ,(j/2)  ,(k/2)  , t, WO1D3);
		ADD_INT_DFS(lev-1, (i/2)+1,(j/2)  ,(k/2)  , t, WO1D3);
		ADD_INT_DFS(lev-1, (i/2)  ,(j/2)  ,(k/2)+1, t, WO1D3);
		ADD_INT_DFS(lev-1, (i/2)+1,(j/2)  ,(k/2)+1, t, WO1D3);
		ADD_INT_DFS(lev-1, (i/2)  ,(j/2)+1,(k/2)  , t, WO1D3);
		ADD_INT_DFS(lev-1, (i/2)+1,(j/2)+1,(k/2)  , t, WO1D3);
		ADD_INT_DFS(lev-1, (i/2)  ,(j/2)+1,(k/2)+1, t, WO1D3);
		ADD_INT_DFS(lev-1, (i/2)+1,(j/2)+1,(k/2)+1, t, WO1D3);
	}
	else {
		CAUSE_PANIC;
		errFatal("interpolateCellFromCoarse","Invalid!?", SIMWORLD_GENERICERROR);	
	}

	IDF_WRITEBACK;
	return;
}



// required globals
extern bool glob_mpactive;
extern int glob_mpnum, glob_mpindex;
#define MPTADAP_INTERV 4

/*****************************************************************************/
/*! change the  size of the LBM time step */
/*****************************************************************************/
void LbmFsgrSolver::adaptTimestep() {
	LbmFloat massTOld=0.0, massTNew=0.0;
	LbmFloat volTOld=0.0, volTNew=0.0;

	bool rescale = false;  // do any rescale at all?
	LbmFloat scaleFac = -1.0; // timestep scaling
	if(mPanic) return;

	LbmFloat levOldOmega[FSGR_MAXNOOFLEVELS];
	LbmFloat levOldStepsize[FSGR_MAXNOOFLEVELS];
	for(int lev=mMaxRefine; lev>=0 ; lev--) {
		levOldOmega[lev] = mLevel[lev].omega;
		levOldStepsize[lev] = mLevel[lev].timestep;
	}

	const LbmFloat reduceFac = 0.8;          // modify time step by 20%, TODO? do multiple times for large changes?
	LbmFloat diffPercent = 0.05; // dont scale if less than 5%
	LbmFloat allowMax = mpParam->getTadapMaxSpeed();  // maximum allowed velocity
	LbmFloat nextmax = mpParam->getSimulationMaxSpeed() + norm(mLevel[mMaxRefine].gravity);

	// sync nextmax
#if LBM_INCLUDE_TESTSOLVERS==1
	if(glob_mpactive) {
		if(mLevel[mMaxRefine].lsteps % MPTADAP_INTERV != MPTADAP_INTERV-1) {
			debMsgStd("LbmFsgrSolver::TAdp",DM_MSG, "mpact:"<<glob_mpactive<<","<<glob_mpindex<<"/"<<glob_mpnum<<" step:"<<mLevel[mMaxRefine].lsteps<<" skipping tadap...",8);
			return;
		}
		nextmax = mrInitTadap(nextmax);
	}
#endif // LBM_INCLUDE_TESTSOLVERS==1

	LbmFloat newdt = mpParam->getTimestep(); // newtr
	if(nextmax > allowMax/reduceFac) {
		mTimeMaxvelStepCnt++; }
	else { mTimeMaxvelStepCnt=0; }
	
	// emergency, or 10 steps with high vel
	if((mTimeMaxvelStepCnt>5) || (nextmax> (1.0/3.0)) || (mForceTimeStepReduce) ) {
		newdt = mpParam->getTimestep() * reduceFac;
	} else {
		if(nextmax<allowMax*reduceFac) {
			newdt = mpParam->getTimestep() / reduceFac;
		}
	} // newtr
	//errMsg("LbmFsgrSolver::adaptTimestep","nextmax="<<nextmax<<" allowMax="<<allowMax<<" fac="<<reduceFac<<" simmaxv="<< mpParam->getSimulationMaxSpeed() );

	bool minCutoff = false;
	LbmFloat desireddt = newdt;
	if(newdt>mpParam->getMaxTimestep()){ newdt = mpParam->getMaxTimestep(); }
	if(newdt<mpParam->getMinTimestep()){ 
		newdt = mpParam->getMinTimestep(); 
		if(nextmax>allowMax/reduceFac){	minCutoff=true; } // only if really large vels...
	}

	LbmFloat dtdiff = fabs(newdt - mpParam->getTimestep());
	if(!mSilent) {
		debMsgStd("LbmFsgrSolver::TAdp",DM_MSG, "new"<<newdt
			<<" max"<<mpParam->getMaxTimestep()<<" min"<<mpParam->getMinTimestep()<<" diff"<<dtdiff
			<<" simt:"<<mSimulationTime<<" minsteps:"<<(mSimulationTime/mMaxTimestep)<<" maxsteps:"<<(mSimulationTime/mMinTimestep)<<
			" olddt"<<levOldStepsize[mMaxRefine]<<" redlock"<<mTimestepReduceLock 
		 	, 10); }

	// in range, and more than X% change?
	//if( newdt <  mpParam->getTimestep() ) // DEBUG
	LbmFloat rhoAvg = mCurrentMass/mCurrentVolume;
	if( (newdt<=mpParam->getMaxTimestep()) && (newdt>=mpParam->getMinTimestep()) 
			&& (dtdiff>(mpParam->getTimestep()*diffPercent)) ) {
		if((newdt>levOldStepsize[mMaxRefine])&&(mTimestepReduceLock)) {
			// wait some more...
			//debMsgNnl("LbmFsgrSolver::TAdp",DM_NOTIFY," Delayed... "<<mTimestepReduceLock<<" ",10);
			debMsgDirect("D");
		} else {
			mpParam->setDesiredTimestep( newdt );
			rescale = true;
			if(!mSilent) {
				debMsgStd("LbmFsgrSolver::TAdp",DM_NOTIFY,"\n\n\n\n",10);
				debMsgStd("LbmFsgrSolver::TAdp",DM_NOTIFY,"Timestep changing: new="<<newdt<<" old="<<mpParam->getTimestep()
						<<" maxSpeed:"<<mpParam->getSimulationMaxSpeed()<<" next:"<<nextmax<<" step:"<<mStepCnt, 10 );
				//debMsgStd("LbmFsgrSolver::TAdp",DM_NOTIFY,"Timestep changing: "<< "rhoAvg="<<rhoAvg<<" cMass="<<mCurrentMass<<" cVol="<<mCurrentVolume,10);
			}
		} // really change dt
	}

	if(mTimestepReduceLock>0) mTimestepReduceLock--;

	
	// forced back and forth switchting (for testing)
	/*const int tadtogInter = 100;
	const double tadtogSwitch = 0.66;
	errMsg("TIMESWITCHTOGGLETEST","warning enabled "<< tadtogSwitch<<","<<tadtogSwitch<<" !!!!!!!!!!!!!!!!!!!");
	if( ((mStepCnt% tadtogInter)== (tadtogInter/4*1)-1) ||
	    ((mStepCnt% tadtogInter)== (tadtogInter/4*2)-1) ){
		rescale = true; minCutoff = false;
		newdt = tadtogSwitch * mpParam->getTimestep();
		mpParam->setDesiredTimestep( newdt );
	} else 
	if( ((mStepCnt% tadtogInter)== (tadtogInter/4*3)-1) ||
	    ((mStepCnt% tadtogInter)== (tadtogInter/4*4)-1) ){
		rescale = true; minCutoff = false;
		newdt = mpParam->getTimestep()/tadtogSwitch ;
		mpParam->setDesiredTimestep( newdt );
	} else {
		rescale = false; minCutoff = false;
	}
	// */

	// test mass rescale

	scaleFac = newdt/mpParam->getTimestep();
	if(rescale) {
		// perform acutal rescaling...
		mTimeMaxvelStepCnt=0; 
		mForceTimeStepReduce = false;

		// FIXME - approximate by averaging, take gravity direction here?
		//mTimestepReduceLock = 4*(mLevel[mMaxRefine].lSizey+mLevel[mMaxRefine].lSizez+mLevel[mMaxRefine].lSizex)/3;
		// use z as gravity direction
		mTimestepReduceLock = 4*mLevel[mMaxRefine].lSizez;

		mTimeSwitchCounts++;
		mpParam->calculateAllMissingValues( mSimulationTime, mSilent );
		recalculateObjectSpeeds();
		// calc omega, force for all levels
		mLastOmega=1e10; mLastGravity=1e10;
		initLevelOmegas();
		if(mpParam->getTimestep()<mMinTimestep) mMinTimestep = mpParam->getTimestep();
		if(mpParam->getTimestep()>mMaxTimestep) mMaxTimestep = mpParam->getTimestep();

		// this might be called during init, before we have any particles
		if(mpParticles) { mpParticles->adaptPartTimestep(scaleFac); }
#if LBM_INCLUDE_TESTSOLVERS==1
		if((mUseTestdata)&&(mpTest)) { 
			mpTest->adaptTimestep(scaleFac, mLevel[mMaxRefine].omega, mLevel[mMaxRefine].timestep, vec2L( mpParam->calculateGravity(mSimulationTime)) ); 
			mpTest->mGrav3d = mLevel[mMaxRefine].gravity;
		}
#endif // LBM_INCLUDE_TESTSOLVERS!=1
	
		for(int lev=mMaxRefine; lev>=0 ; lev--) {
			LbmFloat newSteptime = mLevel[lev].timestep;
			LbmFloat dfScaleFac = (newSteptime/1.0)/(levOldStepsize[lev]/levOldOmega[lev]);

			if(!mSilent) {
				debMsgStd("LbmFsgrSolver::TAdp",DM_NOTIFY,"Level: "<<lev<<" Timestep chlevel: "<<
						" scaleFac="<<dfScaleFac<<" newDt="<<newSteptime<<" newOmega="<<mLevel[lev].omega,10);
			}
			if(lev!=mMaxRefine) coarseCalculateFluxareas(lev);

			int wss = 0, wse = 1;
			// only change currset (necessary for compressed grids, better for non-compr.gr.)
			wss = wse = mLevel[lev].setCurr;
			for(int workSet = wss; workSet<=wse; workSet++) { // COMPRT
					// warning - check sets for higher levels...?
				FSGR_FORIJK1(lev) {
					if( (RFLAG(lev,i,j,k, workSet) & CFBndMoving) ) {
						/*
						// paranoid check - shouldnt be necessary!
						if(QCELL(lev, i, j, k, workSet, dFlux)!=mSimulationTime) {
							errMsg("TTTT","found invalid bnd cell.... removing at "<<PRINT_IJK);
							RFLAG(lev,i,j,k, workSet) = CFInter;
							// init empty zero vel  interface cell...
							initVelocityCell(lev, i,j,k, CFInter, 1.0, 0.01, LbmVec(0.) );
						} else {// */
							for(int l=0; l<cDfNum; l++) {
								QCELL(lev, i, j, k, workSet, l) = QCELL(lev, i, j, k, workSet, l)* scaleFac; 
							}
						//} //  ok
						continue;
					}
					if( 
							(RFLAG(lev,i,j,k, workSet) & CFFluid) || 
							(RFLAG(lev,i,j,k, workSet) & CFInter) ||
							(RFLAG(lev,i,j,k, workSet) & CFGrFromCoarse) || 
							(RFLAG(lev,i,j,k, workSet) & CFGrFromFine) || 
							(RFLAG(lev,i,j,k, workSet) & CFGrNorm) 
							) {
						// these cells have to be scaled...
					} else {
						continue;
					}

					// collide on current set
					LbmFloat rhoOld;
					LbmVec velOld;
					LbmFloat rho, ux,uy,uz;
					rho=0.0; ux =  uy = uz = 0.0;
					for(int l=0; l<cDfNum; l++) {
						LbmFloat m = QCELL(lev, i, j, k, workSet, l); 
						rho += m;
						ux  += (dfDvecX[l]*m);
						uy  += (dfDvecY[l]*m); 
						uz  += (dfDvecZ[l]*m); 
					} 
					rhoOld = rho;
					velOld = LbmVec(ux,uy,uz);

					LbmFloat rhoNew = (rhoOld-rhoAvg)*scaleFac +rhoAvg;
					LbmVec velNew = velOld * scaleFac;

					LbmFloat df[LBM_DFNUM];
					LbmFloat feqOld[LBM_DFNUM];
					LbmFloat feqNew[LBM_DFNUM];
					for(int l=0; l<cDfNum; l++) {
						feqOld[l] = getCollideEq(l,rhoOld, velOld[0],velOld[1],velOld[2] );
						feqNew[l] = getCollideEq(l,rhoNew, velNew[0],velNew[1],velNew[2] );
						df[l] = QCELL(lev, i,j,k,workSet, l);
					}
					const LbmFloat Qo = getLesNoneqTensorCoeff(df,feqOld);
					const LbmFloat oldOmega = getLesOmega(levOldOmega[lev], mLevel[lev].lcsmago,Qo);
					const LbmFloat newOmega = getLesOmega(mLevel[lev].omega,mLevel[lev].lcsmago,Qo);
					//newOmega = mLevel[lev].omega; // FIXME debug test

					//LbmFloat dfScaleFac = (newSteptime/1.0)/(levOldStepsize[lev]/levOldOmega[lev]);
					const LbmFloat dfScale = (newSteptime/newOmega)/(levOldStepsize[lev]/oldOmega);
					//dfScale = dfScaleFac/newOmega;
					
					for(int l=0; l<cDfNum; l++) {
						// org scaling
						//df = eqOld + (df-eqOld)*dfScale; df *= (eqNew/eqOld); // non-eq. scaling, important
						// new scaling
						LbmFloat dfn = feqNew[l] + (df[l]-feqOld[l])*dfScale*feqNew[l]/feqOld[l]; // non-eq. scaling, important
						//df = eqNew + (df-eqOld)*dfScale; // modified ig scaling, no real difference?
						QCELL(lev, i,j,k,workSet, l) = dfn;
					}

					if(RFLAG(lev,i,j,k, workSet) & CFInter) {
						//if(workSet==mLevel[lev].setCurr) 
						LbmFloat area = 1.0;
						if(lev!=mMaxRefine) area = QCELL(lev, i,j,k,workSet, dFlux);
						massTOld += QCELL(lev, i,j,k,workSet, dMass) * area;
						volTOld += QCELL(lev, i,j,k,workSet, dFfrac);

						// wrong... QCELL(i,j,k,workSet, dMass] = (QCELL(i,j,k,workSet, dFfrac]*rhoNew);
						QCELL(lev, i,j,k,workSet, dMass) = (QCELL(lev, i,j,k,workSet, dMass)/rhoOld*rhoNew);
						QCELL(lev, i,j,k,workSet, dFfrac) = (QCELL(lev, i,j,k,workSet, dMass)/rhoNew);

						//if(workSet==mLevel[lev].setCurr) 
						massTNew += QCELL(lev, i,j,k,workSet, dMass);
						volTNew += QCELL(lev, i,j,k,workSet, dFfrac);
					}
					if(RFLAG(lev,i,j,k, workSet) & CFFluid) { // DEBUG
						if(RFLAG(lev,i,j,k, workSet) & (CFGrFromFine|CFGrFromCoarse)) { // DEBUG
							// dont include 
						} else {
							LbmFloat area = 1.0;
							if(lev!=mMaxRefine) area = QCELL(lev, i,j,k,workSet, dFlux) * mLevel[lev].lcellfactor;
							//if(workSet==mLevel[lev].setCurr) 
							massTOld += rhoOld*area;
							//if(workSet==mLevel[lev].setCurr) 
							massTNew += rhoNew*area;
							volTOld += area;
							volTNew += area;
						}
					}

				} // IJK
			} // workSet

		} // lev

		if(!mSilent) {
			debMsgStd("LbmFsgrSolver::step",DM_MSG,"REINIT DONE "<<mStepCnt<<
					" no"<<mTimeSwitchCounts<<" maxdt"<<mMaxTimestep<<
					" mindt"<<mMinTimestep<<" currdt"<<mLevel[mMaxRefine].timestep, 10);
			debMsgStd("LbmFsgrSolver::step",DM_MSG,"REINIT DONE  masst:"<<massTNew<<","<<massTOld<<" org:"<<mCurrentMass<<"; "<<
					" volt:"<<volTNew<<","<<volTOld<<" org:"<<mCurrentVolume, 10);
		} else {
			debMsgStd("\nLbmOptSolver::step",DM_MSG,"Timestep changed by "<< (newdt/levOldStepsize[mMaxRefine]) <<" newDt:"<<newdt
					<<", oldDt:"<<levOldStepsize[mMaxRefine]<<" newOmega:"<<mOmega<<" gStar:"<<mpParam->getCurrentGStar()<<", step:"<<mStepCnt , 10);
		}
	} // rescale?
	//NEWDEBCHECK("tt2");
	
	//errMsg("adaptTimestep","Warning - brute force rescale off!"); minCutoff = false; // DEBUG
	if(minCutoff) {
		errMsg("adaptTimestep","Warning - performing Brute-Force rescale... (sim:"<<mName<<" step:"<<mStepCnt<<" newdt="<<desireddt<<" mindt="<<mpParam->getMinTimestep()<<") " );
		//brute force resacle all the time?

		for(int lev=mMaxRefine; lev>=0 ; lev--) {
		int rescs=0;
		int wss = 0, wse = 1;
#if COMPRESSGRIDS==1
		if(lev== mMaxRefine) wss = wse = mLevel[lev].setCurr;
#endif // COMPRESSGRIDS==1
		for(int workSet = wss; workSet<=wse; workSet++) { // COMPRT
		//for(int workSet = 0; workSet<=1; workSet++) {
		FSGR_FORIJK1(lev) {

			//if( (RFLAG(lev, i,j,k, workSet) & CFFluid) || (RFLAG(lev, i,j,k, workSet) & CFInter) ) {
			if( 
					(RFLAG(lev,i,j,k, workSet) & CFFluid) || 
					(RFLAG(lev,i,j,k, workSet) & CFInter) ||
					(RFLAG(lev,i,j,k, workSet) & CFGrFromCoarse) || 
					(RFLAG(lev,i,j,k, workSet) & CFGrFromFine) || 
					(RFLAG(lev,i,j,k, workSet) & CFGrNorm) 
					) {
				// these cells have to be scaled...
			} else {
				continue;
			}

			// collide on current set
			LbmFloat rho, ux,uy,uz;
			rho=0.0; ux =  uy = uz = 0.0;
			for(int l=0; l<cDfNum; l++) {
				LbmFloat m = QCELL(lev, i, j, k, workSet, l); 
				rho += m;
				ux  += (dfDvecX[l]*m);
				uy  += (dfDvecY[l]*m); 
				uz  += (dfDvecZ[l]*m); 
			} 
#ifndef WIN32
			if (!finite(rho)) {
				errMsg("adaptTimestep","Brute force non-finite rho at"<<PRINT_IJK);  // DEBUG!
				rho = 1.0;
				ux = uy = uz = 0.0;
				QCELL(lev, i, j, k, workSet, dMass) = 1.0;
				QCELL(lev, i, j, k, workSet, dFfrac) = 1.0;
			}
#endif // WIN32

			if( (ux*ux+uy*uy+uz*uz)> (allowMax*allowMax) ) {
				LbmFloat cfac = allowMax/sqrt(ux*ux+uy*uy+uz*uz);
				ux *= cfac;
				uy *= cfac;
				uz *= cfac;
				for(int l=0; l<cDfNum; l++) {
					QCELL(lev, i, j, k, workSet, l) = getCollideEq(l, rho, ux,uy,uz); }
				rescs++;
				debMsgDirect("B");
			}

		} } 
			//if(rescs>0) { errMsg("adaptTimestep","!!!!! Brute force rescaling was necessary !!!!!!!"); }
			debMsgStd("adaptTimestep",DM_MSG,"Brute force rescale done. level:"<<lev<<" rescs:"<<rescs, 1);
		//TTT mNumProblems += rescs; // add to problem display...
		} // lev,set,ijk

	} // try brute force rescale?

	// time adap done...
}