Welcome to mirror list, hosted at ThFree Co, Russian Federation.

IK_CGChainSolver.cpp « intern « iksolver « intern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 6af4df2a35b60e2ba453f955eb04e4f93ba0e1b2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
/**
 * $Id$
 * ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version. The Blender
 * Foundation also sells licenses for use in proprietary software under
 * the Blender License.  See http://www.blender.org/BL/ for information
 * about this.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 *
 * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
 * All rights reserved.
 *
 * The Original Code is: all of this file.
 *
 * Contributor(s): none yet.
 *
 * ***** END GPL/BL DUAL LICENSE BLOCK *****
 */

#include "IK_CGChainSolver.h"

#include "IK_Segment.h"

using namespace std;

	ChainPotential *
ChainPotential::
New(
	IK_Chain &chain
){
	return new ChainPotential(chain);
};



// End effector goal

	void
ChainPotential::
SetGoal(
	const MT_Vector3 goal
){
	m_goal = goal;
};

// Inherited from DifferentiablePotenialFunctionNd
//////////////////////////////////////////////////

	MT_Scalar 
ChainPotential::
Evaluate(
	MT_Scalar x
){

	// evaluate the function at postiion x along the line specified 
	// by the vector pair (m_line_pos,m_line_dir)

	m_temp_pos.newsize(m_line_dir.size());

	TNT::vectorscale(m_temp_pos,m_line_dir,x);
	TNT::vectoradd(m_temp_pos,m_line_pos);

	return Evaluate(m_temp_pos);
}
	
	MT_Scalar
ChainPotential::
Derivative(
	MT_Scalar x
){
	m_temp_pos.newsize(m_line_dir.size());
	m_temp_grad.newsize(m_line_dir.size());

	TNT::vectorscale(m_temp_pos,m_line_dir,x);
	TNT::vectoradd(m_temp_pos,m_line_pos);
	
	Derivative(m_temp_pos,m_temp_grad);

	return TNT::dot_prod(m_temp_grad,m_line_dir);
}
	

	MT_Scalar
ChainPotential::
Evaluate(
	const TNT::Vector<MT_Scalar> &x
){


	// set the vector of angles in the backup chain

	vector<IK_Segment> &segs = m_t_chain.Segments();
	vector<IK_Segment>::iterator seg_it = segs.begin();
	TNT::Vector<MT_Scalar>::const_iterator a_it = x.begin();
#if 0
	TNT::Vector<MT_Scalar>::const_iterator a_end = x.end();
#endif	
	// while we are iterating through the angles and segments
	// we compute the current angle potenial
	MT_Scalar angle_potential = 0;
#if 0
	
	for (; a_it != a_end; ++a_it, ++seg_it) {
		
		MT_Scalar dif = (*a_it - seg_it->CentralAngle());	
		dif *= dif * seg_it->Weight();
		angle_potential += dif;
		seg_it->SetTheta(*a_it);
	}
#endif

	int chain_dof = m_t_chain.DoF();
	int n;

	for (n=0; n < chain_dof;seg_it ++) {
		n += seg_it->SetAngles(a_it + n);
	}

	
	m_t_chain.UpdateGlobalTransformations();
	
	MT_Scalar output = (DistancePotential(m_t_chain.EndEffector(),m_goal) + angle_potential);
	
	return output;
};

	void
ChainPotential::
Derivative(
	const TNT::Vector<MT_Scalar> &x,
	TNT::Vector<MT_Scalar> &dy
){

	m_distance_grad.newsize(3);
	// set the vector of angles in the backup chain

	vector<IK_Segment> & segs = m_t_chain.Segments();
	vector<IK_Segment>::iterator seg_it = segs.begin();
	TNT::Vector<MT_Scalar>::const_iterator a_it = x.begin();
	TNT::Vector<MT_Scalar>::const_iterator a_end = x.end();

	m_angle_grad.newsize(segs.size());
	m_angle_grad = 0;
#if 0
	// FIXME compute angle gradients
	TNT::Vector<MT_Scalar>::iterator ag_it = m_angle_grad.begin();
#endif
	
	const int chain_dof = m_t_chain.DoF();
	for (int n=0; n < chain_dof;seg_it ++) {
		n += seg_it->SetAngles(a_it + n);
	}
	
	m_t_chain.UpdateGlobalTransformations();
	m_t_chain.ComputeJacobian();

	DistanceGradient(m_t_chain.EndEffector(),m_goal);

	// use chain rule for calculating derivative
	// of potenial function
	TNT::matmult(dy,m_t_chain.TransposedJacobian(),m_distance_grad);
#if 0
	TNT::vectoradd(dy,m_angle_grad);
#endif

};


	MT_Scalar
ChainPotential::
DistancePotential(
	MT_Vector3 pos,
	MT_Vector3 goal
) const {
	return (pos - goal).length2();
}

// update m_distance_gradient 

	void
ChainPotential::
DistanceGradient(
	MT_Vector3 pos,
	MT_Vector3 goal
){

	MT_Vector3 output = 2*(pos - goal);
	m_distance_grad.newsize(3);

	m_distance_grad[0] = output.x();
	m_distance_grad[1] = output.y();
	m_distance_grad[2] = output.z();
}


	IK_CGChainSolver *
IK_CGChainSolver::
New(
){
	
	MEM_SmartPtr<IK_CGChainSolver> output (new IK_CGChainSolver());
	MEM_SmartPtr<IK_ConjugateGradientSolver>solver (IK_ConjugateGradientSolver::New());	

	if (output == NULL || solver == NULL) return NULL;

	output->m_grad_solver = solver.Release();
	return output.Release();
};	


	bool
IK_CGChainSolver::
Solve(
	IK_Chain & chain,
	MT_Vector3 new_position,
	MT_Scalar tolerance
){

	// first build a potenial function for the chain

	m_potential = ChainPotential::New(chain);
	if (m_potential == NULL) return false;

	m_potential->SetGoal(new_position);

	// make a TNT::vector to describe the current
	// chain state

	TNT::Vector<MT_Scalar> p;
	p.newsize(chain.DoF());

	TNT::Vector<MT_Scalar>::iterator p_it = p.begin();
	vector<IK_Segment>::const_iterator seg_it = chain.Segments().begin();
	vector<IK_Segment>::const_iterator seg_end = chain.Segments().end();

	for (; seg_it != seg_end; seg_it++) {

		int i;
		int seg_dof = seg_it->DoF();
		for (i=0; i < seg_dof; ++i,++p_it) {
			*p_it = seg_it->ActiveAngle(i);
		}
	}

	// solve the thing
	int iterations(0);
	MT_Scalar return_value(0);

	m_grad_solver->Solve(
		p,
		tolerance,
		iterations,
		return_value,
		m_potential.Ref(),
		100
	);

	// update this chain

	vector<IK_Segment>::iterator out_seg_it = chain.Segments().begin();
	TNT::Vector<MT_Scalar>::const_iterator p_cit = p.begin();

	const int chain_dof = chain.DoF();
	int n;

	for (n=0; n < chain_dof;out_seg_it ++) {
		n += out_seg_it->SetAngles(p_cit + n);
	}
	
	chain.UpdateGlobalTransformations();
	chain.ComputeJacobian();

	return true;
}
	
IK_CGChainSolver::
~IK_CGChainSolver(
){
	//nothing to do
};	


IK_CGChainSolver::
IK_CGChainSolver(
){ 
	//nothing to do;
};