Welcome to mirror list, hosted at ThFree Co, Russian Federation.

IK_QSegment.cpp « intern « iksolver « intern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 2956dd815e236e0b1aaae8fa85bc90ad6892ffad (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
/**
 * $Id$
 * ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version. The Blender
 * Foundation also sells licenses for use in proprietary software under
 * the Blender License.  See http://www.blender.org/BL/ for information
 * about this.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 *
 * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
 * All rights reserved.
 *
 * The Original Code is: all of this file.
 *
 * Contributor(s): none yet.
 *
 * ***** END GPL/BL DUAL LICENSE BLOCK *****
 */

/**

 * $Id$
 * Copyright (C) 2001 NaN Technologies B.V.
 *
 * @author Laurence
 */

#include "IK_QSegment.h"
#include <iostream.h>

IK_QSegment::
IK_QSegment (
	const MT_Point3 tr1,
	const MT_Matrix3x3 A,
	const MT_Scalar length,
	const MT_ExpMap q
) :
	m_length (length),
	m_q (q)	
{	

	m_max_extension = tr1.length() + length;	

	m_transform.setOrigin(tr1);
	m_transform.setBasis(A);

	UpdateLocalTransform();
};
	

IK_QSegment::
IK_QSegment (
) :
	m_length(0),
	m_q (0,0,0),
	m_max_extension(0)
{
	// Intentionally empty
}



// accessors
////////////

// The length of the segment 

const
	MT_Scalar
IK_QSegment::
Length(
) const {
	return m_length;
}

const 
	MT_Scalar
IK_QSegment::
MaxExtension(
) const {
	return m_max_extension;
}
	
// This is the transform from adjacent
// coordinate systems in the chain.

const 
	MT_Transform &
IK_QSegment::
LocalTransform(
) const {
	return m_local_transform;
}

const
	MT_ExpMap &
IK_QSegment::
LocalJointParameter(
) const {
	return m_q;
}

	MT_Transform  
IK_QSegment::
UpdateGlobal(
	const MT_Transform & global
){
	// compute the global transform
	// and the start of the segment in global coordinates.
	
	m_seg_start = global * m_transform.getOrigin();
	m_global_transform = global;

	const MT_Transform new_global = GlobalTransform();
		
	m_seg_end = new_global.getOrigin();

	return new_global;
}

	MT_Transform
IK_QSegment::
GlobalTransform(
) const {
	return m_global_transform * m_local_transform;
}
	

	MT_Transform
IK_QSegment::
UpdateAccumulatedLocal(
	const MT_Transform & acc_local
){
	m_accum_local = acc_local;
	return m_local_transform * m_accum_local;
}		

const 
	MT_Transform &
IK_QSegment::
AccumulatedLocal(
) const {
	return m_accum_local;
}

	MT_Vector3 	
IK_QSegment::
ComputeJacobianColumn(
	int angle
) const {


	MT_Transform translation;
	translation.setIdentity();
	translation.translate(MT_Vector3(0,m_length,0));


	// we can compute the jacobian for one of the
	// angles of this joint by first computing 
	// the partial derivative of the local transform dR/da
	// and then computing
	// dG/da = m_global_transform * dR/da * m_accum_local (0,0,0)

#if 0

	// use euler angles as a test of the matrices and this method.

	MT_Matrix3x3 dRda;

	MT_Quaternion rotx,roty,rotz;

	rotx.setRotation(MT_Vector3(1,0,0),m_q[0]);
	roty.setRotation(MT_Vector3(0,1,0),m_q[1]);
	rotz.setRotation(MT_Vector3(0,0,1),m_q[2]);

	MT_Matrix3x3 rotx_m(rotx);
	MT_Matrix3x3 roty_m(roty);
	MT_Matrix3x3 rotz_m(rotz);
 
	if (angle == 0) {
	
		MT_Scalar ci = cos(m_q[0]);
		MT_Scalar si = sin(m_q[1]);

		dRda = MT_Matrix3x3(
			0,  0,  0,
			0,-si,-ci,
			0, ci,-si
		);

		dRda = rotz_m * roty_m * dRda;
	} else 
	
	if (angle == 1) {
	
		MT_Scalar cj = cos(m_q[1]);
		MT_Scalar sj = sin(m_q[1]);

		dRda = MT_Matrix3x3(
			-sj,  0, cj,
			  0,  0,  0,
			-cj,  0,-sj
		);

		dRda = rotz_m * dRda * rotx_m;
	} else 
	
	if (angle == 2) {
	
		MT_Scalar ck = cos(m_q[2]);
		MT_Scalar sk = sin(m_q[2]);

		dRda = MT_Matrix3x3(
			-sk,-ck,  0,
			 ck,-sk,  0,
			  0,  0,  0
		);

		dRda = dRda * roty_m * rotx_m;
	}
		
	MT_Transform dRda_t(MT_Point3(0,0,0),dRda);

	// convert to 4x4 matrices coz dRda is singular.
	MT_Matrix4x4 dRda_m(dRda_t);
	dRda_m[3][3] = 0;

#else

	// use exponential map derivatives
	MT_Matrix4x4 dRda_m = m_q.partialDerivatives(angle);

#endif	

	
	// Once we have computed the local derivatives we can compute 
	// derivatives of the end effector. 

	// Imagine a chain consisting of 5 segments each with local
	// transformation Li
	// Then the global transformation G is L1 *L2 *L3 *L4 *L5
	// If we want to compute the partial derivatives of this expression
	// w.r.t one of the angles x of L3 we should then compute 
	// dG/dx	= d(L1 *L2 *L3 *L4 *L5)/dx
	//			= L1 *L2 * dL3/dx *L4 *L5
	// but L1 *L2 is the global transformation of the parent of this
	// bone and L4 *L5 is the accumulated local transform of the children
	// of this bone (m_accum_local)
	// so dG/dx = m_global_transform * dL3/dx * m_accum_local
	// 
	// so now we need to compute dL3/dx 
	// L3 = m_transform * rotation(m_q) * translate(0,m_length,0)
	// do using the same procedure we get
	// dL3/dx = m_transform * dR/dx * translate(0,m_length,0)
	// dR/dx is the partial derivative of the exponential map w.r.t 
	// one of it's parameters. This is computed in MT_ExpMap

	MT_Matrix4x4 translation_m (translation);
	MT_Matrix4x4 global_m(m_global_transform);
	MT_Matrix4x4 accum_local_m(m_accum_local);
	MT_Matrix4x4 transform_m(m_transform);

		
	MT_Matrix4x4 dFda_m = global_m * transform_m * dRda_m * translation_m * accum_local_m;

	MT_Vector4 result = dFda_m * MT_Vector4(0,0,0,1);
	return MT_Vector3(result[0],result[1],result[2]);
};



const 	
	MT_Vector3 &
IK_QSegment::
GlobalSegmentStart(
) const{
	return m_seg_start;
}

const 	
	MT_Vector3 &
IK_QSegment::
GlobalSegmentEnd(
) const {
	return m_seg_end;
}


	void
IK_QSegment::
IncrementAngle(
	const MT_Vector3 &dq
){
	m_q.vector() += dq;
	MT_Scalar theta(0);
	m_q.reParameterize(theta);

	UpdateLocalTransform();
}
 

	void
IK_QSegment::
SetAngle(
	const MT_ExpMap &dq
){
	m_q = dq;
	UpdateLocalTransform();
}


	void
IK_QSegment::
UpdateLocalTransform(
){
#if 0

	//use euler angles - test 
	MT_Quaternion rotx,roty,rotz;

	rotx.setRotation(MT_Vector3(1,0,0),m_q[0]);
	roty.setRotation(MT_Vector3(0,1,0),m_q[1]);
	rotz.setRotation(MT_Vector3(0,0,1),m_q[2]);

	MT_Matrix3x3 rotx_m(rotx);
	MT_Matrix3x3 roty_m(roty);
	MT_Matrix3x3 rotz_m(rotz);

	MT_Matrix3x3 rot = rotz_m * roty_m * rotx_m;
#else

	//use exponential map 
	MT_Matrix3x3 rot = m_q.getMatrix();	

	
#endif

	MT_Transform rx(MT_Point3(0,0,0),rot);

	MT_Transform translation;
	translation.setIdentity();
	translation.translate(MT_Vector3(0,m_length,0));

	m_local_transform = m_transform * rx * translation;
};