Welcome to mirror list, hosted at ThFree Co, Russian Federation.

quadriflow_capi.cpp « quadriflow « intern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 4771878200a08df200695ec3765bbf62d1271d7c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
/* SPDX-License-Identifier: GPL-2.0-or-later
 * Copyright 2019 Blender Foundation. All rights reserved. */

#include <unordered_map>

#include "MEM_guardedalloc.h"

#include "config.hpp"
#include "field-math.hpp"
#include "loader.hpp"
#include "optimizer.hpp"
#include "parametrizer.hpp"
#include "quadriflow_capi.hpp"

using namespace qflow;

struct ObjVertex {
  uint32_t p = (uint32_t)-1;
  uint32_t n = (uint32_t)-1;
  uint32_t uv = (uint32_t)-1;

  ObjVertex()
  {
  }

  ObjVertex(uint32_t pi)
  {
    p = pi;
  }

  bool operator==(const ObjVertex &v) const
  {
    return v.p == p && v.n == n && v.uv == uv;
  }
};

struct ObjVertexHash {
  std::size_t operator()(const ObjVertex &v) const
  {
    size_t hash = std::hash<uint32_t>()(v.p);
    hash = hash * 37 + std::hash<uint32_t>()(v.uv);
    hash = hash * 37 + std::hash<uint32_t>()(v.n);
    return hash;
  }
};

typedef std::unordered_map<ObjVertex, uint32_t, ObjVertexHash> VertexMap;

static int check_if_canceled(float progress,
                             void (*update_cb)(void *, float progress, int *cancel),
                             void *update_cb_data)
{
  int cancel = 0;
  update_cb(update_cb_data, progress, &cancel);
  return cancel;
}

void QFLOW_quadriflow_remesh(QuadriflowRemeshData *qrd,
                             void (*update_cb)(void *, float progress, int *cancel),
                             void *update_cb_data)
{
  Parametrizer field;
  VertexMap vertexMap;

  /* Get remeshing parameters. */
  int faces = qrd->target_faces;

  if (qrd->preserve_sharp) {
    field.flag_preserve_sharp = 1;
  }
  if (qrd->preserve_boundary) {
    field.flag_preserve_boundary = 1;
  }
  if (qrd->adaptive_scale) {
    field.flag_adaptive_scale = 1;
  }
  if (qrd->minimum_cost_flow) {
    field.flag_minimum_cost_flow = 1;
  }
  if (qrd->aggresive_sat) {
    field.flag_aggresive_sat = 1;
  }
  if (qrd->rng_seed) {
    field.hierarchy.rng_seed = qrd->rng_seed;
  }

  if (check_if_canceled(0.0f, update_cb, update_cb_data) != 0) {
    return;
  }

  /* Copy mesh to quadriflow data structures. */
  std::vector<Vector3d> positions;
  std::vector<uint32_t> indices;
  std::vector<ObjVertex> vertices;

  for (int i = 0; i < qrd->totverts; i++) {
    Vector3d v(qrd->verts[i * 3], qrd->verts[i * 3 + 1], qrd->verts[i * 3 + 2]);
    positions.push_back(v);
  }

  for (int q = 0; q < qrd->totfaces; q++) {
    Vector3i f(qrd->faces[q * 3], qrd->faces[q * 3 + 1], qrd->faces[q * 3 + 2]);

    ObjVertex tri[6];
    int nVertices = 3;

    tri[0] = ObjVertex(f[0]);
    tri[1] = ObjVertex(f[1]);
    tri[2] = ObjVertex(f[2]);

    for (int i = 0; i < nVertices; ++i) {
      const ObjVertex &v = tri[i];
      VertexMap::const_iterator it = vertexMap.find(v);
      if (it == vertexMap.end()) {
        vertexMap[v] = (uint32_t)vertices.size();
        indices.push_back((uint32_t)vertices.size());
        vertices.push_back(v);
      }
      else {
        indices.push_back(it->second);
      }
    }
  }

  field.F.resize(3, indices.size() / 3);
  memcpy(field.F.data(), indices.data(), sizeof(uint32_t) * indices.size());

  field.V.resize(3, vertices.size());
  for (uint32_t i = 0; i < vertices.size(); ++i) {
    field.V.col(i) = positions.at(vertices[i].p);
  }

  if (check_if_canceled(0.1f, update_cb, update_cb_data)) {
    return;
  }

  /* Start processing the input mesh data */
  field.NormalizeMesh();
  field.Initialize(faces);

  if (check_if_canceled(0.2f, update_cb, update_cb_data)) {
    return;
  }

  /* Setup mesh boundary constraints if needed */
  if (field.flag_preserve_boundary) {
    Hierarchy &mRes = field.hierarchy;
    mRes.clearConstraints();
    for (uint32_t i = 0; i < 3 * mRes.mF.cols(); ++i) {
      if (mRes.mE2E[i] == -1) {
        uint32_t i0 = mRes.mF(i % 3, i / 3);
        uint32_t i1 = mRes.mF((i + 1) % 3, i / 3);
        Vector3d p0 = mRes.mV[0].col(i0), p1 = mRes.mV[0].col(i1);
        Vector3d edge = p1 - p0;
        if (edge.squaredNorm() > 0) {
          edge.normalize();
          mRes.mCO[0].col(i0) = p0;
          mRes.mCO[0].col(i1) = p1;
          mRes.mCQ[0].col(i0) = mRes.mCQ[0].col(i1) = edge;
          mRes.mCQw[0][i0] = mRes.mCQw[0][i1] = mRes.mCOw[0][i0] = mRes.mCOw[0][i1] = 1.0;
        }
      }
    }
    mRes.propagateConstraints();
  }

  /* Optimize the mesh field orientations (tangental field etc) */
  Optimizer::optimize_orientations(field.hierarchy);
  field.ComputeOrientationSingularities();

  if (check_if_canceled(0.3f, update_cb, update_cb_data)) {
    return;
  }

  if (field.flag_adaptive_scale == 1) {
    field.EstimateSlope();
  }

  if (check_if_canceled(0.4f, update_cb, update_cb_data)) {
    return;
  }

  Optimizer::optimize_scale(field.hierarchy, field.rho, field.flag_adaptive_scale);
  field.flag_adaptive_scale = 1;

  Optimizer::optimize_positions(field.hierarchy, field.flag_adaptive_scale);

  field.ComputePositionSingularities();

  if (check_if_canceled(0.5f, update_cb, update_cb_data)) {
    return;
  }

  /* Compute the final quad geomtry using a maxflow solver */
  field.ComputeIndexMap();

  if (check_if_canceled(0.9f, update_cb, update_cb_data)) {
    return;
  }

  /* Get the output mesh data */
  qrd->out_totverts = field.O_compact.size();
  qrd->out_totfaces = field.F_compact.size();

  qrd->out_verts = (float *)MEM_malloc_arrayN(qrd->out_totverts, sizeof(float[3]), __func__);
  qrd->out_faces = (int *)MEM_malloc_arrayN(qrd->out_totfaces, sizeof(int[4]), __func__);

  for (int i = 0; i < qrd->out_totverts; i++) {
    auto t = field.O_compact[i] * field.normalize_scale + field.normalize_offset;
    qrd->out_verts[i * 3] = t[0];
    qrd->out_verts[i * 3 + 1] = t[1];
    qrd->out_verts[i * 3 + 2] = t[2];
  }

  for (int i = 0; i < qrd->out_totfaces; i++) {
    qrd->out_faces[i * 4] = field.F_compact[i][0];
    qrd->out_faces[i * 4 + 1] = field.F_compact[i][1];
    qrd->out_faces[i * 4 + 2] = field.F_compact[i][2];
    qrd->out_faces[i * 4 + 3] = field.F_compact[i][3];
  }
}