Welcome to mirror list, hosted at ThFree Co, Russian Federation.

uvcalc_smart_project.py « bl_operators « startup « scripts « release - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 74fb9e98c829571d3837ed58011f7138209be256 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
# ##### BEGIN GPL LICENSE BLOCK #####
#
#  This program is free software; you can redistribute it and/or
#  modify it under the terms of the GNU General Public License
#  as published by the Free Software Foundation; either version 2
#  of the License, or (at your option) any later version.
#
#  This program is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.
#
#  You should have received a copy of the GNU General Public License
#  along with this program; if not, write to the Free Software Foundation,
#  Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####

# TODO <pep8 compliant>

from mathutils import Matrix, Vector, geometry
import bpy
from bpy.types import Operator

DEG_TO_RAD = 0.017453292519943295 # pi/180.0
SMALL_NUM = 0.000001  # see bug [#31598] why we dont have smaller values

global USER_FILL_HOLES
global USER_FILL_HOLES_QUALITY
USER_FILL_HOLES = None
USER_FILL_HOLES_QUALITY = None

def pointInTri2D(v, v1, v2, v3):
    key = v1.x, v1.y, v2.x, v2.y, v3.x, v3.y

    # Commented because its slower to do the bounds check, we should really cache the bounds info for each face.
    '''
    # BOUNDS CHECK
    xmin= 1000000
    ymin= 1000000

    xmax= -1000000
    ymax= -1000000

    for i in (0,2,4):
        x= key[i]
        y= key[i+1]

        if xmax<x:	xmax= x
        if ymax<y:	ymax= y
        if xmin>x:	xmin= x
        if ymin>y:	ymin= y

    x= v.x
    y= v.y

    if x<xmin or x>xmax or y < ymin or y > ymax:
        return False
    # Done with bounds check
    '''
    try:
        mtx = dict_matrix[key]
        if not mtx:
            return False
    except:
        side1 = v2 - v1
        side2 = v3 - v1

        nor = side1.cross(side2)

        mtx = Matrix((side1, side2, nor))

        # Zero area 2d tri, even tho we throw away zero area faces
        # the projection UV can result in a zero area UV.
        if not mtx.determinant():
            dict_matrix[key] = None
            return False

        mtx.invert()

        dict_matrix[key] = mtx

    uvw = (v - v1) * mtx
    return 0 <= uvw[0] and 0 <= uvw[1] and uvw[0] + uvw[1] <= 1


def boundsIsland(faces):
    minx = maxx = faces[0].uv[0][0] # Set initial bounds.
    miny = maxy = faces[0].uv[0][1]
    # print len(faces), minx, maxx, miny , maxy
    for f in faces:
        for uv in f.uv:
            x= uv.x
            y= uv.y
            if x<minx: minx= x
            if y<miny: miny= y
            if x>maxx: maxx= x
            if y>maxy: maxy= y

    return minx, miny, maxx, maxy

"""
def boundsEdgeLoop(edges):
    minx = maxx = edges[0][0] # Set initial bounds.
    miny = maxy = edges[0][1]
    # print len(faces), minx, maxx, miny , maxy
    for ed in edges:
        for pt in ed:
            x= pt[0]
            y= pt[1]
            if x<minx: x= minx
            if y<miny: y= miny
            if x>maxx: x= maxx
            if y>maxy: y= maxy

    return minx, miny, maxx, maxy
"""

# Turns the islands into a list of unpordered edges (Non internal)
# Only for UV's
# only returns outline edges for intersection tests. and unique points.

def island2Edge(island):

    # Vert index edges
    edges = {}

    unique_points= {}

    for f in island:
        f_uvkey= map(tuple, f.uv)


        for vIdx, edkey in enumerate(f.edge_keys):
            unique_points[f_uvkey[vIdx]] = f.uv[vIdx]

            if f.v[vIdx].index > f.v[vIdx-1].index:
                i1= vIdx-1;	i2= vIdx
            else:
                i1= vIdx;	i2= vIdx-1

            try:	edges[ f_uvkey[i1], f_uvkey[i2] ] *= 0 # sets any edge with more than 1 user to 0 are not returned.
            except:	edges[ f_uvkey[i1], f_uvkey[i2] ] = (f.uv[i1] - f.uv[i2]).length,

    # If 2 are the same then they will be together, but full [a,b] order is not correct.

    # Sort by length


    length_sorted_edges = [(Vector(key[0]), Vector(key[1]), value) for key, value in edges.items() if value != 0]

    try:	length_sorted_edges.sort(key = lambda A: -A[2]) # largest first
    except:	length_sorted_edges.sort(lambda A, B: cmp(B[2], A[2]))

    # Its okay to leave the length in there.
    #for e in length_sorted_edges:
    #	e.pop(2)

    # return edges and unique points
    return length_sorted_edges, [v.to_3d() for v in unique_points.values()]

# ========================= NOT WORKING????
# Find if a points inside an edge loop, unordered.
# pt is and x/y
# edges are a non ordered loop of edges.
# offsets are the edge x and y offset.
"""
def pointInEdges(pt, edges):
    #
    x1 = pt[0]
    y1 = pt[1]

    # Point to the left of this line.
    x2 = -100000
    y2 = -10000
    intersectCount = 0
    for ed in edges:
        xi, yi = lineIntersection2D(x1,y1, x2,y2, ed[0][0], ed[0][1], ed[1][0], ed[1][1])
        if xi is not None: # Is there an intersection.
            intersectCount+=1

    return intersectCount % 2
"""

def pointInIsland(pt, island):
    vec1, vec2, vec3 = Vector(), Vector(), Vector()
    for f in island:
        vec1.x, vec1.y = f.uv[0]
        vec2.x, vec2.y = f.uv[1]
        vec3.x, vec3.y = f.uv[2]

        if pointInTri2D(pt, vec1, vec2, vec3):
            return True

        if len(f.v) == 4:
            vec1.x, vec1.y = f.uv[0]
            vec2.x, vec2.y = f.uv[2]
            vec3.x, vec3.y = f.uv[3]
            if pointInTri2D(pt, vec1, vec2, vec3):
                return True
    return False


# box is (left,bottom, right, top)
def islandIntersectUvIsland(source, target, SourceOffset):
    # Is 1 point in the box, inside the vertLoops
    edgeLoopsSource = source[6] # Pretend this is offset
    edgeLoopsTarget = target[6]

    # Edge intersect test
    for ed in edgeLoopsSource:
        for seg in edgeLoopsTarget:
            i = geometry.intersect_line_line_2d(seg[0],
                                                seg[1],
                                                SourceOffset+ed[0],
                                                SourceOffset+ed[1],
                                                )
            if i:
                return 1 # LINE INTERSECTION

    # 1 test for source being totally inside target
    SourceOffset.resize_3d()
    for pv in source[7]:
        if pointInIsland(pv+SourceOffset, target[0]):
            return 2 # SOURCE INSIDE TARGET

    # 2 test for a part of the target being totally inside the source.
    for pv in target[7]:
        if pointInIsland(pv-SourceOffset, source[0]):
            return 3 # PART OF TARGET INSIDE SOURCE.

    return 0 # NO INTERSECTION


def optiRotateUvIsland(faces):
    uv_points = [uv for f in faces  for uv in f.uv]
    angle = geometry.box_fit_2d(uv_points)

    if angle != 0.0:
        mat = Matrix.Rotation(angle, 2)
        i = 0 # count the serialized uv/vectors
        for f in faces:
            for j, k in enumerate(range(i, len(f.v) + i)):
                f.uv[j][:] = mat * uv_points[k]
            i += len(f.v)


# Takes an island list and tries to find concave, hollow areas to pack smaller islands into.
def mergeUvIslands(islandList):
    global USER_FILL_HOLES
    global USER_FILL_HOLES_QUALITY


    # Pack islands to bottom LHS
    # Sync with island

    #islandTotFaceArea = [] # A list of floats, each island area
    #islandArea = [] # a list of tuples ( area, w,h)


    decoratedIslandList = []

    islandIdx = len(islandList)
    while islandIdx:
        islandIdx-=1
        minx, miny, maxx, maxy = boundsIsland(islandList[islandIdx])
        w, h = maxx-minx, maxy-miny

        totFaceArea = 0
        offset= Vector((minx, miny))
        for f in islandList[islandIdx]:
            for uv in f.uv:
                uv -= offset

            totFaceArea += f.area

        islandBoundsArea = w*h
        efficiency = abs(islandBoundsArea - totFaceArea)

        # UV Edge list used for intersections as well as unique points.
        edges, uniqueEdgePoints = island2Edge(islandList[islandIdx])

        decoratedIslandList.append([islandList[islandIdx], totFaceArea, efficiency, islandBoundsArea, w,h, edges, uniqueEdgePoints])


    # Sort by island bounding box area, smallest face area first.
    # no.. chance that to most simple edge loop first.
    decoratedIslandListAreaSort =decoratedIslandList[:]

    decoratedIslandListAreaSort.sort(key = lambda A: A[3])

    # sort by efficiency, Least Efficient first.
    decoratedIslandListEfficSort = decoratedIslandList[:]
    # decoratedIslandListEfficSort.sort(lambda A, B: cmp(B[2], A[2]))

    decoratedIslandListEfficSort.sort(key = lambda A: -A[2])

    # ================================================== THESE CAN BE TWEAKED.
    # This is a quality value for the number of tests.
    # from 1 to 4, generic quality value is from 1 to 100
    USER_STEP_QUALITY =   ((USER_FILL_HOLES_QUALITY - 1) / 25.0) + 1

    # If 100 will test as long as there is enough free space.
    # this is rarely enough, and testing takes a while, so lower quality speeds this up.

    # 1 means they have the same quality
    USER_FREE_SPACE_TO_TEST_QUALITY = 1 + (((100 - USER_FILL_HOLES_QUALITY)/100.0) *5)

    #print 'USER_STEP_QUALITY', USER_STEP_QUALITY
    #print 'USER_FREE_SPACE_TO_TEST_QUALITY', USER_FREE_SPACE_TO_TEST_QUALITY

    removedCount = 0

    areaIslandIdx = 0
    ctrl = Window.Qual.CTRL
    BREAK= False
    while areaIslandIdx < len(decoratedIslandListAreaSort) and not BREAK:
        sourceIsland = decoratedIslandListAreaSort[areaIslandIdx]
        # Already packed?
        if not sourceIsland[0]:
            areaIslandIdx+=1
        else:
            efficIslandIdx = 0
            while efficIslandIdx < len(decoratedIslandListEfficSort) and not BREAK:

                if Window.GetKeyQualifiers() & ctrl:
                    BREAK= True
                    break

                # Now we have 2 islands, if the efficiency of the islands lowers theres an
                # increasing likely hood that we can fit merge into the bigger UV island.
                # this ensures a tight fit.

                # Just use figures we have about user/unused area to see if they might fit.

                targetIsland = decoratedIslandListEfficSort[efficIslandIdx]


                if sourceIsland[0] == targetIsland[0] or\
                not targetIsland[0] or\
                not sourceIsland[0]:
                    pass
                else:

                    #~ ([island, totFaceArea, efficiency, islandArea, w,h])
                    # Wasted space on target is greater then UV bounding island area.


                    #~ if targetIsland[3] > (sourceIsland[2]) and\ #
                    #~ print USER_FREE_SPACE_TO_TEST_QUALITY
                    if targetIsland[2] > (sourceIsland[1] * USER_FREE_SPACE_TO_TEST_QUALITY) and\
                    targetIsland[4] > sourceIsland[4] and\
                    targetIsland[5] > sourceIsland[5]:

                        # DEBUG # print '%.10f  %.10f' % (targetIsland[3], sourceIsland[1])

                        # These enough spare space lets move the box until it fits

                        # How many times does the source fit into the target x/y
                        blockTestXUnit = targetIsland[4]/sourceIsland[4]
                        blockTestYUnit = targetIsland[5]/sourceIsland[5]

                        boxLeft = 0


                        # Distance we can move between whilst staying inside the targets bounds.
                        testWidth = targetIsland[4] - sourceIsland[4]
                        testHeight = targetIsland[5] - sourceIsland[5]

                        # Increment we move each test. x/y
                        xIncrement = (testWidth / (blockTestXUnit * ((USER_STEP_QUALITY/50)+0.1)))
                        yIncrement = (testHeight / (blockTestYUnit * ((USER_STEP_QUALITY/50)+0.1)))

                        # Make sure were not moving less then a 3rg of our width/height
                        if xIncrement<sourceIsland[4]/3:
                            xIncrement= sourceIsland[4]
                        if yIncrement<sourceIsland[5]/3:
                            yIncrement= sourceIsland[5]


                        boxLeft = 0 # Start 1 back so we can jump into the loop.
                        boxBottom= 0 #-yIncrement

                        #~ testcount= 0

                        while boxBottom <= testHeight:
                            # Should we use this? - not needed for now.
                            #~ if Window.GetKeyQualifiers() & ctrl:
                            #~     BREAK= True
                            #~     break

                            ##testcount+=1
                            #print 'Testing intersect'
                            Intersect = islandIntersectUvIsland(sourceIsland, targetIsland, Vector((boxLeft, boxBottom)))
                            #print 'Done', Intersect
                            if Intersect == 1:  # Line intersect, don't bother with this any more
                                pass

                            if Intersect == 2:  # Source inside target
                                """
                                We have an intersection, if we are inside the target
                                then move us 1 whole width across,
                                Its possible this is a bad idea since 2 skinny Angular faces
                                could join without 1 whole move, but its a lot more optimal to speed this up
                                since we have already tested for it.

                                It gives about 10% speedup with minimal errors.
                                """
                                # Move the test along its width + SMALL_NUM
                                #boxLeft += sourceIsland[4] + SMALL_NUM
                                boxLeft += sourceIsland[4]
                            elif Intersect == 0: # No intersection?? Place it.
                                # Progress
                                removedCount +=1
#XXX								Window.DrawProgressBar(0.0, 'Merged: %i islands, Ctrl to finish early.' % removedCount)

                                # Move faces into new island and offset
                                targetIsland[0].extend(sourceIsland[0])
                                offset= Vector((boxLeft, boxBottom))

                                for f in sourceIsland[0]:
                                    for uv in f.uv:
                                        uv+= offset

                                del sourceIsland[0][:]  # Empty


                                # Move edge loop into new and offset.
                                # targetIsland[6].extend(sourceIsland[6])
                                #while sourceIsland[6]:
                                targetIsland[6].extend( [ (\
                                     (e[0]+offset, e[1]+offset, e[2])\
                                ) for e in sourceIsland[6] ] )

                                del sourceIsland[6][:]  # Empty

                                # Sort by edge length, reverse so biggest are first.

                                try:	 targetIsland[6].sort(key = lambda A: A[2])
                                except:	targetIsland[6].sort(lambda B,A: cmp(A[2], B[2] ))


                                targetIsland[7].extend(sourceIsland[7])
                                offset= Vector((boxLeft, boxBottom, 0.0))
                                for p in sourceIsland[7]:
                                    p+= offset

                                del sourceIsland[7][:]


                                # Decrement the efficiency
                                targetIsland[1]+=sourceIsland[1] # Increment totFaceArea
                                targetIsland[2]-=sourceIsland[1] # Decrement efficiency
                                # IF we ever used these again, should set to 0, eg
                                sourceIsland[2] = 0 # No area if anyone wants to know

                                break


                            # INCREMENT NEXT LOCATION
                            if boxLeft > testWidth:
                                boxBottom += yIncrement
                                boxLeft = 0.0
                            else:
                                boxLeft += xIncrement
                        ##print testcount

                efficIslandIdx+=1
        areaIslandIdx+=1

    # Remove empty islands
    i = len(islandList)
    while i:
        i-=1
        if not islandList[i]:
            del islandList[i] # Can increment islands removed here.

# Takes groups of faces. assumes face groups are UV groups.
def getUvIslands(faceGroups, me):

    # Get seams so we don't cross over seams
    edge_seams = {} # should be a set
    for ed in me.edges:
        if ed.use_seam:
            edge_seams[ed.key] = None # dummy var- use sets!
    # Done finding seams


    islandList = []

#XXX	Window.DrawProgressBar(0.0, 'Splitting %d projection groups into UV islands:' % len(faceGroups))
    #print '\tSplitting %d projection groups into UV islands:' % len(faceGroups),
    # Find grouped faces

    faceGroupIdx = len(faceGroups)

    while faceGroupIdx:
        faceGroupIdx-=1
        faces = faceGroups[faceGroupIdx]

        if not faces:
            continue

        # Build edge dict
        edge_users = {}

        for i, f in enumerate(faces):
            for ed_key in f.edge_keys:
                if ed_key in edge_seams: # DELIMIT SEAMS! ;)
                    edge_users[ed_key] = [] # so as not to raise an error
                else:
                    try:		edge_users[ed_key].append(i)
                    except:		edge_users[ed_key] = [i]

        # Modes
        # 0 - face not yet touched.
        # 1 - added to island list, and need to search
        # 2 - touched and searched - don't touch again.
        face_modes = [0] * len(faces) # initialize zero - untested.

        face_modes[0] = 1 # start the search with face 1

        newIsland = []

        newIsland.append(faces[0])


        ok = True
        while ok:

            ok = True
            while ok:
                ok= False
                for i in range(len(faces)):
                    if face_modes[i] == 1: # search
                        for ed_key in faces[i].edge_keys:
                            for ii in edge_users[ed_key]:
                                if i != ii and face_modes[ii] == 0:
                                    face_modes[ii] = ok = 1 # mark as searched
                                    newIsland.append(faces[ii])

                        # mark as searched, don't look again.
                        face_modes[i] = 2

            islandList.append(newIsland)

            ok = False
            for i in range(len(faces)):
                if face_modes[i] == 0:
                    newIsland = []
                    newIsland.append(faces[i])

                    face_modes[i] = ok = 1
                    break
            # if not ok will stop looping

#XXX	Window.DrawProgressBar(0.1, 'Optimizing Rotation for %i UV Islands' % len(islandList))

    for island in islandList:
        optiRotateUvIsland(island)

    return islandList


def packIslands(islandList):
    if USER_FILL_HOLES:
#XXX		Window.DrawProgressBar(0.1, 'Merging Islands (Ctrl: skip merge)...')
        mergeUvIslands(islandList) # Modify in place


    # Now we have UV islands, we need to pack them.

    # Make a synchronized list with the islands
    # so we can box pack the islands.
    packBoxes = []

    # Keep a list of X/Y offset so we can save time by writing the
    # uv's and packed data in one pass.
    islandOffsetList = []

    islandIdx = 0

    while islandIdx < len(islandList):
        minx, miny, maxx, maxy = boundsIsland(islandList[islandIdx])

        w, h = maxx-minx, maxy-miny

        if USER_ISLAND_MARGIN:
            minx -= USER_ISLAND_MARGIN# *w
            miny -= USER_ISLAND_MARGIN# *h
            maxx += USER_ISLAND_MARGIN# *w
            maxy += USER_ISLAND_MARGIN# *h

            # recalc width and height
            w, h = maxx-minx, maxy-miny

        if w < 0.00001 or h < 0.00001:
            del islandList[islandIdx]
            islandIdx -=1
            continue

        """Save the offset to be applied later,
        we could apply to the UVs now and allign them to the bottom left hand area
        of the UV coords like the box packer imagines they are
        but, its quicker just to remember their offset and
        apply the packing and offset in 1 pass """
        islandOffsetList.append((minx, miny))

        # Add to boxList. use the island idx for the BOX id.
        packBoxes.append([0, 0, w, h])
        islandIdx+=1

    # Now we have a list of boxes to pack that syncs
    # with the islands.

    #print '\tPacking UV Islands...'
#XXX	Window.DrawProgressBar(0.7, "Packing %i UV Islands..." % len(packBoxes) )

    # time1 = time.time()
    packWidth, packHeight = geometry.box_pack_2d(packBoxes)

    # print 'Box Packing Time:', time.time() - time1

    #if len(pa	ckedLs) != len(islandList):
    #	raise "Error packed boxes differs from original length"

    #print '\tWriting Packed Data to faces'
#XXX	Window.DrawProgressBar(0.8, "Writing Packed Data to faces")

    # Sort by ID, so there in sync again
    islandIdx = len(islandList)
    # Having these here avoids divide by 0
    if islandIdx:

        if USER_STRETCH_ASPECT:
            # Maximize to uv area?? Will write a normalize function.
            xfactor = 1.0 / packWidth
            yfactor = 1.0 / packHeight
        else:
            # Keep proportions.
            xfactor = yfactor = 1.0 / max(packWidth, packHeight)

    while islandIdx:
        islandIdx -=1
        # Write the packed values to the UV's

        xoffset = packBoxes[islandIdx][0] - islandOffsetList[islandIdx][0]
        yoffset = packBoxes[islandIdx][1] - islandOffsetList[islandIdx][1]

        for f in islandList[islandIdx]: # Offsetting the UV's so they fit in there packed box
            for uv in f.uv:
                uv.x= (uv.x+xoffset) * xfactor
                uv.y= (uv.y+yoffset) * yfactor


def VectoQuat(vec):
    vec = vec.normalized()
    return vec.to_track_quat('Z', 'X' if abs(vec.x) > 0.5 else 'Y').inverted()


class thickface(object):
    __slost__= "v", "uv", "no", "area", "edge_keys"
    def __init__(self, face, uv_layer, mesh_verts):
        self.v = [mesh_verts[i] for i in face.vertices]
        self.uv = [uv_layer[i].uv for i in face.loop_indices]

        self.no = face.normal.copy()
        self.area = face.area
        self.edge_keys = face.edge_keys


def main_consts():
    from math import radians

    global ROTMAT_2D_POS_90D
    global ROTMAT_2D_POS_45D
    global RotMatStepRotation

    ROTMAT_2D_POS_90D = Matrix.Rotation(radians(90.0), 2)
    ROTMAT_2D_POS_45D = Matrix.Rotation(radians(45.0), 2)

    RotMatStepRotation = []
    rot_angle = 22.5 #45.0/2
    while rot_angle > 0.1:
        RotMatStepRotation.append([
            Matrix.Rotation(radians(+rot_angle), 2),
            Matrix.Rotation(radians(-rot_angle), 2),
            ])

        rot_angle = rot_angle/2.0


global ob
ob = None
def main(context,
         island_margin,
         projection_limit,
         user_area_weight,
         ):
    global USER_FILL_HOLES
    global USER_FILL_HOLES_QUALITY
    global USER_STRETCH_ASPECT
    global USER_ISLAND_MARGIN
    
    from math import cos
    import time

    global dict_matrix
    dict_matrix = {}


    # Constants:
    # Takes a list of faces that make up a UV island and rotate
    # until they optimally fit inside a square.
    global ROTMAT_2D_POS_90D
    global ROTMAT_2D_POS_45D
    global RotMatStepRotation
    main_consts()

    # Create the variables.
    USER_PROJECTION_LIMIT = projection_limit
    USER_ONLY_SELECTED_FACES = True
    USER_SHARE_SPACE = 1 # Only for hole filling.
    USER_STRETCH_ASPECT = 1 # Only for hole filling.
    USER_ISLAND_MARGIN = island_margin # Only for hole filling.
    USER_FILL_HOLES = 0
    USER_FILL_HOLES_QUALITY = 50 # Only for hole filling.
    USER_VIEW_INIT = 0 # Only for hole filling.
    
    is_editmode = (context.active_object.mode == 'EDIT')
    if is_editmode:
        obList =  [ob for ob in [context.active_object] if ob and ob.type == 'MESH']
    else:
        obList =  [ob for ob in context.selected_editable_objects if ob and ob.type == 'MESH']
        USER_ONLY_SELECTED_FACES = False

    if not obList:
        raise Exception("error, no selected mesh objects")

    # Reuse variable
    if len(obList) == 1:
        ob = "Unwrap %i Selected Mesh"
    else:
        ob = "Unwrap %i Selected Meshes"

    # HACK, loop until mouse is lifted.
    '''
    while Window.GetMouseButtons() != 0:
        time.sleep(10)
    '''

#~ XXX	if not Draw.PupBlock(ob % len(obList), pup_block):
#~ XXX		return
#~ XXX	del ob

    # Convert from being button types

    USER_PROJECTION_LIMIT_CONVERTED = cos(USER_PROJECTION_LIMIT * DEG_TO_RAD)
    USER_PROJECTION_LIMIT_HALF_CONVERTED = cos((USER_PROJECTION_LIMIT/2) * DEG_TO_RAD)


    # Toggle Edit mode
    is_editmode = (context.active_object.mode == 'EDIT')
    if is_editmode:
        bpy.ops.object.mode_set(mode='OBJECT')
    # Assume face select mode! an annoying hack to toggle face select mode because Mesh doesn't like faceSelectMode.

    if USER_SHARE_SPACE:
        # Sort by data name so we get consistent results
        obList.sort(key = lambda ob: ob.data.name)
        collected_islandList= []

#XXX	Window.WaitCursor(1)

    time1 = time.time()

    # Tag as False so we don't operate on the same mesh twice.
#XXX	bpy.data.meshes.tag = False
    for me in bpy.data.meshes:
        me.tag = False


    for ob in obList:
        me = ob.data

        if me.tag or me.library:
            continue

        # Tag as used
        me.tag = True

        if not me.uv_textures: # Mesh has no UV Coords, don't bother.
            me.uv_textures.new()

        uv_layer = me.uv_layers.active.data
        me_verts = list(me.vertices)

        if USER_ONLY_SELECTED_FACES:
            meshFaces = [thickface(f, uv_layer, me_verts) for i, f in enumerate(me.polygons) if f.select]
        else:
            meshFaces = [thickface(f, uv_layer, me_verts) for i, f in enumerate(me.polygons)]

        if not meshFaces:
            continue

#XXX		Window.DrawProgressBar(0.1, 'SmartProj UV Unwrapper, mapping "%s", %i faces.' % (me.name, len(meshFaces)))

        # =======
        # Generate a projection list from face normals, this is meant to be smart :)

        # make a list of face props that are in sync with meshFaces
        # Make a Face List that is sorted by area.
        # meshFaces = []

        # meshFaces.sort( lambda a, b: cmp(b.area , a.area) ) # Biggest first.
        meshFaces.sort(key=lambda a: -a.area)

        # remove all zero area faces
        while meshFaces and meshFaces[-1].area <= SMALL_NUM:
            # Set their UV's to 0,0
            for uv in meshFaces[-1].uv:
                uv.zero()
            meshFaces.pop()

        # Smallest first is slightly more efficient, but if the user cancels early then its better we work on the larger data.

        # Generate Projection Vecs
        # 0d is   1.0
        # 180 IS -0.59846


        # Initialize projectVecs
        if USER_VIEW_INIT:
            # Generate Projection
            projectVecs = [Vector(Window.GetViewVector()) * ob.matrix_world.inverted().to_3x3()] # We add to this along the way
        else:
            projectVecs = []

        newProjectVec = meshFaces[0].no
        newProjectMeshFaces = []	# Popping stuffs it up.


        # Pretend that the most unique angle is ages away to start the loop off
        mostUniqueAngle = -1.0

        # This is popped
        tempMeshFaces = meshFaces[:]



        # This while only gathers projection vecs, faces are assigned later on.
        while 1:
            # If theres none there then start with the largest face

            # add all the faces that are close.
            for fIdx in range(len(tempMeshFaces)-1, -1, -1):
                # Use half the angle limit so we don't overweight faces towards this
                # normal and hog all the faces.
                if newProjectVec.dot(tempMeshFaces[fIdx].no) > USER_PROJECTION_LIMIT_HALF_CONVERTED:
                    newProjectMeshFaces.append(tempMeshFaces.pop(fIdx))

            # Add the average of all these faces normals as a projectionVec
            averageVec = Vector((0.0, 0.0, 0.0))
            if user_area_weight == 0.0:
                for fprop in newProjectMeshFaces:
                    averageVec += fprop.no
            elif user_area_weight == 1.0:
                for fprop in newProjectMeshFaces:
                    averageVec += fprop.no * fprop.area
            else:
                for fprop in newProjectMeshFaces:
                    averageVec += fprop.no * ((fprop.area * user_area_weight) + (1.0 - user_area_weight))

            if averageVec.x != 0 or averageVec.y != 0 or averageVec.z != 0: # Avoid NAN
                projectVecs.append(averageVec.normalized())


            # Get the next vec!
            # Pick the face thats most different to all existing angles :)
            mostUniqueAngle = 1.0 # 1.0 is 0d. no difference.
            mostUniqueIndex = 0 # dummy

            for fIdx in range(len(tempMeshFaces)-1, -1, -1):
                angleDifference = -1.0 # 180d difference.

                # Get the closest vec angle we are to.
                for p in projectVecs:
                    temp_angle_diff= p.dot(tempMeshFaces[fIdx].no)

                    if angleDifference < temp_angle_diff:
                        angleDifference= temp_angle_diff

                if angleDifference < mostUniqueAngle:
                    # We have a new most different angle
                    mostUniqueIndex = fIdx
                    mostUniqueAngle = angleDifference

            if mostUniqueAngle < USER_PROJECTION_LIMIT_CONVERTED:
                #print 'adding', mostUniqueAngle, USER_PROJECTION_LIMIT, len(newProjectMeshFaces)
                # Now weight the vector to all its faces, will give a more direct projection
                # if the face its self was not representative of the normal from surrounding faces.

                newProjectVec = tempMeshFaces[mostUniqueIndex].no
                newProjectMeshFaces = [tempMeshFaces.pop(mostUniqueIndex)]


            else:
                if len(projectVecs) >= 1: # Must have at least 2 projections
                    break


        # If there are only zero area faces then its possible
        # there are no projectionVecs
        if not len(projectVecs):
            Draw.PupMenu('error, no projection vecs where generated, 0 area faces can cause this.')
            return

        faceProjectionGroupList =[[] for i in range(len(projectVecs)) ]

        # MAP and Arrange # We know there are 3 or 4 faces here

        for fIdx in range(len(meshFaces)-1, -1, -1):
            fvec = meshFaces[fIdx].no
            i = len(projectVecs)

            # Initialize first
            bestAng = fvec.dot(projectVecs[0])
            bestAngIdx = 0

            # Cycle through the remaining, first already done
            while i-1:
                i-=1

                newAng = fvec.dot(projectVecs[i])
                if newAng > bestAng: # Reverse logic for dotvecs
                    bestAng = newAng
                    bestAngIdx = i

            # Store the area for later use.
            faceProjectionGroupList[bestAngIdx].append(meshFaces[fIdx])

        # Cull faceProjectionGroupList,


        # Now faceProjectionGroupList is full of faces that face match the project Vecs list
        for i in range(len(projectVecs)):
            # Account for projectVecs having no faces.
            if not faceProjectionGroupList[i]:
                continue

            # Make a projection matrix from a unit length vector.
            MatQuat = VectoQuat(projectVecs[i])

            # Get the faces UV's from the projected vertex.
            for f in faceProjectionGroupList[i]:
                f_uv = f.uv
                for j, v in enumerate(f.v):
                    # XXX - note, between mathutils in 2.4 and 2.5 the order changed.
                    f_uv[j][:] = (MatQuat * v.co).xy


        if USER_SHARE_SPACE:
            # Should we collect and pack later?
            islandList = getUvIslands(faceProjectionGroupList, me)
            collected_islandList.extend(islandList)

        else:
            # Should we pack the islands for this 1 object?
            islandList = getUvIslands(faceProjectionGroupList, me)
            packIslands(islandList)


        # update the mesh here if we need to.

    # We want to pack all in 1 go, so pack now
    if USER_SHARE_SPACE:
#XXX        Window.DrawProgressBar(0.9, "Box Packing for all objects...")
        packIslands(collected_islandList)

    print("Smart Projection time: %.2f" % (time.time() - time1))
    # Window.DrawProgressBar(0.9, "Smart Projections done, time: %.2f sec" % (time.time() - time1))

    if is_editmode:
        bpy.ops.object.mode_set(mode='EDIT')

    dict_matrix.clear()

#XXX	Window.DrawProgressBar(1.0, "")
#XXX	Window.WaitCursor(0)
#XXX	Window.RedrawAll()

"""
    pup_block = [\
    'Projection',\
    ('Selected Faces Only', USER_ONLY_SELECTED_FACES, 'Use only selected faces from all selected meshes.'),\
    ('Init from view', USER_VIEW_INIT, 'The first projection will be from the view vector.'),\
    '',\
    'UV Layout',\
    ('Share Tex Space', USER_SHARE_SPACE, 'Objects Share texture space, map all objects into 1 uvmap.'),\
    ('Stretch to bounds', USER_STRETCH_ASPECT, 'Stretch the final output to texture bounds.'),\
*	('Island Margin:', USER_ISLAND_MARGIN, 0.0, 0.5, ''),\
    'Fill in empty areas',\
    ('Fill Holes', USER_FILL_HOLES, 'Fill in empty areas reduced texture waistage (slow).'),\
    ('Fill Quality:', USER_FILL_HOLES_QUALITY, 1, 100, 'Depends on fill holes, how tightly to fill UV holes, (higher is slower)'),\
    ]
"""

from bpy.props import FloatProperty


class SmartProject(Operator):
    """This script projection unwraps the selected faces of a mesh """ \
    """(it operates on all selected mesh objects, and can be used """ \
    """to unwrap selected faces, or all faces)"""
    bl_idname = "uv.smart_project"
    bl_label = "Smart UV Project"
    bl_options = {'REGISTER', 'UNDO'}

    angle_limit = FloatProperty(
            name="Angle Limit",
            description="Lower for more projection groups, higher for less distortion",
            min=1.0, max=89.0,
            default=66.0,
            )
    island_margin = FloatProperty(
            name="Island Margin",
            description="Margin to reduce bleed from adjacent islands",
            min=0.0, max=1.0,
            default=0.0,
            )
    user_area_weight = FloatProperty(
            name="Area Weight",
            description="Weight projections vector by faces with larger areas",
            min=0.0, max=1.0,
            default=0.0,
            )

    @classmethod
    def poll(cls, context):
        return context.active_object is not None

    def execute(self, context):
        main(context,
             self.island_margin,
             self.angle_limit,
             self.user_area_weight,
             )
        return {'FINISHED'}

    def invoke(self, context, event):
        wm = context.window_manager
        return wm.invoke_props_dialog(self)