Welcome to mirror list, hosted at ThFree Co, Russian Federation.

armature.c « intern « blenkernel « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 65de951b19024ba9f70567a90d64d61afdc03d4d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
/*
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 *
 * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
 * All rights reserved.
 */

/** \file
 * \ingroup bke
 */

#include <ctype.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include <stdio.h>
#include <float.h>

#include "MEM_guardedalloc.h"

#include "BLI_math.h"
#include "BLI_listbase.h"
#include "BLI_string.h"
#include "BLI_ghash.h"
#include "BLI_task.h"
#include "BLI_utildefines.h"
#include "BLI_alloca.h"

#include "DNA_anim_types.h"
#include "DNA_armature_types.h"
#include "DNA_constraint_types.h"
#include "DNA_gpencil_types.h"
#include "DNA_mesh_types.h"
#include "DNA_lattice_types.h"
#include "DNA_listBase.h"
#include "DNA_meshdata_types.h"
#include "DNA_scene_types.h"
#include "DNA_object_types.h"

#include "BKE_animsys.h"
#include "BKE_armature.h"
#include "BKE_action.h"
#include "BKE_anim.h"
#include "BKE_constraint.h"
#include "BKE_curve.h"
#include "BKE_deform.h"
#include "BKE_displist.h"
#include "BKE_idprop.h"
#include "BKE_library.h"
#include "BKE_lattice.h"
#include "BKE_main.h"
#include "BKE_object.h"
#include "BKE_scene.h"

#include "DEG_depsgraph_build.h"

#include "BIK_api.h"

#include "atomic_ops.h"

#include "CLG_log.h"

static CLG_LogRef LOG = {"bke.armature"};

/* **************** Generic Functions, data level *************** */

bArmature *BKE_armature_add(Main *bmain, const char *name)
{
  bArmature *arm;

  arm = BKE_libblock_alloc(bmain, ID_AR, name, 0);
  arm->deformflag = ARM_DEF_VGROUP | ARM_DEF_ENVELOPE;
  arm->flag = ARM_COL_CUSTOM; /* custom bone-group colors */
  arm->layer = 1;
  return arm;
}

bArmature *BKE_armature_from_object(Object *ob)
{
  if (ob->type == OB_ARMATURE) {
    return (bArmature *)ob->data;
  }
  return NULL;
}

int BKE_armature_bonelist_count(ListBase *lb)
{
  int i = 0;
  for (Bone *bone = lb->first; bone; bone = bone->next) {
    i += 1 + BKE_armature_bonelist_count(&bone->childbase);
  }

  return i;
}

void BKE_armature_bonelist_free(ListBase *lb)
{
  Bone *bone;

  for (bone = lb->first; bone; bone = bone->next) {
    if (bone->prop) {
      IDP_FreeProperty(bone->prop);
    }
    BKE_armature_bonelist_free(&bone->childbase);
  }

  BLI_freelistN(lb);
}

/** Free (or release) any data used by this armature (does not free the armature itself). */
void BKE_armature_free(bArmature *arm)
{
  BKE_animdata_free(&arm->id, false);

  BKE_armature_bone_hash_free(arm);
  BKE_armature_bonelist_free(&arm->bonebase);

  /* free editmode data */
  if (arm->edbo) {
    BLI_freelistN(arm->edbo);

    MEM_freeN(arm->edbo);
    arm->edbo = NULL;
  }
}

void BKE_armature_make_local(Main *bmain, bArmature *arm, const bool lib_local)
{
  BKE_id_make_local_generic(bmain, &arm->id, true, lib_local);
}

static void copy_bonechildren(Bone *bone_dst,
                              const Bone *bone_src,
                              const Bone *bone_src_act,
                              Bone **r_bone_dst_act,
                              const int flag)
{
  Bone *bone_src_child, *bone_dst_child;

  if (bone_src == bone_src_act) {
    *r_bone_dst_act = bone_dst;
  }

  if (bone_src->prop) {
    bone_dst->prop = IDP_CopyProperty_ex(bone_src->prop, flag);
  }

  /* Copy this bone's list */
  BLI_duplicatelist(&bone_dst->childbase, &bone_src->childbase);

  /* For each child in the list, update it's children */
  for (bone_src_child = bone_src->childbase.first, bone_dst_child = bone_dst->childbase.first;
       bone_src_child;
       bone_src_child = bone_src_child->next, bone_dst_child = bone_dst_child->next) {
    bone_dst_child->parent = bone_dst;
    copy_bonechildren(bone_dst_child, bone_src_child, bone_src_act, r_bone_dst_act, flag);
  }
}

static void copy_bonechildren_custom_handles(Bone *bone_dst, bArmature *arm_dst)
{
  Bone *bone_dst_child;

  if (bone_dst->bbone_prev) {
    bone_dst->bbone_prev = BKE_armature_find_bone_name(arm_dst, bone_dst->bbone_prev->name);
  }
  if (bone_dst->bbone_next) {
    bone_dst->bbone_next = BKE_armature_find_bone_name(arm_dst, bone_dst->bbone_next->name);
  }

  for (bone_dst_child = bone_dst->childbase.first; bone_dst_child;
       bone_dst_child = bone_dst_child->next) {
    copy_bonechildren_custom_handles(bone_dst_child, arm_dst);
  }
}

/**
 * Only copy internal data of Armature ID from source
 * to already allocated/initialized destination.
 * You probably never want to use that directly,
 * use #BKE_id_copy or #BKE_id_copy_ex for typical needs.
 *
 * WARNING! This function will not handle ID user count!
 *
 * \param flag: Copying options (see BKE_library.h's LIB_ID_COPY_... flags for more).
 */
void BKE_armature_copy_data(Main *UNUSED(bmain),
                            bArmature *arm_dst,
                            const bArmature *arm_src,
                            const int flag)
{
  Bone *bone_src, *bone_dst;
  Bone *bone_dst_act = NULL;

  /* We never handle usercount here for own data. */
  const int flag_subdata = flag | LIB_ID_CREATE_NO_USER_REFCOUNT;

  arm_dst->bonehash = NULL;

  BLI_duplicatelist(&arm_dst->bonebase, &arm_src->bonebase);

  /* Duplicate the childrens' lists */
  bone_dst = arm_dst->bonebase.first;
  for (bone_src = arm_src->bonebase.first; bone_src; bone_src = bone_src->next) {
    bone_dst->parent = NULL;
    copy_bonechildren(bone_dst, bone_src, arm_src->act_bone, &bone_dst_act, flag_subdata);
    bone_dst = bone_dst->next;
  }

  arm_dst->act_bone = bone_dst_act;

  BKE_armature_bone_hash_make(arm_dst);

  /* Fix custom handle references. */
  for (bone_dst = arm_dst->bonebase.first; bone_dst; bone_dst = bone_dst->next) {
    copy_bonechildren_custom_handles(bone_dst, arm_dst);
  }

  arm_dst->edbo = NULL;
  arm_dst->act_edbone = NULL;
}

bArmature *BKE_armature_copy(Main *bmain, const bArmature *arm)
{
  bArmature *arm_copy;
  BKE_id_copy(bmain, &arm->id, (ID **)&arm_copy);
  return arm_copy;
}

static Bone *get_named_bone_bonechildren(ListBase *lb, const char *name)
{
  Bone *curBone, *rbone;

  for (curBone = lb->first; curBone; curBone = curBone->next) {
    if (STREQ(curBone->name, name)) {
      return curBone;
    }

    rbone = get_named_bone_bonechildren(&curBone->childbase, name);
    if (rbone) {
      return rbone;
    }
  }

  return NULL;
}

/**
 * Walk the list until the bone is found (slow!),
 * use #BKE_armature_bone_from_name_map for multiple lookups.
 */
Bone *BKE_armature_find_bone_name(bArmature *arm, const char *name)
{
  if (!arm) {
    return NULL;
  }

  if (arm->bonehash) {
    return BLI_ghash_lookup(arm->bonehash, name);
  }

  return get_named_bone_bonechildren(&arm->bonebase, name);
}

static void armature_bone_from_name_insert_recursive(GHash *bone_hash, ListBase *lb)
{
  for (Bone *bone = lb->first; bone; bone = bone->next) {
    BLI_ghash_insert(bone_hash, bone->name, bone);
    armature_bone_from_name_insert_recursive(bone_hash, &bone->childbase);
  }
}

/**
 * Create a (name -> bone) map.
 *
 * \note typically #bPose.chanhash us used via #BKE_pose_channel_find_name
 * this is for the cases we can't use pose channels.
 */
static GHash *armature_bone_from_name_map(bArmature *arm)
{
  const int bones_count = BKE_armature_bonelist_count(&arm->bonebase);
  GHash *bone_hash = BLI_ghash_str_new_ex(__func__, bones_count);
  armature_bone_from_name_insert_recursive(bone_hash, &arm->bonebase);
  return bone_hash;
}

void BKE_armature_bone_hash_make(bArmature *arm)
{
  if (!arm->bonehash) {
    arm->bonehash = armature_bone_from_name_map(arm);
  }
}

void BKE_armature_bone_hash_free(bArmature *arm)
{
  if (arm->bonehash) {
    BLI_ghash_free(arm->bonehash, NULL, NULL);
    arm->bonehash = NULL;
  }
}

bool BKE_armature_bone_flag_test_recursive(const Bone *bone, int flag)
{
  if (bone->flag & flag) {
    return true;
  }
  else if (bone->parent) {
    return BKE_armature_bone_flag_test_recursive(bone->parent, flag);
  }
  else {
    return false;
  }
}

/* Finds the best possible extension to the name on a particular axis. (For renaming, check for
 * unique names afterwards) strip_number: removes number extensions  (TODO: not used)
 * axis: the axis to name on
 * head/tail: the head/tail co-ordinate of the bone on the specified axis */
int bone_autoside_name(
    char name[MAXBONENAME], int UNUSED(strip_number), short axis, float head, float tail)
{
  unsigned int len;
  char basename[MAXBONENAME] = "";
  char extension[5] = "";

  len = strlen(name);
  if (len == 0) {
    return 0;
  }
  BLI_strncpy(basename, name, sizeof(basename));

  /* Figure out extension to append:
   * - The extension to append is based upon the axis that we are working on.
   * - If head happens to be on 0, then we must consider the tail position as well to decide
   *   which side the bone is on
   *   -> If tail is 0, then it's bone is considered to be on axis, so no extension should be added
   *   -> Otherwise, extension is added from perspective of object based on which side tail goes to
   * - If head is non-zero, extension is added from perspective of object based on side head is on
   */
  if (axis == 2) {
    /* z-axis - vertical (top/bottom) */
    if (IS_EQF(head, 0.0f)) {
      if (tail < 0) {
        strcpy(extension, "Bot");
      }
      else if (tail > 0) {
        strcpy(extension, "Top");
      }
    }
    else {
      if (head < 0) {
        strcpy(extension, "Bot");
      }
      else {
        strcpy(extension, "Top");
      }
    }
  }
  else if (axis == 1) {
    /* y-axis - depth (front/back) */
    if (IS_EQF(head, 0.0f)) {
      if (tail < 0) {
        strcpy(extension, "Fr");
      }
      else if (tail > 0) {
        strcpy(extension, "Bk");
      }
    }
    else {
      if (head < 0) {
        strcpy(extension, "Fr");
      }
      else {
        strcpy(extension, "Bk");
      }
    }
  }
  else {
    /* x-axis - horizontal (left/right) */
    if (IS_EQF(head, 0.0f)) {
      if (tail < 0) {
        strcpy(extension, "R");
      }
      else if (tail > 0) {
        strcpy(extension, "L");
      }
    }
    else {
      if (head < 0) {
        strcpy(extension, "R");
        /* XXX Shouldn't this be simple else, as for z and y axes? */
      }
      else if (head > 0) {
        strcpy(extension, "L");
      }
    }
  }

  /* Simple name truncation
   * - truncate if there is an extension and it wouldn't be able to fit
   * - otherwise, just append to end
   */
  if (extension[0]) {
    bool changed = true;

    while (changed) { /* remove extensions */
      changed = false;
      if (len > 2 && basename[len - 2] == '.') {
        if (basename[len - 1] == 'L' || basename[len - 1] == 'R') { /* L R */
          basename[len - 2] = '\0';
          len -= 2;
          changed = true;
        }
      }
      else if (len > 3 && basename[len - 3] == '.') {
        if ((basename[len - 2] == 'F' && basename[len - 1] == 'r') || /* Fr */
            (basename[len - 2] == 'B' && basename[len - 1] == 'k'))   /* Bk */
        {
          basename[len - 3] = '\0';
          len -= 3;
          changed = true;
        }
      }
      else if (len > 4 && basename[len - 4] == '.') {
        if ((basename[len - 3] == 'T' && basename[len - 2] == 'o' &&
             basename[len - 1] == 'p') || /* Top */
            (basename[len - 3] == 'B' && basename[len - 2] == 'o' &&
             basename[len - 1] == 't')) /* Bot */
        {
          basename[len - 4] = '\0';
          len -= 4;
          changed = true;
        }
      }
    }

    if ((MAXBONENAME - len) < strlen(extension) + 1) { /* add 1 for the '.' */
      strncpy(name, basename, len - strlen(extension));
    }

    BLI_snprintf(name, MAXBONENAME, "%s.%s", basename, extension);

    return 1;
  }

  else {
    return 0;
  }
}

/* ************* B-Bone support ******************* */

/* Compute a set of bezier parameter values that produce approximately equally spaced points. */
static void equalize_cubic_bezier(const float control[4][3],
                                  int temp_segments,
                                  int final_segments,
                                  float *r_t_points)
{
  float(*coords)[3] = BLI_array_alloca(coords, temp_segments + 1);
  float *pdist = BLI_array_alloca(pdist, temp_segments + 1);

  /* Compute the first pass of bezier point coordinates. */
  for (int i = 0; i < 3; i++) {
    BKE_curve_forward_diff_bezier(control[0][i],
                                  control[1][i],
                                  control[2][i],
                                  control[3][i],
                                  &coords[0][i],
                                  temp_segments,
                                  sizeof(*coords));
  }

  /* Calculate the length of the polyline at each point. */
  pdist[0] = 0.0f;

  for (int i = 0; i < temp_segments; i++) {
    pdist[i + 1] = pdist[i] + len_v3v3(coords[i], coords[i + 1]);
  }

  /* Go over distances and calculate new parameter values. */
  float dist_step = pdist[temp_segments] / final_segments;

  r_t_points[0] = 0.0f;

  for (int i = 1, nr = 1; i <= final_segments; i++) {
    float dist = i * dist_step;

    /* We're looking for location (distance) 'dist' in the array. */
    while ((nr < temp_segments) && (dist >= pdist[nr])) {
      nr++;
    }

    float fac = (pdist[nr] - dist) / (pdist[nr] - pdist[nr - 1]);

    r_t_points[i] = (nr - fac) / temp_segments;
  }

  r_t_points[final_segments] = 1.0f;
}

/* Evaluate bezier position and tangent at a specific parameter value
 * using the De Casteljau algorithm. */
static void evaluate_cubic_bezier(const float control[4][3],
                                  float t,
                                  float r_pos[3],
                                  float r_tangent[3])
{
  float layer1[3][3];
  interp_v3_v3v3(layer1[0], control[0], control[1], t);
  interp_v3_v3v3(layer1[1], control[1], control[2], t);
  interp_v3_v3v3(layer1[2], control[2], control[3], t);

  float layer2[2][3];
  interp_v3_v3v3(layer2[0], layer1[0], layer1[1], t);
  interp_v3_v3v3(layer2[1], layer1[1], layer1[2], t);

  sub_v3_v3v3(r_tangent, layer2[1], layer2[0]);
  madd_v3_v3v3fl(r_pos, layer2[0], r_tangent, t);
}

/* Get "next" and "prev" bones - these are used for handle calculations. */
void BKE_pchan_bbone_handles_get(bPoseChannel *pchan, bPoseChannel **r_prev, bPoseChannel **r_next)
{
  if (pchan->bone->bbone_prev_type == BBONE_HANDLE_AUTO) {
    /* Use connected parent. */
    if (pchan->bone->flag & BONE_CONNECTED) {
      *r_prev = pchan->parent;
    }
    else {
      *r_prev = NULL;
    }
  }
  else {
    /* Use the provided bone as prev - leave blank to eliminate this effect altogether. */
    *r_prev = pchan->bbone_prev;
  }

  if (pchan->bone->bbone_next_type == BBONE_HANDLE_AUTO) {
    /* Use connected child. */
    *r_next = pchan->child;
  }
  else {
    /* Use the provided bone as next - leave blank to eliminate this effect altogether. */
    *r_next = pchan->bbone_next;
  }
}

/* Compute B-Bone spline parameters for the given channel. */
void BKE_pchan_bbone_spline_params_get(struct bPoseChannel *pchan,
                                       const bool rest,
                                       struct BBoneSplineParameters *param)
{
  bPoseChannel *next, *prev;
  Bone *bone = pchan->bone;
  float imat[4][4], posemat[4][4];
  float delta[3];

  memset(param, 0, sizeof(*param));

  param->segments = bone->segments;
  param->length = bone->length;

  if (!rest) {
    float scale[3];

    /* Check if we need to take non-uniform bone scaling into account. */
    mat4_to_size(scale, pchan->pose_mat);

    if (fabsf(scale[0] - scale[1]) > 1e-6f || fabsf(scale[1] - scale[2]) > 1e-6f) {
      param->do_scale = true;
      copy_v3_v3(param->scale, scale);
    }
  }

  BKE_pchan_bbone_handles_get(pchan, &prev, &next);

  /* Find the handle points, since this is inside bone space, the
   * first point = (0, 0, 0)
   * last point =  (0, length, 0) */
  if (rest) {
    invert_m4_m4(imat, pchan->bone->arm_mat);
  }
  else if (param->do_scale) {
    copy_m4_m4(posemat, pchan->pose_mat);
    normalize_m4(posemat);
    invert_m4_m4(imat, posemat);
  }
  else {
    invert_m4_m4(imat, pchan->pose_mat);
  }

  if (prev) {
    float h1[3];
    bool done = false;

    param->use_prev = true;

    /* Transform previous point inside this bone space. */
    if (bone->bbone_prev_type == BBONE_HANDLE_RELATIVE) {
      /* Use delta movement (from restpose), and apply this relative to the current bone's head. */
      if (rest) {
        /* In restpose, arm_head == pose_head */
        zero_v3(param->prev_h);
        done = true;
      }
      else {
        sub_v3_v3v3(delta, prev->pose_head, prev->bone->arm_head);
        sub_v3_v3v3(h1, pchan->pose_head, delta);
      }
    }
    else if (bone->bbone_prev_type == BBONE_HANDLE_TANGENT) {
      /* Use bone direction by offsetting so that its tail meets current bone's head */
      if (rest) {
        sub_v3_v3v3(delta, prev->bone->arm_tail, prev->bone->arm_head);
        sub_v3_v3v3(h1, bone->arm_head, delta);
      }
      else {
        sub_v3_v3v3(delta, prev->pose_tail, prev->pose_head);
        sub_v3_v3v3(h1, pchan->pose_head, delta);
      }
    }
    else {
      /* Apply special handling for smoothly joining B-Bone chains */
      param->prev_bbone = (prev->bone->segments > 1);

      /* Use bone head as absolute position. */
      copy_v3_v3(h1, rest ? prev->bone->arm_head : prev->pose_head);
    }

    if (!done) {
      mul_v3_m4v3(param->prev_h, imat, h1);
    }

    if (!param->prev_bbone) {
      /* Find the previous roll to interpolate. */
      mul_m4_m4m4(param->prev_mat, imat, rest ? prev->bone->arm_mat : prev->pose_mat);
    }
  }

  if (next) {
    float h2[3];
    bool done = false;

    param->use_next = true;

    /* Transform next point inside this bone space. */
    if (bone->bbone_next_type == BBONE_HANDLE_RELATIVE) {
      /* Use delta movement (from restpose), and apply this relative to the current bone's tail. */
      if (rest) {
        /* In restpose, arm_head == pose_head */
        copy_v3_fl3(param->next_h, 0.0f, param->length, 0.0);
        done = true;
      }
      else {
        sub_v3_v3v3(delta, next->pose_head, next->bone->arm_head);
        add_v3_v3v3(h2, pchan->pose_tail, delta);
      }
    }
    else if (bone->bbone_next_type == BBONE_HANDLE_TANGENT) {
      /* Use bone direction by offsetting so that its head meets current bone's tail */
      if (rest) {
        sub_v3_v3v3(delta, next->bone->arm_tail, next->bone->arm_head);
        add_v3_v3v3(h2, bone->arm_tail, delta);
      }
      else {
        sub_v3_v3v3(delta, next->pose_tail, next->pose_head);
        add_v3_v3v3(h2, pchan->pose_tail, delta);
      }
    }
    else {
      /* Apply special handling for smoothly joining B-Bone chains */
      param->next_bbone = (next->bone->segments > 1);

      /* Use bone tail as absolute position. */
      copy_v3_v3(h2, rest ? next->bone->arm_tail : next->pose_tail);
    }

    if (!done) {
      mul_v3_m4v3(param->next_h, imat, h2);
    }

    /* Find the next roll to interpolate as well. */
    mul_m4_m4m4(param->next_mat, imat, rest ? next->bone->arm_mat : next->pose_mat);
  }

  /* Add effects from bbone properties over the top
   * - These properties allow users to hand-animate the
   *   bone curve/shape, without having to resort to using
   *   extra bones
   * - The "bone" level offsets are for defining the restpose
   *   shape of the bone (e.g. for curved eyebrows for example).
   *   -> In the viewport, it's needed to define what the rest pose
   *      looks like
   *   -> For "rest == 0", we also still need to have it present
   *      so that we can "cancel out" this restpose when it comes
   *      time to deform some geometry, it won't cause double transforms.
   * - The "pchan" level offsets are the ones that animators actually
   *   end up animating
   */
  {
    param->ease1 = bone->ease1 + (!rest ? pchan->ease1 : 0.0f);
    param->ease2 = bone->ease2 + (!rest ? pchan->ease2 : 0.0f);

    param->roll1 = bone->roll1 + (!rest ? pchan->roll1 : 0.0f);
    param->roll2 = bone->roll2 + (!rest ? pchan->roll2 : 0.0f);

    if (bone->flag & BONE_ADD_PARENT_END_ROLL) {
      if (prev) {
        if (prev->bone) {
          param->roll1 += prev->bone->roll2;
        }

        if (!rest) {
          param->roll1 += prev->roll2;
        }
      }
    }

    param->scale_in_x = bone->scale_in_x * (!rest ? pchan->scale_in_x : 1.0f);
    param->scale_in_y = bone->scale_in_y * (!rest ? pchan->scale_in_y : 1.0f);
    param->scale_out_x = bone->scale_out_x * (!rest ? pchan->scale_out_x : 1.0f);
    param->scale_out_y = bone->scale_out_y * (!rest ? pchan->scale_out_y : 1.0f);

    /* Extra curve x / y */
    param->curve_in_x = bone->curve_in_x + (!rest ? pchan->curve_in_x : 0.0f);
    param->curve_in_y = bone->curve_in_y + (!rest ? pchan->curve_in_y : 0.0f);

    param->curve_out_x = bone->curve_out_x + (!rest ? pchan->curve_out_x : 0.0f);
    param->curve_out_y = bone->curve_out_y + (!rest ? pchan->curve_out_y : 0.0f);
  }
}

/* Fills the array with the desired amount of bone->segments elements.
 * This calculation is done within unit bone space. */
void BKE_pchan_bbone_spline_setup(bPoseChannel *pchan,
                                  const bool rest,
                                  const bool for_deform,
                                  Mat4 *result_array)
{
  BBoneSplineParameters param;

  BKE_pchan_bbone_spline_params_get(pchan, rest, &param);

  pchan->bone->segments = BKE_pchan_bbone_spline_compute(&param, for_deform, result_array);
}

/* Computes the bezier handle vectors and rolls coming from custom handles. */
void BKE_pchan_bbone_handles_compute(const BBoneSplineParameters *param,
                                     float h1[3],
                                     float *r_roll1,
                                     float h2[3],
                                     float *r_roll2,
                                     bool ease,
                                     bool offsets)
{
  float mat3[3][3];
  float length = param->length;
  float epsilon = 1e-5 * length;

  if (param->do_scale) {
    length *= param->scale[1];
  }

  *r_roll1 = *r_roll2 = 0.0f;

  if (param->use_prev) {
    copy_v3_v3(h1, param->prev_h);

    if (param->prev_bbone) {
      /* If previous bone is B-bone too, use average handle direction. */
      h1[1] -= length;
    }

    if (normalize_v3(h1) < epsilon) {
      copy_v3_fl3(h1, 0.0f, -1.0f, 0.0f);
    }

    negate_v3(h1);

    if (!param->prev_bbone) {
      /* Find the previous roll to interpolate. */
      copy_m3_m4(mat3, param->prev_mat);
      mat3_vec_to_roll(mat3, h1, r_roll1);
    }
  }
  else {
    h1[0] = 0.0f;
    h1[1] = 1.0;
    h1[2] = 0.0f;
  }

  if (param->use_next) {
    copy_v3_v3(h2, param->next_h);

    /* If next bone is B-bone too, use average handle direction. */
    if (param->next_bbone) {
      /* pass */
    }
    else {
      h2[1] -= length;
    }

    if (normalize_v3(h2) < epsilon) {
      copy_v3_fl3(h2, 0.0f, 1.0f, 0.0f);
    }

    /* Find the next roll to interpolate as well. */
    copy_m3_m4(mat3, param->next_mat);
    mat3_vec_to_roll(mat3, h2, r_roll2);
  }
  else {
    h2[0] = 0.0f;
    h2[1] = 1.0f;
    h2[2] = 0.0f;
  }

  if (ease) {
    const float circle_factor = length * (cubic_tangent_factor_circle_v3(h1, h2) / 0.75f);

    const float hlength1 = param->ease1 * circle_factor;
    const float hlength2 = param->ease2 * circle_factor;

    /* and only now negate h2 */
    mul_v3_fl(h1, hlength1);
    mul_v3_fl(h2, -hlength2);
  }

  /* Add effects from bbone properties over the top
   * - These properties allow users to hand-animate the
   *   bone curve/shape, without having to resort to using
   *   extra bones
   * - The "bone" level offsets are for defining the restpose
   *   shape of the bone (e.g. for curved eyebrows for example).
   *   -> In the viewport, it's needed to define what the rest pose
   *      looks like
   *   -> For "rest == 0", we also still need to have it present
   *      so that we can "cancel out" this restpose when it comes
   *      time to deform some geometry, it won't cause double transforms.
   * - The "pchan" level offsets are the ones that animators actually
   *   end up animating
   */
  if (offsets) {
    /* Add extra rolls. */
    *r_roll1 += param->roll1;
    *r_roll2 += param->roll2;

    /* Extra curve x / y */
    /* NOTE:
     * Scale correction factors here are to compensate for some random floating-point glitches
     * when scaling up the bone or it's parent by a factor of approximately 8.15/6, which results
     * in the bone length getting scaled up too (from 1 to 8), causing the curve to flatten out.
     */
    const float xscale_correction = (param->do_scale) ? param->scale[0] : 1.0f;
    const float yscale_correction = (param->do_scale) ? param->scale[2] : 1.0f;

    h1[0] += param->curve_in_x * xscale_correction;
    h1[2] += param->curve_in_y * yscale_correction;

    h2[0] += param->curve_out_x * xscale_correction;
    h2[2] += param->curve_out_y * yscale_correction;
  }
}

static void make_bbone_spline_matrix(BBoneSplineParameters *param,
                                     float scalemats[2][4][4],
                                     float pos[3],
                                     float axis[3],
                                     float roll,
                                     float scalex,
                                     float scaley,
                                     float result[4][4])
{
  float mat3[3][3];

  vec_roll_to_mat3(axis, roll, mat3);

  copy_m4_m3(result, mat3);
  copy_v3_v3(result[3], pos);

  if (param->do_scale) {
    /* Correct for scaling when this matrix is used in scaled space. */
    mul_m4_series(result, scalemats[0], result, scalemats[1]);
  }

  /* BBone scale... */
  mul_v3_fl(result[0], scalex);
  mul_v3_fl(result[2], scaley);
}

/* Fade from first to second derivative when the handle is very short. */
static void ease_handle_axis(const float deriv1[3], const float deriv2[3], float r_axis[3])
{
  const float gap = 0.1f;

  copy_v3_v3(r_axis, deriv1);

  float len1 = len_squared_v3(deriv1), len2 = len_squared_v3(deriv2);
  float ratio = len1 / len2;

  if (ratio < gap * gap) {
    madd_v3_v3fl(r_axis, deriv2, gap - sqrtf(ratio));
  }
}

/* Fills the array with the desired amount of bone->segments elements.
 * This calculation is done within unit bone space. */
int BKE_pchan_bbone_spline_compute(BBoneSplineParameters *param,
                                   const bool for_deform,
                                   Mat4 *result_array)
{
  float scalemats[2][4][4];
  float bezt_controls[4][3];
  float h1[3], roll1, h2[3], roll2, prev[3], cur[3], axis[3];
  float length = param->length;

  if (param->do_scale) {
    size_to_mat4(scalemats[1], param->scale);
    invert_m4_m4(scalemats[0], scalemats[1]);

    length *= param->scale[1];
  }

  BKE_pchan_bbone_handles_compute(param, h1, &roll1, h2, &roll2, true, true);

  /* Make curve. */
  CLAMP_MAX(param->segments, MAX_BBONE_SUBDIV);

  copy_v3_fl3(bezt_controls[3], 0.0f, length, 0.0f);
  add_v3_v3v3(bezt_controls[2], bezt_controls[3], h2);
  copy_v3_v3(bezt_controls[1], h1);
  zero_v3(bezt_controls[0]);

  float bezt_points[MAX_BBONE_SUBDIV + 1];

  equalize_cubic_bezier(bezt_controls, MAX_BBONE_SUBDIV, param->segments, bezt_points);

  /* Deformation uses N+1 matrices computed at points between the segments. */
  if (for_deform) {
    /* Bezier derivatives. */
    float bezt_deriv1[3][3], bezt_deriv2[2][3];

    for (int i = 0; i < 3; i++) {
      sub_v3_v3v3(bezt_deriv1[i], bezt_controls[i + 1], bezt_controls[i]);
    }
    for (int i = 0; i < 2; i++) {
      sub_v3_v3v3(bezt_deriv2[i], bezt_deriv1[i + 1], bezt_deriv1[i]);
    }

    /* End points require special handling to fix zero length handles. */
    ease_handle_axis(bezt_deriv1[0], bezt_deriv2[0], axis);
    make_bbone_spline_matrix(param,
                             scalemats,
                             bezt_controls[0],
                             axis,
                             roll1,
                             param->scale_in_x,
                             param->scale_in_y,
                             result_array[0].mat);

    for (int a = 1; a < param->segments; a++) {
      evaluate_cubic_bezier(bezt_controls, bezt_points[a], cur, axis);

      float fac = ((float)a) / param->segments;
      float roll = interpf(roll2, roll1, fac);
      float scalex = interpf(param->scale_out_x, param->scale_in_x, fac);
      float scaley = interpf(param->scale_out_y, param->scale_in_y, fac);

      make_bbone_spline_matrix(
          param, scalemats, cur, axis, roll, scalex, scaley, result_array[a].mat);
    }

    negate_v3(bezt_deriv2[1]);
    ease_handle_axis(bezt_deriv1[2], bezt_deriv2[1], axis);
    make_bbone_spline_matrix(param,
                             scalemats,
                             bezt_controls[3],
                             axis,
                             roll2,
                             param->scale_out_x,
                             param->scale_out_y,
                             result_array[param->segments].mat);
  }
  /* Other code (e.g. display) uses matrices for the segments themselves. */
  else {
    zero_v3(prev);

    for (int a = 0; a < param->segments; a++) {
      evaluate_cubic_bezier(bezt_controls, bezt_points[a + 1], cur, axis);

      sub_v3_v3v3(axis, cur, prev);

      float fac = (a + 0.5f) / param->segments;
      float roll = interpf(roll2, roll1, fac);
      float scalex = interpf(param->scale_out_x, param->scale_in_x, fac);
      float scaley = interpf(param->scale_out_y, param->scale_in_y, fac);

      make_bbone_spline_matrix(
          param, scalemats, prev, axis, roll, scalex, scaley, result_array[a].mat);
      copy_v3_v3(prev, cur);
    }
  }

  return param->segments;
}

/* ************ Armature Deform ******************* */

static void allocate_bbone_cache(bPoseChannel *pchan, int segments)
{
  bPoseChannel_Runtime *runtime = &pchan->runtime;

  if (runtime->bbone_segments != segments) {
    BKE_pose_channel_free_bbone_cache(runtime);

    runtime->bbone_segments = segments;
    runtime->bbone_rest_mats = MEM_malloc_arrayN(
        sizeof(Mat4), 1 + (uint)segments, "bPoseChannel_Runtime::bbone_rest_mats");
    runtime->bbone_pose_mats = MEM_malloc_arrayN(
        sizeof(Mat4), 1 + (uint)segments, "bPoseChannel_Runtime::bbone_pose_mats");
    runtime->bbone_deform_mats = MEM_malloc_arrayN(
        sizeof(Mat4), 2 + (uint)segments, "bPoseChannel_Runtime::bbone_deform_mats");
    runtime->bbone_dual_quats = MEM_malloc_arrayN(
        sizeof(DualQuat), 1 + (uint)segments, "bPoseChannel_Runtime::bbone_dual_quats");
  }
}

/** Compute and cache the B-Bone shape in the channel runtime struct. */
void BKE_pchan_bbone_segments_cache_compute(bPoseChannel *pchan)
{
  bPoseChannel_Runtime *runtime = &pchan->runtime;
  Bone *bone = pchan->bone;
  int segments = bone->segments;

  BLI_assert(segments > 1);

  /* Allocate the cache if needed. */
  allocate_bbone_cache(pchan, segments);

  /* Compute the shape. */
  Mat4 *b_bone = runtime->bbone_pose_mats;
  Mat4 *b_bone_rest = runtime->bbone_rest_mats;
  Mat4 *b_bone_mats = runtime->bbone_deform_mats;
  DualQuat *b_bone_dual_quats = runtime->bbone_dual_quats;
  int a;

  BKE_pchan_bbone_spline_setup(pchan, false, true, b_bone);
  BKE_pchan_bbone_spline_setup(pchan, true, true, b_bone_rest);

  /* Compute deform matrices. */
  /* first matrix is the inverse arm_mat, to bring points in local bone space
   * for finding out which segment it belongs to */
  invert_m4_m4(b_bone_mats[0].mat, bone->arm_mat);

  /* then we make the b_bone_mats:
   * - first transform to local bone space
   * - translate over the curve to the bbone mat space
   * - transform with b_bone matrix
   * - transform back into global space */

  for (a = 0; a <= bone->segments; a++) {
    float tmat[4][4];

    invert_m4_m4(tmat, b_bone_rest[a].mat);
    mul_m4_series(b_bone_mats[a + 1].mat,
                  pchan->chan_mat,
                  bone->arm_mat,
                  b_bone[a].mat,
                  tmat,
                  b_bone_mats[0].mat);

    mat4_to_dquat(&b_bone_dual_quats[a], bone->arm_mat, b_bone_mats[a + 1].mat);
  }
}

/** Copy cached B-Bone segments from one channel to another */
void BKE_pchan_bbone_segments_cache_copy(bPoseChannel *pchan, bPoseChannel *pchan_from)
{
  bPoseChannel_Runtime *runtime = &pchan->runtime;
  bPoseChannel_Runtime *runtime_from = &pchan_from->runtime;
  int segments = runtime_from->bbone_segments;

  if (segments <= 1) {
    BKE_pose_channel_free_bbone_cache(&pchan->runtime);
  }
  else {
    allocate_bbone_cache(pchan, segments);

    memcpy(runtime->bbone_rest_mats, runtime_from->bbone_rest_mats, sizeof(Mat4) * (1 + segments));
    memcpy(runtime->bbone_pose_mats, runtime_from->bbone_pose_mats, sizeof(Mat4) * (1 + segments));
    memcpy(runtime->bbone_deform_mats,
           runtime_from->bbone_deform_mats,
           sizeof(Mat4) * (2 + segments));
    memcpy(runtime->bbone_dual_quats,
           runtime_from->bbone_dual_quats,
           sizeof(DualQuat) * (1 + segments));
  }
}

/** Calculate index and blend factor for the two B-Bone segment nodes
 * affecting the point at 0 <= pos <= 1. */
void BKE_pchan_bbone_deform_segment_index(const bPoseChannel *pchan,
                                          float pos,
                                          int *r_index,
                                          float *r_blend_next)
{
  int segments = pchan->bone->segments;

  CLAMP(pos, 0.0f, 1.0f);

  /* Calculate the indices of the 2 affecting b_bone segments.
   * Integer part is the first segment's index.
   * Integer part plus 1 is the second segment's index.
   * Fractional part is the blend factor. */
  float pre_blend = pos * (float)segments;

  int index = (int)floorf(pre_blend);
  float blend = pre_blend - index;

  CLAMP(index, 0, segments);
  CLAMP(blend, 0.0f, 1.0f);

  *r_index = index;
  *r_blend_next = blend;
}

/* Add the effect of one bone or B-Bone segment to the accumulated result. */
static void pchan_deform_accumulate(const DualQuat *deform_dq,
                                    const float deform_mat[4][4],
                                    const float co_in[3],
                                    float weight,
                                    float co_accum[3],
                                    DualQuat *dq_accum,
                                    float mat_accum[3][3])
{
  if (weight == 0.0f) {
    return;
  }

  if (dq_accum) {
    BLI_assert(!co_accum);

    add_weighted_dq_dq(dq_accum, deform_dq, weight);
  }
  else {
    float tmp[3];
    mul_v3_m4v3(tmp, deform_mat, co_in);

    sub_v3_v3(tmp, co_in);
    madd_v3_v3fl(co_accum, tmp, weight);

    if (mat_accum) {
      float tmpmat[3][3];
      copy_m3_m4(tmpmat, deform_mat);

      madd_m3_m3m3fl(mat_accum, mat_accum, tmpmat, weight);
    }
  }
}

static void b_bone_deform(const bPoseChannel *pchan,
                          const float co[3],
                          float weight,
                          float vec[3],
                          DualQuat *dq,
                          float defmat[3][3])
{
  const DualQuat *quats = pchan->runtime.bbone_dual_quats;
  const Mat4 *mats = pchan->runtime.bbone_deform_mats;
  const float(*mat)[4] = mats[0].mat;
  float blend, y;
  int index;

  /* Transform co to bone space and get its y component. */
  y = mat[0][1] * co[0] + mat[1][1] * co[1] + mat[2][1] * co[2] + mat[3][1];

  /* Calculate the indices of the 2 affecting b_bone segments. */
  BKE_pchan_bbone_deform_segment_index(pchan, y / pchan->bone->length, &index, &blend);

  pchan_deform_accumulate(
      &quats[index], mats[index + 1].mat, co, weight * (1.0f - blend), vec, dq, defmat);
  pchan_deform_accumulate(
      &quats[index + 1], mats[index + 2].mat, co, weight * blend, vec, dq, defmat);
}

/* using vec with dist to bone b1 - b2 */
float distfactor_to_bone(
    const float vec[3], const float b1[3], const float b2[3], float rad1, float rad2, float rdist)
{
  float dist_sq;
  float bdelta[3];
  float pdelta[3];
  float hsqr, a, l, rad;

  sub_v3_v3v3(bdelta, b2, b1);
  l = normalize_v3(bdelta);

  sub_v3_v3v3(pdelta, vec, b1);

  a = dot_v3v3(bdelta, pdelta);
  hsqr = len_squared_v3(pdelta);

  if (a < 0.0f) {
    /* If we're past the end of the bone, do a spherical field attenuation thing */
    dist_sq = len_squared_v3v3(b1, vec);
    rad = rad1;
  }
  else if (a > l) {
    /* If we're past the end of the bone, do a spherical field attenuation thing */
    dist_sq = len_squared_v3v3(b2, vec);
    rad = rad2;
  }
  else {
    dist_sq = (hsqr - (a * a));

    if (l != 0.0f) {
      rad = a / l;
      rad = rad * rad2 + (1.0f - rad) * rad1;
    }
    else {
      rad = rad1;
    }
  }

  a = rad * rad;
  if (dist_sq < a) {
    return 1.0f;
  }
  else {
    l = rad + rdist;
    l *= l;
    if (rdist == 0.0f || dist_sq >= l) {
      return 0.0f;
    }
    else {
      a = sqrtf(dist_sq) - rad;
      return 1.0f - (a * a) / (rdist * rdist);
    }
  }
}

static float dist_bone_deform(
    bPoseChannel *pchan, float vec[3], DualQuat *dq, float mat[3][3], const float co[3])
{
  Bone *bone = pchan->bone;
  float fac, contrib = 0.0;

  if (bone == NULL) {
    return 0.0f;
  }

  fac = distfactor_to_bone(
      co, bone->arm_head, bone->arm_tail, bone->rad_head, bone->rad_tail, bone->dist);

  if (fac > 0.0f) {
    fac *= bone->weight;
    contrib = fac;
    if (contrib > 0.0f) {
      if (bone->segments > 1 && pchan->runtime.bbone_segments == bone->segments) {
        b_bone_deform(pchan, co, fac, vec, dq, mat);
      }
      else {
        pchan_deform_accumulate(
            &pchan->runtime.deform_dual_quat, pchan->chan_mat, co, fac, vec, dq, mat);
      }
    }
  }

  return contrib;
}

static void pchan_bone_deform(bPoseChannel *pchan,
                              float weight,
                              float vec[3],
                              DualQuat *dq,
                              float mat[3][3],
                              const float co[3],
                              float *contrib)
{
  Bone *bone = pchan->bone;

  if (!weight) {
    return;
  }

  if (bone->segments > 1 && pchan->runtime.bbone_segments == bone->segments) {
    b_bone_deform(pchan, co, weight, vec, dq, mat);
  }
  else {
    pchan_deform_accumulate(
        &pchan->runtime.deform_dual_quat, pchan->chan_mat, co, weight, vec, dq, mat);
  }

  (*contrib) += weight;
}

typedef struct ArmatureUserdata {
  Object *armOb;
  Object *target;
  const Mesh *mesh;
  float (*vertexCos)[3];
  float (*defMats)[3][3];
  float (*prevCos)[3];

  bool use_envelope;
  bool use_quaternion;
  bool invert_vgroup;
  bool use_dverts;

  int armature_def_nr;

  int target_totvert;
  MDeformVert *dverts;

  int defbase_tot;
  bPoseChannel **defnrToPC;

  float premat[4][4];
  float postmat[4][4];
} ArmatureUserdata;

static void armature_vert_task(void *__restrict userdata,
                               const int i,
                               const ParallelRangeTLS *__restrict UNUSED(tls))
{
  const ArmatureUserdata *data = userdata;
  float(*const vertexCos)[3] = data->vertexCos;
  float(*const defMats)[3][3] = data->defMats;
  float(*const prevCos)[3] = data->prevCos;
  const bool use_envelope = data->use_envelope;
  const bool use_quaternion = data->use_quaternion;
  const bool use_dverts = data->use_dverts;
  const int armature_def_nr = data->armature_def_nr;

  MDeformVert *dvert;
  DualQuat sumdq, *dq = NULL;
  bPoseChannel *pchan;
  float *co, dco[3];
  float sumvec[3], summat[3][3];
  float *vec = NULL, (*smat)[3] = NULL;
  float contrib = 0.0f;
  float armature_weight = 1.0f; /* default to 1 if no overall def group */
  float prevco_weight = 1.0f;   /* weight for optional cached vertexcos */

  if (use_quaternion) {
    memset(&sumdq, 0, sizeof(DualQuat));
    dq = &sumdq;
  }
  else {
    sumvec[0] = sumvec[1] = sumvec[2] = 0.0f;
    vec = sumvec;

    if (defMats) {
      zero_m3(summat);
      smat = summat;
    }
  }

  if (use_dverts || armature_def_nr != -1) {
    if (data->mesh) {
      BLI_assert(i < data->mesh->totvert);
      if (data->mesh->dvert != NULL) {
        dvert = data->mesh->dvert + i;
      }
      else {
        dvert = NULL;
      }
    }
    else if (data->dverts && i < data->target_totvert) {
      dvert = data->dverts + i;
    }
    else {
      dvert = NULL;
    }
  }
  else {
    dvert = NULL;
  }

  if (armature_def_nr != -1 && dvert) {
    armature_weight = defvert_find_weight(dvert, armature_def_nr);

    if (data->invert_vgroup) {
      armature_weight = 1.0f - armature_weight;
    }

    /* hackish: the blending factor can be used for blending with prevCos too */
    if (prevCos) {
      prevco_weight = armature_weight;
      armature_weight = 1.0f;
    }
  }

  /* check if there's any  point in calculating for this vert */
  if (armature_weight == 0.0f) {
    return;
  }

  /* get the coord we work on */
  co = prevCos ? prevCos[i] : vertexCos[i];

  /* Apply the object's matrix */
  mul_m4_v3(data->premat, co);

  if (use_dverts && dvert && dvert->totweight) { /* use weight groups ? */
    MDeformWeight *dw = dvert->dw;
    int deformed = 0;
    unsigned int j;
    float acum_weight = 0;
    for (j = dvert->totweight; j != 0; j--, dw++) {
      const int index = dw->def_nr;
      if (index >= 0 && index < data->defbase_tot && (pchan = data->defnrToPC[index])) {
        float weight = dw->weight;
        Bone *bone = pchan->bone;

        deformed = 1;

        if (bone && bone->flag & BONE_MULT_VG_ENV) {
          weight *= distfactor_to_bone(
              co, bone->arm_head, bone->arm_tail, bone->rad_head, bone->rad_tail, bone->dist);
        }

        /* check limit of weight */
        if (data->target->type == OB_GPENCIL) {
          if (acum_weight + weight >= 1.0f) {
            weight = 1.0f - acum_weight;
          }
          acum_weight += weight;
        }

        pchan_bone_deform(pchan, weight, vec, dq, smat, co, &contrib);

        /* if acumulated weight limit exceed, exit loop */
        if ((data->target->type == OB_GPENCIL) && (acum_weight >= 1.0f)) {
          break;
        }
      }
    }
    /* if there are vertexgroups but not groups with bones
     * (like for softbody groups) */
    if (deformed == 0 && use_envelope) {
      for (pchan = data->armOb->pose->chanbase.first; pchan; pchan = pchan->next) {
        if (!(pchan->bone->flag & BONE_NO_DEFORM)) {
          contrib += dist_bone_deform(pchan, vec, dq, smat, co);
        }
      }
    }
  }
  else if (use_envelope) {
    for (pchan = data->armOb->pose->chanbase.first; pchan; pchan = pchan->next) {
      if (!(pchan->bone->flag & BONE_NO_DEFORM)) {
        contrib += dist_bone_deform(pchan, vec, dq, smat, co);
      }
    }
  }

  /* actually should be EPSILON? weight values and contrib can be like 10e-39 small */
  if (contrib > 0.0001f) {
    if (use_quaternion) {
      normalize_dq(dq, contrib);

      if (armature_weight != 1.0f) {
        copy_v3_v3(dco, co);
        mul_v3m3_dq(dco, (defMats) ? summat : NULL, dq);
        sub_v3_v3(dco, co);
        mul_v3_fl(dco, armature_weight);
        add_v3_v3(co, dco);
      }
      else {
        mul_v3m3_dq(co, (defMats) ? summat : NULL, dq);
      }

      smat = summat;
    }
    else {
      mul_v3_fl(vec, armature_weight / contrib);
      add_v3_v3v3(co, vec, co);
    }

    if (defMats) {
      float pre[3][3], post[3][3], tmpmat[3][3];

      copy_m3_m4(pre, data->premat);
      copy_m3_m4(post, data->postmat);
      copy_m3_m3(tmpmat, defMats[i]);

      if (!use_quaternion) { /* quaternion already is scale corrected */
        mul_m3_fl(smat, armature_weight / contrib);
      }

      mul_m3_series(defMats[i], post, smat, pre, tmpmat);
    }
  }

  /* always, check above code */
  mul_m4_v3(data->postmat, co);

  /* interpolate with previous modifier position using weight group */
  if (prevCos) {
    float mw = 1.0f - prevco_weight;
    vertexCos[i][0] = prevco_weight * vertexCos[i][0] + mw * co[0];
    vertexCos[i][1] = prevco_weight * vertexCos[i][1] + mw * co[1];
    vertexCos[i][2] = prevco_weight * vertexCos[i][2] + mw * co[2];
  }
}

void armature_deform_verts(Object *armOb,
                           Object *target,
                           const Mesh *mesh,
                           float (*vertexCos)[3],
                           float (*defMats)[3][3],
                           int numVerts,
                           int deformflag,
                           float (*prevCos)[3],
                           const char *defgrp_name,
                           bGPDstroke *gps)
{
  bArmature *arm = armOb->data;
  bPoseChannel **defnrToPC = NULL;
  MDeformVert *dverts = NULL;
  bDeformGroup *dg;
  const bool use_envelope = (deformflag & ARM_DEF_ENVELOPE) != 0;
  const bool use_quaternion = (deformflag & ARM_DEF_QUATERNION) != 0;
  const bool invert_vgroup = (deformflag & ARM_DEF_INVERT_VGROUP) != 0;
  int defbase_tot = 0;       /* safety for vertexgroup index overflow */
  int i, target_totvert = 0; /* safety for vertexgroup overflow */
  bool use_dverts = false;
  int armature_def_nr;

  /* in editmode, or not an armature */
  if (arm->edbo || (armOb->pose == NULL)) {
    return;
  }

  if ((armOb->pose->flag & POSE_RECALC) != 0) {
    CLOG_ERROR(&LOG,
               "Trying to evaluate influence of armature '%s' which needs Pose recalc!",
               armOb->id.name);
    BLI_assert(0);
  }

  /* get the def_nr for the overall armature vertex group if present */
  armature_def_nr = defgroup_name_index(target, defgrp_name);

  if (ELEM(target->type, OB_MESH, OB_LATTICE, OB_GPENCIL)) {
    defbase_tot = BLI_listbase_count(&target->defbase);

    if (target->type == OB_MESH) {
      Mesh *me = target->data;
      dverts = me->dvert;
      if (dverts) {
        target_totvert = me->totvert;
      }
    }
    else if (target->type == OB_LATTICE) {
      Lattice *lt = target->data;
      dverts = lt->dvert;
      if (dverts) {
        target_totvert = lt->pntsu * lt->pntsv * lt->pntsw;
      }
    }
    else if (target->type == OB_GPENCIL) {
      dverts = gps->dvert;
      if (dverts) {
        target_totvert = gps->totpoints;
      }
    }
  }

  /* get a vertex-deform-index to posechannel array */
  if (deformflag & ARM_DEF_VGROUP) {
    if (ELEM(target->type, OB_MESH, OB_LATTICE, OB_GPENCIL)) {
      /* if we have a Mesh, only use dverts if it has them */
      if (mesh) {
        use_dverts = (mesh->dvert != NULL);
      }
      else if (dverts) {
        use_dverts = true;
      }

      if (use_dverts) {
        defnrToPC = MEM_callocN(sizeof(*defnrToPC) * defbase_tot, "defnrToBone");
        /* TODO(sergey): Some considerations here:
         *
         * - Check whether keeping this consistent across frames gives speedup.
         */
        for (i = 0, dg = target->defbase.first; dg; i++, dg = dg->next) {
          defnrToPC[i] = BKE_pose_channel_find_name(armOb->pose, dg->name);
          /* exclude non-deforming bones */
          if (defnrToPC[i]) {
            if (defnrToPC[i]->bone->flag & BONE_NO_DEFORM) {
              defnrToPC[i] = NULL;
            }
          }
        }
      }
    }
  }

  ArmatureUserdata data = {.armOb = armOb,
                           .target = target,
                           .mesh = mesh,
                           .vertexCos = vertexCos,
                           .defMats = defMats,
                           .prevCos = prevCos,
                           .use_envelope = use_envelope,
                           .use_quaternion = use_quaternion,
                           .invert_vgroup = invert_vgroup,
                           .use_dverts = use_dverts,
                           .armature_def_nr = armature_def_nr,
                           .target_totvert = target_totvert,
                           .dverts = dverts,
                           .defbase_tot = defbase_tot,
                           .defnrToPC = defnrToPC};

  float obinv[4][4];
  invert_m4_m4(obinv, target->obmat);

  mul_m4_m4m4(data.postmat, obinv, armOb->obmat);
  invert_m4_m4(data.premat, data.postmat);

  ParallelRangeSettings settings;
  BLI_parallel_range_settings_defaults(&settings);
  settings.min_iter_per_thread = 32;
  BLI_task_parallel_range(0, numVerts, &data, armature_vert_task, &settings);

  if (defnrToPC) {
    MEM_freeN(defnrToPC);
  }
}

/* ************ END Armature Deform ******************* */

void get_objectspace_bone_matrix(struct Bone *bone,
                                 float M_accumulatedMatrix[4][4],
                                 int UNUSED(root),
                                 int UNUSED(posed))
{
  copy_m4_m4(M_accumulatedMatrix, bone->arm_mat);
}

/* **************** Space to Space API ****************** */

/* Convert World-Space Matrix to Pose-Space Matrix */
void BKE_armature_mat_world_to_pose(Object *ob, float inmat[4][4], float outmat[4][4])
{
  float obmat[4][4];

  /* prevent crashes */
  if (ob == NULL) {
    return;
  }

  /* get inverse of (armature) object's matrix  */
  invert_m4_m4(obmat, ob->obmat);

  /* multiply given matrix by object's-inverse to find pose-space matrix */
  mul_m4_m4m4(outmat, inmat, obmat);
}

/* Convert World-Space Location to Pose-Space Location
 * NOTE: this cannot be used to convert to pose-space location of the supplied
 *       pose-channel into its local space (i.e. 'visual'-keyframing) */
void BKE_armature_loc_world_to_pose(Object *ob, const float inloc[3], float outloc[3])
{
  float xLocMat[4][4];
  float nLocMat[4][4];

  /* build matrix for location */
  unit_m4(xLocMat);
  copy_v3_v3(xLocMat[3], inloc);

  /* get bone-space cursor matrix and extract location */
  BKE_armature_mat_world_to_pose(ob, xLocMat, nLocMat);
  copy_v3_v3(outloc, nLocMat[3]);
}

/* Simple helper, computes the offset bone matrix.
 *     offs_bone = yoffs(b-1) + root(b) + bonemat(b). */
void BKE_bone_offset_matrix_get(const Bone *bone, float offs_bone[4][4])
{
  BLI_assert(bone->parent != NULL);

  /* Bone transform itself. */
  copy_m4_m3(offs_bone, bone->bone_mat);

  /* The bone's root offset (is in the parent's coordinate system). */
  copy_v3_v3(offs_bone[3], bone->head);

  /* Get the length translation of parent (length along y axis). */
  offs_bone[3][1] += bone->parent->length;
}

/* Construct the matrices (rot/scale and loc)
 * to apply the PoseChannels into the armature (object) space.
 * I.e. (roughly) the "pose_mat(b-1) * yoffs(b-1) * d_root(b) * bone_mat(b)" in the
 *     pose_mat(b)= pose_mat(b-1) * yoffs(b-1) * d_root(b) * bone_mat(b) * chan_mat(b)
 * ...function.
 *
 * This allows to get the transformations of a bone in its object space,
 * *before* constraints (and IK) get applied (used by pose evaluation code).
 * And reverse: to find pchan transformations needed to place a bone at a given loc/rot/scale
 * in object space (used by interactive transform, and snapping code).
 *
 * Note that, with the HINGE/NO_SCALE/NO_LOCAL_LOCATION options, the location matrix
 * will differ from the rotation/scale matrix...
 *
 * NOTE: This cannot be used to convert to pose-space transforms of the supplied
 *       pose-channel into its local space (i.e. 'visual'-keyframing).
 *       (note: I don't understand that, so I keep it :p --mont29).
 */
void BKE_bone_parent_transform_calc_from_pchan(const bPoseChannel *pchan,
                                               BoneParentTransform *r_bpt)
{
  const Bone *bone, *parbone;
  const bPoseChannel *parchan;

  /* set up variables for quicker access below */
  bone = pchan->bone;
  parbone = bone->parent;
  parchan = pchan->parent;

  if (parchan) {
    float offs_bone[4][4];
    /* yoffs(b-1) + root(b) + bonemat(b). */
    BKE_bone_offset_matrix_get(bone, offs_bone);

    BKE_bone_parent_transform_calc_from_matrices(
        bone->flag, offs_bone, parbone->arm_mat, parchan->pose_mat, r_bpt);
  }
  else {
    BKE_bone_parent_transform_calc_from_matrices(bone->flag, bone->arm_mat, NULL, NULL, r_bpt);
  }
}

/* Compute the parent transform using data decoupled from specific data structures.
 *
 * bone_flag: Bone->flag containing settings
 * offs_bone: delta from parent to current arm_mat (or just arm_mat if no parent)
 * parent_arm_mat, parent_pose_mat: arm_mat and pose_mat of parent, or NULL
 * r_bpt: OUTPUT parent transform */
void BKE_bone_parent_transform_calc_from_matrices(int bone_flag,
                                                  const float offs_bone[4][4],
                                                  const float parent_arm_mat[4][4],
                                                  const float parent_pose_mat[4][4],
                                                  BoneParentTransform *r_bpt)
{
  if (parent_pose_mat) {
    /* Compose the rotscale matrix for this bone. */
    if ((bone_flag & BONE_HINGE) && (bone_flag & BONE_NO_SCALE)) {
      /* Parent rest rotation and scale. */
      mul_m4_m4m4(r_bpt->rotscale_mat, parent_arm_mat, offs_bone);
    }
    else if (bone_flag & BONE_HINGE) {
      /* Parent rest rotation and pose scale. */
      float tmat[4][4], tscale[3];

      /* Extract the scale of the parent pose matrix. */
      mat4_to_size(tscale, parent_pose_mat);
      size_to_mat4(tmat, tscale);

      /* Applies the parent pose scale to the rest matrix. */
      mul_m4_m4m4(tmat, tmat, parent_arm_mat);

      mul_m4_m4m4(r_bpt->rotscale_mat, tmat, offs_bone);
    }
    else if (bone_flag & BONE_NO_SCALE) {
      /* Parent pose rotation and rest scale (i.e. no scaling). */
      float tmat[4][4];
      copy_m4_m4(tmat, parent_pose_mat);
      normalize_m4(tmat);
      mul_m4_m4m4(r_bpt->rotscale_mat, tmat, offs_bone);
    }
    else {
      mul_m4_m4m4(r_bpt->rotscale_mat, parent_pose_mat, offs_bone);
    }

    /* Compose the loc matrix for this bone. */
    /* NOTE: That version does not modify bone's loc when HINGE/NO_SCALE options are set. */

    /* In this case, use the object's space *orientation*. */
    if (bone_flag & BONE_NO_LOCAL_LOCATION) {
      /* XXX I'm sure that code can be simplified! */
      float bone_loc[4][4], bone_rotscale[3][3], tmat4[4][4], tmat3[3][3];
      unit_m4(bone_loc);
      unit_m4(r_bpt->loc_mat);
      unit_m4(tmat4);

      mul_v3_m4v3(bone_loc[3], parent_pose_mat, offs_bone[3]);

      unit_m3(bone_rotscale);
      copy_m3_m4(tmat3, parent_pose_mat);
      mul_m3_m3m3(bone_rotscale, tmat3, bone_rotscale);

      copy_m4_m3(tmat4, bone_rotscale);
      mul_m4_m4m4(r_bpt->loc_mat, bone_loc, tmat4);
    }
    /* Those flags do not affect position, use plain parent transform space! */
    else if (bone_flag & (BONE_HINGE | BONE_NO_SCALE)) {
      mul_m4_m4m4(r_bpt->loc_mat, parent_pose_mat, offs_bone);
    }
    /* Else (i.e. default, usual case),
     * just use the same matrix for rotation/scaling, and location. */
    else {
      copy_m4_m4(r_bpt->loc_mat, r_bpt->rotscale_mat);
    }
  }
  /* Root bones. */
  else {
    /* Rotation/scaling. */
    copy_m4_m4(r_bpt->rotscale_mat, offs_bone);
    /* Translation. */
    if (bone_flag & BONE_NO_LOCAL_LOCATION) {
      /* Translation of arm_mat, without the rotation. */
      unit_m4(r_bpt->loc_mat);
      copy_v3_v3(r_bpt->loc_mat[3], offs_bone[3]);
    }
    else {
      copy_m4_m4(r_bpt->loc_mat, r_bpt->rotscale_mat);
    }
  }
}

void BKE_bone_parent_transform_clear(struct BoneParentTransform *bpt)
{
  unit_m4(bpt->rotscale_mat);
  unit_m4(bpt->loc_mat);
}

void BKE_bone_parent_transform_invert(struct BoneParentTransform *bpt)
{
  invert_m4(bpt->rotscale_mat);
  invert_m4(bpt->loc_mat);
}

void BKE_bone_parent_transform_combine(const struct BoneParentTransform *in1,
                                       const struct BoneParentTransform *in2,
                                       struct BoneParentTransform *result)
{
  mul_m4_m4m4(result->rotscale_mat, in1->rotscale_mat, in2->rotscale_mat);
  mul_m4_m4m4(result->loc_mat, in1->loc_mat, in2->loc_mat);
}

void BKE_bone_parent_transform_apply(const struct BoneParentTransform *bpt,
                                     const float inmat[4][4],
                                     float outmat[4][4])
{
  /* in case inmat == outmat */
  float tmploc[3];
  copy_v3_v3(tmploc, inmat[3]);

  mul_m4_m4m4(outmat, bpt->rotscale_mat, inmat);
  mul_v3_m4v3(outmat[3], bpt->loc_mat, tmploc);
}

/* Convert Pose-Space Matrix to Bone-Space Matrix.
 * NOTE: this cannot be used to convert to pose-space transforms of the supplied
 *       pose-channel into its local space (i.e. 'visual'-keyframing) */
void BKE_armature_mat_pose_to_bone(bPoseChannel *pchan, float inmat[4][4], float outmat[4][4])
{
  BoneParentTransform bpt;

  BKE_bone_parent_transform_calc_from_pchan(pchan, &bpt);
  BKE_bone_parent_transform_invert(&bpt);
  BKE_bone_parent_transform_apply(&bpt, inmat, outmat);
}

/* Convert Bone-Space Matrix to Pose-Space Matrix. */
void BKE_armature_mat_bone_to_pose(bPoseChannel *pchan, float inmat[4][4], float outmat[4][4])
{
  BoneParentTransform bpt;

  BKE_bone_parent_transform_calc_from_pchan(pchan, &bpt);
  BKE_bone_parent_transform_apply(&bpt, inmat, outmat);
}

/* Convert Pose-Space Location to Bone-Space Location
 * NOTE: this cannot be used to convert to pose-space location of the supplied
 *       pose-channel into its local space (i.e. 'visual'-keyframing) */
void BKE_armature_loc_pose_to_bone(bPoseChannel *pchan, const float inloc[3], float outloc[3])
{
  float xLocMat[4][4];
  float nLocMat[4][4];

  /* build matrix for location */
  unit_m4(xLocMat);
  copy_v3_v3(xLocMat[3], inloc);

  /* get bone-space cursor matrix and extract location */
  BKE_armature_mat_pose_to_bone(pchan, xLocMat, nLocMat);
  copy_v3_v3(outloc, nLocMat[3]);
}

void BKE_armature_mat_pose_to_bone_ex(struct Depsgraph *depsgraph,
                                      Object *ob,
                                      bPoseChannel *pchan,
                                      float inmat[4][4],
                                      float outmat[4][4])
{
  bPoseChannel work_pchan = *pchan;

  /* recalculate pose matrix with only parent transformations,
   * bone loc/sca/rot is ignored, scene and frame are not used. */
  BKE_pose_where_is_bone(depsgraph, NULL, ob, &work_pchan, 0.0f, false);

  /* find the matrix, need to remove the bone transforms first so this is
   * calculated as a matrix to set rather then a difference ontop of what's
   * already there. */
  unit_m4(outmat);
  BKE_pchan_apply_mat4(&work_pchan, outmat, false);

  BKE_armature_mat_pose_to_bone(&work_pchan, inmat, outmat);
}

/**
 * Same as #BKE_object_mat3_to_rot().
 */
void BKE_pchan_mat3_to_rot(bPoseChannel *pchan, float mat[3][3], bool use_compat)
{
  BLI_ASSERT_UNIT_M3(mat);

  switch (pchan->rotmode) {
    case ROT_MODE_QUAT:
      mat3_normalized_to_quat(pchan->quat, mat);
      break;
    case ROT_MODE_AXISANGLE:
      mat3_normalized_to_axis_angle(pchan->rotAxis, &pchan->rotAngle, mat);
      break;
    default: /* euler */
      if (use_compat) {
        mat3_normalized_to_compatible_eulO(pchan->eul, pchan->eul, pchan->rotmode, mat);
      }
      else {
        mat3_normalized_to_eulO(pchan->eul, pchan->rotmode, mat);
      }
      break;
  }
}

/**
 * Same as #BKE_object_rot_to_mat3().
 */
void BKE_pchan_rot_to_mat3(const bPoseChannel *pchan, float mat[3][3])
{
  /* rotations may either be quats, eulers (with various rotation orders), or axis-angle */
  if (pchan->rotmode > 0) {
    /* euler rotations (will cause gimble lock,
     * but this can be alleviated a bit with rotation orders) */
    eulO_to_mat3(mat, pchan->eul, pchan->rotmode);
  }
  else if (pchan->rotmode == ROT_MODE_AXISANGLE) {
    /* axis-angle - not really that great for 3D-changing orientations */
    axis_angle_to_mat3(mat, pchan->rotAxis, pchan->rotAngle);
  }
  else {
    /* quats are normalized before use to eliminate scaling issues */
    float quat[4];

    /* NOTE: we now don't normalize the stored values anymore,
     * since this was kindof evil in some cases but if this proves to be too problematic,
     * switch back to the old system of operating directly on the stored copy. */
    normalize_qt_qt(quat, pchan->quat);
    quat_to_mat3(mat, quat);
  }
}

/**
 * Apply a 4x4 matrix to the pose bone,
 * similar to #BKE_object_apply_mat4().
 */
void BKE_pchan_apply_mat4(bPoseChannel *pchan, float mat[4][4], bool use_compat)
{
  float rot[3][3];
  mat4_to_loc_rot_size(pchan->loc, rot, pchan->size, mat);
  BKE_pchan_mat3_to_rot(pchan, rot, use_compat);
}

/**
 * Remove rest-position effects from pose-transform for obtaining
 * 'visual' transformation of pose-channel.
 * (used by the Visual-Keyframing stuff).
 */
void BKE_armature_mat_pose_to_delta(float delta_mat[4][4],
                                    float pose_mat[4][4],
                                    float arm_mat[4][4])
{
  float imat[4][4];

  invert_m4_m4(imat, arm_mat);
  mul_m4_m4m4(delta_mat, imat, pose_mat);
}

/* **************** Rotation Mode Conversions ****************************** */
/* Used for Objects and Pose Channels, since both can have multiple rotation representations */

/* Called from RNA when rotation mode changes
 * - the result should be that the rotations given in the provided pointers have had conversions
 *   applied (as appropriate), such that the rotation of the element hasn't 'visually' changed  */
void BKE_rotMode_change_values(
    float quat[4], float eul[3], float axis[3], float *angle, short oldMode, short newMode)
{
  /* check if any change - if so, need to convert data */
  if (newMode > 0) { /* to euler */
    if (oldMode == ROT_MODE_AXISANGLE) {
      /* axis-angle to euler */
      axis_angle_to_eulO(eul, newMode, axis, *angle);
    }
    else if (oldMode == ROT_MODE_QUAT) {
      /* quat to euler */
      normalize_qt(quat);
      quat_to_eulO(eul, newMode, quat);
    }
    /* else { no conversion needed } */
  }
  else if (newMode == ROT_MODE_QUAT) { /* to quat */
    if (oldMode == ROT_MODE_AXISANGLE) {
      /* axis angle to quat */
      axis_angle_to_quat(quat, axis, *angle);
    }
    else if (oldMode > 0) {
      /* euler to quat */
      eulO_to_quat(quat, eul, oldMode);
    }
    /* else { no conversion needed } */
  }
  else if (newMode == ROT_MODE_AXISANGLE) { /* to axis-angle */
    if (oldMode > 0) {
      /* euler to axis angle */
      eulO_to_axis_angle(axis, angle, eul, oldMode);
    }
    else if (oldMode == ROT_MODE_QUAT) {
      /* quat to axis angle */
      normalize_qt(quat);
      quat_to_axis_angle(axis, angle, quat);
    }

    /* When converting to axis-angle,
     * we need a special exception for the case when there is no axis. */
    if (IS_EQF(axis[0], axis[1]) && IS_EQF(axis[1], axis[2])) {
      /* for now, rotate around y-axis then (so that it simply becomes the roll) */
      axis[1] = 1.0f;
    }
  }
}

/* **************** The new & simple (but OK!) armature evaluation ********* */

/* ****************** And how it works! ****************************************
 *
 * This is the bone transformation trick; they're hierarchical so each bone(b)
 * is in the coord system of bone(b-1):
 *
 * arm_mat(b)= arm_mat(b-1) * yoffs(b-1) * d_root(b) * bone_mat(b)
 *
 * -> yoffs is just the y axis translation in parent's coord system
 * -> d_root is the translation of the bone root, also in parent's coord system
 *
 * pose_mat(b)= pose_mat(b-1) * yoffs(b-1) * d_root(b) * bone_mat(b) * chan_mat(b)
 *
 * we then - in init deform - store the deform in chan_mat, such that:
 *
 * pose_mat(b)= arm_mat(b) * chan_mat(b)
 *
 * *************************************************************************** */

/* Computes vector and roll based on a rotation.
 * "mat" must contain only a rotation, and no scaling. */
void mat3_to_vec_roll(const float mat[3][3], float r_vec[3], float *r_roll)
{
  if (r_vec) {
    copy_v3_v3(r_vec, mat[1]);
  }

  if (r_roll) {
    mat3_vec_to_roll(mat, mat[1], r_roll);
  }
}

/* Computes roll around the vector that best approximates the matrix.
 * If vec is the Y vector from purely rotational mat, result should be exact. */
void mat3_vec_to_roll(const float mat[3][3], const float vec[3], float *r_roll)
{
  float vecmat[3][3], vecmatinv[3][3], rollmat[3][3];

  vec_roll_to_mat3(vec, 0.0f, vecmat);
  invert_m3_m3(vecmatinv, vecmat);
  mul_m3_m3m3(rollmat, vecmatinv, mat);

  *r_roll = atan2f(rollmat[2][0], rollmat[2][2]);
}

/* Calculates the rest matrix of a bone based on its vector and a roll around that vector. */
/**
 * Given `v = (v.x, v.y, v.z)` our (normalized) bone vector, we want the rotation matrix M
 * from the Y axis (so that `M * (0, 1, 0) = v`).
 * - The rotation axis a lays on XZ plane, and it is orthonormal to v,
 *   hence to the projection of v onto XZ plane.
 * - `a = (v.z, 0, -v.x)`
 *
 * We know a is eigenvector of M (so M * a = a).
 * Finally, we have w, such that M * w = (0, 1, 0)
 * (i.e. the vector that will be aligned with Y axis once transformed).
 * We know w is symmetric to v by the Y axis.
 * - `w = (-v.x, v.y, -v.z)`
 *
 * Solving this, we get (x, y and z being the components of v):
 * <pre>
 *     ┌ (x^2 * y + z^2) / (x^2 + z^2),   x,   x * z * (y - 1) / (x^2 + z^2) ┐
 * M = │  x * (y^2 - 1)  / (x^2 + z^2),   y,    z * (y^2 - 1)  / (x^2 + z^2) │
 *     └ x * z * (y - 1) / (x^2 + z^2),   z,   (x^2 + z^2 * y) / (x^2 + z^2) ┘
 * </pre>
 *
 * This is stable as long as v (the bone) is not too much aligned with +/-Y
 * (i.e. x and z components are not too close to 0).
 *
 * Since v is normalized, we have `x^2 + y^2 + z^2 = 1`,
 * hence `x^2 + z^2 = 1 - y^2 = (1 - y)(1 + y)`.
 *
 * This allows to simplifies M like this:
 * <pre>
 *     ┌ 1 - x^2 / (1 + y),   x,     -x * z / (1 + y) ┐
 * M = │                -x,   y,                   -z │
 *     └  -x * z / (1 + y),   z,    1 - z^2 / (1 + y) ┘
 * </pre>
 *
 * Written this way, we see the case v = +Y is no more a singularity.
 * The only one
 * remaining is the bone being aligned with -Y.
 *
 * Let's handle
 * the asymptotic behavior when bone vector is reaching the limit of y = -1.
 * Each of the four corner elements can vary from -1 to 1,
 * depending on the axis a chosen for doing the rotation.
 * And the "rotation" here is in fact established by mirroring XZ plane by that given axis,
 * then inversing the Y-axis.
 * For sufficiently small x and z, and with y approaching -1,
 * all elements but the four corner ones of M will degenerate.
 * So let's now focus on these corner elements.
 *
 * We rewrite M so that it only contains its four corner elements,
 * and combine the `1 / (1 + y)` factor:
 * <pre>
 *                    ┌ 1 + y - x^2,        -x * z ┐
 * M* = 1 / (1 + y) * │                            │
 *                    └      -x * z,   1 + y - z^2 ┘
 * </pre>
 *
 * When y is close to -1, computing 1 / (1 + y) will cause severe numerical instability,
 * so we ignore it and normalize M instead.
 * We know `y^2 = 1 - (x^2 + z^2)`, and `y < 0`, hence `y = -sqrt(1 - (x^2 + z^2))`.
 *
 * Since x and z are both close to 0, we apply the binomial expansion to the first order:
 * `y = -sqrt(1 - (x^2 + z^2)) = -1 + (x^2 + z^2) / 2`. Which gives:
 * <pre>
 *                        ┌  z^2 - x^2,  -2 * x * z ┐
 * M* = 1 / (x^2 + z^2) * │                         │
 *                        └ -2 * x * z,   x^2 - z^2 ┘
 * </pre>
 */
void vec_roll_to_mat3_normalized(const float nor[3], const float roll, float mat[3][3])
{
#define THETA_THRESHOLD_NEGY 1.0e-9f
#define THETA_THRESHOLD_NEGY_CLOSE 1.0e-5f

  float theta;
  float rMatrix[3][3], bMatrix[3][3];

  BLI_ASSERT_UNIT_V3(nor);

  theta = 1.0f + nor[1];

  /* With old algo, 1.0e-13f caused T23954 and T31333, 1.0e-6f caused T27675 and T30438,
   * so using 1.0e-9f as best compromise.
   *
   * New algo is supposed much more precise, since less complex computations are performed,
   * but it uses two different threshold values...
   *
   * Note: When theta is close to zero, we have to check we do have non-null X/Z components as well
   *       (due to float precision errors, we can have nor = (0.0, 0.99999994, 0.0)...).
   */
  if (theta > THETA_THRESHOLD_NEGY_CLOSE || ((nor[0] || nor[2]) && theta > THETA_THRESHOLD_NEGY)) {
    /* nor is *not* -Y.
     * We got these values for free... so be happy with it... ;)
     */
    bMatrix[0][1] = -nor[0];
    bMatrix[1][0] = nor[0];
    bMatrix[1][1] = nor[1];
    bMatrix[1][2] = nor[2];
    bMatrix[2][1] = -nor[2];
    if (theta > THETA_THRESHOLD_NEGY_CLOSE) {
      /* If nor is far enough from -Y, apply the general case. */
      bMatrix[0][0] = 1 - nor[0] * nor[0] / theta;
      bMatrix[2][2] = 1 - nor[2] * nor[2] / theta;
      bMatrix[2][0] = bMatrix[0][2] = -nor[0] * nor[2] / theta;
    }
    else {
      /* If nor is too close to -Y, apply the special case. */
      theta = nor[0] * nor[0] + nor[2] * nor[2];
      bMatrix[0][0] = (nor[0] + nor[2]) * (nor[0] - nor[2]) / -theta;
      bMatrix[2][2] = -bMatrix[0][0];
      bMatrix[2][0] = bMatrix[0][2] = 2.0f * nor[0] * nor[2] / theta;
    }
  }
  else {
    /* If nor is -Y, simple symmetry by Z axis. */
    unit_m3(bMatrix);
    bMatrix[0][0] = bMatrix[1][1] = -1.0;
  }

  /* Make Roll matrix */
  axis_angle_normalized_to_mat3(rMatrix, nor, roll);

  /* Combine and output result */
  mul_m3_m3m3(mat, rMatrix, bMatrix);

#undef THETA_THRESHOLD_NEGY
#undef THETA_THRESHOLD_NEGY_CLOSE
}

void vec_roll_to_mat3(const float vec[3], const float roll, float mat[3][3])
{
  float nor[3];

  normalize_v3_v3(nor, vec);
  vec_roll_to_mat3_normalized(nor, roll, mat);
}

/* recursive part, calculates restposition of entire tree of children */
/* used by exiting editmode too */
void BKE_armature_where_is_bone(Bone *bone, Bone *prevbone, const bool use_recursion)
{
  float vec[3];

  /* Bone Space */
  sub_v3_v3v3(vec, bone->tail, bone->head);
  bone->length = len_v3(vec);
  vec_roll_to_mat3(vec, bone->roll, bone->bone_mat);

  /* this is called on old file reading too... */
  if (bone->xwidth == 0.0f) {
    bone->xwidth = 0.1f;
    bone->zwidth = 0.1f;
    bone->segments = 1;
  }

  if (prevbone) {
    float offs_bone[4][4];
    /* yoffs(b-1) + root(b) + bonemat(b) */
    BKE_bone_offset_matrix_get(bone, offs_bone);

    /* Compose the matrix for this bone  */
    mul_m4_m4m4(bone->arm_mat, prevbone->arm_mat, offs_bone);
  }
  else {
    copy_m4_m3(bone->arm_mat, bone->bone_mat);
    copy_v3_v3(bone->arm_mat[3], bone->head);
  }

  /* and the kiddies */
  if (use_recursion) {
    prevbone = bone;
    for (bone = bone->childbase.first; bone; bone = bone->next) {
      BKE_armature_where_is_bone(bone, prevbone, use_recursion);
    }
  }
}

/* updates vectors and matrices on rest-position level, only needed
 * after editing armature itself, now only on reading file */
void BKE_armature_where_is(bArmature *arm)
{
  Bone *bone;

  /* hierarchical from root to children */
  for (bone = arm->bonebase.first; bone; bone = bone->next) {
    BKE_armature_where_is_bone(bone, NULL, true);
  }
}

/* if bone layer is protected, copy the data from from->pose
 * when used with linked libraries this copies from the linked pose into the local pose */
static void pose_proxy_synchronize(Object *ob, Object *from, int layer_protected)
{
  bPose *pose = ob->pose, *frompose = from->pose;
  bPoseChannel *pchan, *pchanp;
  bConstraint *con;
  int error = 0;

  if (frompose == NULL) {
    return;
  }

  /* in some cases when rigs change, we cant synchronize
   * to avoid crashing check for possible errors here */
  for (pchan = pose->chanbase.first; pchan; pchan = pchan->next) {
    if (pchan->bone->layer & layer_protected) {
      if (BKE_pose_channel_find_name(frompose, pchan->name) == NULL) {
        CLOG_ERROR(&LOG,
                   "failed to sync proxy armature because '%s' is missing pose channel '%s'",
                   from->id.name,
                   pchan->name);
        error = 1;
      }
    }
  }

  if (error) {
    return;
  }

  /* clear all transformation values from library */
  BKE_pose_rest(frompose);

  /* copy over all of the proxy's bone groups */
  /* TODO for later
   * - implement 'local' bone groups as for constraints
   * Note: this isn't trivial, as bones reference groups by index not by pointer,
   *       so syncing things correctly needs careful attention */
  BLI_freelistN(&pose->agroups);
  BLI_duplicatelist(&pose->agroups, &frompose->agroups);
  pose->active_group = frompose->active_group;

  for (pchan = pose->chanbase.first; pchan; pchan = pchan->next) {
    pchanp = BKE_pose_channel_find_name(frompose, pchan->name);

    if (UNLIKELY(pchanp == NULL)) {
      /* happens for proxies that become invalid because of a missing link
       * for regular cases it shouldn't happen at all */
    }
    else if (pchan->bone->layer & layer_protected) {
      ListBase proxylocal_constraints = {NULL, NULL};
      bPoseChannel pchanw;

      /* copy posechannel to temp, but restore important pointers */
      pchanw = *pchanp;
      pchanw.bone = pchan->bone;
      pchanw.prev = pchan->prev;
      pchanw.next = pchan->next;
      pchanw.parent = pchan->parent;
      pchanw.child = pchan->child;
      pchanw.custom_tx = pchan->custom_tx;
      pchanw.bbone_prev = pchan->bbone_prev;
      pchanw.bbone_next = pchan->bbone_next;

      pchanw.mpath = pchan->mpath;
      pchan->mpath = NULL;

      /* this is freed so copy a copy, else undo crashes */
      if (pchanw.prop) {
        pchanw.prop = IDP_CopyProperty(pchanw.prop);

        /* use the values from the existing props */
        if (pchan->prop) {
          IDP_SyncGroupValues(pchanw.prop, pchan->prop);
        }
      }

      /* Constraints - proxy constraints are flushed... local ones are added after
       * 1: extract constraints not from proxy (CONSTRAINT_PROXY_LOCAL) from pchan's constraints.
       * 2: copy proxy-pchan's constraints on-to new.
       * 3: add extracted local constraints back on top.
       *
       * Note for BKE_constraints_copy:
       * When copying constraints, disable 'do_extern' otherwise
       * we get the libs direct linked in this blend.
       */
      BKE_constraints_proxylocal_extract(&proxylocal_constraints, &pchan->constraints);
      BKE_constraints_copy(&pchanw.constraints, &pchanp->constraints, false);
      BLI_movelisttolist(&pchanw.constraints, &proxylocal_constraints);

      /* constraints - set target ob pointer to own object */
      for (con = pchanw.constraints.first; con; con = con->next) {
        const bConstraintTypeInfo *cti = BKE_constraint_typeinfo_get(con);
        ListBase targets = {NULL, NULL};
        bConstraintTarget *ct;

        if (cti && cti->get_constraint_targets) {
          cti->get_constraint_targets(con, &targets);

          for (ct = targets.first; ct; ct = ct->next) {
            if (ct->tar == from) {
              ct->tar = ob;
            }
          }

          if (cti->flush_constraint_targets) {
            cti->flush_constraint_targets(con, &targets, 0);
          }
        }
      }

      /* free stuff from current channel */
      BKE_pose_channel_free(pchan);

      /* copy data in temp back over to the cleaned-out (but still allocated) original channel */
      *pchan = pchanw;
      if (pchan->custom) {
        id_us_plus(&pchan->custom->id);
      }
    }
    else {
      /* always copy custom shape */
      pchan->custom = pchanp->custom;
      if (pchan->custom) {
        id_us_plus(&pchan->custom->id);
      }
      if (pchanp->custom_tx) {
        pchan->custom_tx = BKE_pose_channel_find_name(pose, pchanp->custom_tx->name);
      }

      /* ID-Property Syncing */
      {
        IDProperty *prop_orig = pchan->prop;
        if (pchanp->prop) {
          pchan->prop = IDP_CopyProperty(pchanp->prop);
          if (prop_orig) {
            /* copy existing values across when types match */
            IDP_SyncGroupValues(pchan->prop, prop_orig);
          }
        }
        else {
          pchan->prop = NULL;
        }
        if (prop_orig) {
          IDP_FreeProperty(prop_orig);
        }
      }
    }
  }
}

static int rebuild_pose_bone(bPose *pose, Bone *bone, bPoseChannel *parchan, int counter)
{
  bPoseChannel *pchan = BKE_pose_channel_verify(pose, bone->name); /* verify checks and/or adds */

  pchan->bone = bone;
  pchan->parent = parchan;

  counter++;

  for (bone = bone->childbase.first; bone; bone = bone->next) {
    counter = rebuild_pose_bone(pose, bone, pchan, counter);
    /* for quick detecting of next bone in chain, only b-bone uses it now */
    if (bone->flag & BONE_CONNECTED) {
      pchan->child = BKE_pose_channel_find_name(pose, bone->name);
    }
  }

  return counter;
}

/**
 * Clear pointers of object's pose
 * (needed in remap case, since we cannot always wait for a complete pose rebuild).
 */
void BKE_pose_clear_pointers(bPose *pose)
{
  for (bPoseChannel *pchan = pose->chanbase.first; pchan; pchan = pchan->next) {
    pchan->bone = NULL;
    pchan->child = NULL;
  }
}

void BKE_pose_remap_bone_pointers(bArmature *armature, bPose *pose)
{
  for (bPoseChannel *pchan = pose->chanbase.first; pchan; pchan = pchan->next) {
    pchan->bone = BKE_armature_find_bone_name(armature, pchan->name);
  }
}

/** Find the matching pose channel using the bone name, if not NULL. */
static bPoseChannel *pose_channel_find_bone(bPose *pose, Bone *bone)
{
  return (bone != NULL) ? BKE_pose_channel_find_name(pose, bone->name) : NULL;
}

/** Update the links for the B-Bone handles from Bone data. */
void BKE_pchan_rebuild_bbone_handles(bPose *pose, bPoseChannel *pchan)
{
  pchan->bbone_prev = pose_channel_find_bone(pose, pchan->bone->bbone_prev);
  pchan->bbone_next = pose_channel_find_bone(pose, pchan->bone->bbone_next);
}

/**
 * Only after leave editmode, duplicating, validating older files, library syncing.
 *
 * \note pose->flag is set for it.
 *
 * \param bmain: May be NULL, only used to tag depsgraph as being dirty...
 */
void BKE_pose_rebuild(Main *bmain, Object *ob, bArmature *arm, const bool do_id_user)
{
  Bone *bone;
  bPose *pose;
  bPoseChannel *pchan, *next;
  int counter = 0;

  /* only done here */
  if (ob->pose == NULL) {
    /* create new pose */
    ob->pose = MEM_callocN(sizeof(bPose), "new pose");

    /* set default settings for animviz */
    animviz_settings_init(&ob->pose->avs);
  }
  pose = ob->pose;

  /* clear */
  BKE_pose_clear_pointers(pose);

  /* first step, check if all channels are there */
  for (bone = arm->bonebase.first; bone; bone = bone->next) {
    counter = rebuild_pose_bone(pose, bone, NULL, counter);
  }

  /* and a check for garbage */
  for (pchan = pose->chanbase.first; pchan; pchan = next) {
    next = pchan->next;
    if (pchan->bone == NULL) {
      BKE_pose_channel_free_ex(pchan, do_id_user);
      BKE_pose_channels_hash_free(pose);
      BLI_freelinkN(&pose->chanbase, pchan);
    }
  }

  BKE_pose_channels_hash_make(pose);

  for (pchan = pose->chanbase.first; pchan; pchan = pchan->next) {
    /* Find the custom B-Bone handles. */
    BKE_pchan_rebuild_bbone_handles(pose, pchan);
  }

  /* printf("rebuild pose %s, %d bones\n", ob->id.name, counter); */

  /* synchronize protected layers with proxy */
  /* HACK! To preserve 2.7x behavior that you always can pose even locked bones,
   * do not do any restoration if this is a COW temp copy! */
  /* Switched back to just NO_MAIN tag, for some reasons (c)
   * using COW tag was working this morning, but not anymore... */
  if (ob->proxy != NULL && (ob->id.tag & LIB_TAG_NO_MAIN) == 0) {
    BKE_object_copy_proxy_drivers(ob, ob->proxy);
    pose_proxy_synchronize(ob, ob->proxy, arm->layer_protected);
  }

  BKE_pose_update_constraint_flags(pose); /* for IK detection for example */

  pose->flag &= ~POSE_RECALC;
  pose->flag |= POSE_WAS_REBUILT;

  /* Rebuilding poses forces us to also rebuild the dependency graph,
   * since there is one node per pose/bone. */
  if (bmain != NULL) {
    DEG_relations_tag_update(bmain);
  }
}

/* ********************** THE POSE SOLVER ******************* */

/* loc/rot/size to given mat4 */
void BKE_pchan_to_mat4(const bPoseChannel *pchan, float chan_mat[4][4])
{
  float smat[3][3];
  float rmat[3][3];
  float tmat[3][3];

  /* get scaling matrix */
  size_to_mat3(smat, pchan->size);

  /* get rotation matrix */
  BKE_pchan_rot_to_mat3(pchan, rmat);

  /* calculate matrix of bone (as 3x3 matrix, but then copy the 4x4) */
  mul_m3_m3m3(tmat, rmat, smat);
  copy_m4_m3(chan_mat, tmat);

  /* prevent action channels breaking chains */
  /* need to check for bone here, CONSTRAINT_TYPE_ACTION uses this call */
  if ((pchan->bone == NULL) || !(pchan->bone->flag & BONE_CONNECTED)) {
    copy_v3_v3(chan_mat[3], pchan->loc);
  }
}

/* loc/rot/size to mat4 */
/* used in constraint.c too */
void BKE_pchan_calc_mat(bPoseChannel *pchan)
{
  /* this is just a wrapper around the copy of this function which calculates the matrix
   * and stores the result in any given channel
   */
  BKE_pchan_to_mat4(pchan, pchan->chan_mat);
}

/* calculate tail of posechannel */
void BKE_pose_where_is_bone_tail(bPoseChannel *pchan)
{
  float vec[3];

  copy_v3_v3(vec, pchan->pose_mat[1]);
  mul_v3_fl(vec, pchan->bone->length);
  add_v3_v3v3(pchan->pose_tail, pchan->pose_head, vec);
}

/* The main armature solver, does all constraints excluding IK */
/* pchan is validated, as having bone and parent pointer
 * 'do_extra': when zero skips loc/size/rot, constraints and strip modifiers.
 */
void BKE_pose_where_is_bone(struct Depsgraph *depsgraph,
                            Scene *scene,
                            Object *ob,
                            bPoseChannel *pchan,
                            float ctime,
                            bool do_extra)
{
  /* This gives a chan_mat with actions (ipos) results. */
  if (do_extra) {
    BKE_pchan_calc_mat(pchan);
  }
  else {
    unit_m4(pchan->chan_mat);
  }

  /* Construct the posemat based on PoseChannels, that we do before applying constraints. */
  /* pose_mat(b) = pose_mat(b-1) * yoffs(b-1) * d_root(b) * bone_mat(b) * chan_mat(b) */
  BKE_armature_mat_bone_to_pose(pchan, pchan->chan_mat, pchan->pose_mat);

  /* Only rootbones get the cyclic offset (unless user doesn't want that). */
  /* XXX That could be a problem for snapping and other "reverse transform" features... */
  if (!pchan->parent) {
    if ((pchan->bone->flag & BONE_NO_CYCLICOFFSET) == 0) {
      add_v3_v3(pchan->pose_mat[3], ob->pose->cyclic_offset);
    }
  }

  if (do_extra) {
    /* Do constraints */
    if (pchan->constraints.first) {
      bConstraintOb *cob;
      float vec[3];

      /* make a copy of location of PoseChannel for later */
      copy_v3_v3(vec, pchan->pose_mat[3]);

      /* prepare PoseChannel for Constraint solving
       * - makes a copy of matrix, and creates temporary struct to use
       */
      cob = BKE_constraints_make_evalob(depsgraph, scene, ob, pchan, CONSTRAINT_OBTYPE_BONE);

      /* Solve PoseChannel's Constraints */
      BKE_constraints_solve(
          depsgraph, &pchan->constraints, cob, ctime); /* ctime doesn't alter objects */

      /* cleanup after Constraint Solving
       * - applies matrix back to pchan, and frees temporary struct used
       */
      BKE_constraints_clear_evalob(cob);

      /* prevent constraints breaking a chain */
      if (pchan->bone->flag & BONE_CONNECTED) {
        copy_v3_v3(pchan->pose_mat[3], vec);
      }
    }
  }

  /* calculate head */
  copy_v3_v3(pchan->pose_head, pchan->pose_mat[3]);
  /* calculate tail */
  BKE_pose_where_is_bone_tail(pchan);
}

/* This only reads anim data from channels, and writes to channels */
/* This is the only function adding poses */
void BKE_pose_where_is(struct Depsgraph *depsgraph, Scene *scene, Object *ob)
{
  bArmature *arm;
  Bone *bone;
  bPoseChannel *pchan;
  float imat[4][4];
  float ctime;

  if (ob->type != OB_ARMATURE) {
    return;
  }
  arm = ob->data;

  if (ELEM(NULL, arm, scene)) {
    return;
  }
  if ((ob->pose == NULL) || (ob->pose->flag & POSE_RECALC)) {
    /* WARNING! passing NULL bmain here means we won't tag depsgraph's as dirty -
     * hopefully this is OK. */
    BKE_pose_rebuild(NULL, ob, arm, true);
  }

  ctime = BKE_scene_frame_get(scene); /* not accurate... */

  /* In editmode or restposition we read the data from the bones */
  if (arm->edbo || (arm->flag & ARM_RESTPOS)) {
    for (pchan = ob->pose->chanbase.first; pchan; pchan = pchan->next) {
      bone = pchan->bone;
      if (bone) {
        copy_m4_m4(pchan->pose_mat, bone->arm_mat);
        copy_v3_v3(pchan->pose_head, bone->arm_head);
        copy_v3_v3(pchan->pose_tail, bone->arm_tail);
      }
    }
  }
  else {
    invert_m4_m4(ob->imat, ob->obmat); /* imat is needed */

    /* 1. clear flags */
    for (pchan = ob->pose->chanbase.first; pchan; pchan = pchan->next) {
      pchan->flag &= ~(POSE_DONE | POSE_CHAIN | POSE_IKTREE | POSE_IKSPLINE);
    }

    /* 2a. construct the IK tree (standard IK) */
    BIK_initialize_tree(depsgraph, scene, ob, ctime);

    /* 2b. construct the Spline IK trees
     * - this is not integrated as an IK plugin, since it should be able
     *   to function in conjunction with standard IK
     */
    BKE_pose_splineik_init_tree(scene, ob, ctime);

    /* 3. the main loop, channels are already hierarchical sorted from root to children */
    for (pchan = ob->pose->chanbase.first; pchan; pchan = pchan->next) {
      /* 4a. if we find an IK root, we handle it separated */
      if (pchan->flag & POSE_IKTREE) {
        BIK_execute_tree(depsgraph, scene, ob, pchan, ctime);
      }
      /* 4b. if we find a Spline IK root, we handle it separated too */
      else if (pchan->flag & POSE_IKSPLINE) {
        BKE_splineik_execute_tree(depsgraph, scene, ob, pchan, ctime);
      }
      /* 5. otherwise just call the normal solver */
      else if (!(pchan->flag & POSE_DONE)) {
        BKE_pose_where_is_bone(depsgraph, scene, ob, pchan, ctime, 1);
      }
    }
    /* 6. release the IK tree */
    BIK_release_tree(scene, ob, ctime);
  }

  /* calculating deform matrices */
  for (pchan = ob->pose->chanbase.first; pchan; pchan = pchan->next) {
    if (pchan->bone) {
      invert_m4_m4(imat, pchan->bone->arm_mat);
      mul_m4_m4m4(pchan->chan_mat, pchan->pose_mat, imat);
    }
  }
}

/************** Bounding box ********************/
static int minmax_armature(Object *ob, float r_min[3], float r_max[3])
{
  bPoseChannel *pchan;

  /* For now, we assume BKE_pose_where_is has already been called
   * (hence we have valid data in pachan). */
  for (pchan = ob->pose->chanbase.first; pchan; pchan = pchan->next) {
    minmax_v3v3_v3(r_min, r_max, pchan->pose_head);
    minmax_v3v3_v3(r_min, r_max, pchan->pose_tail);
  }

  return (BLI_listbase_is_empty(&ob->pose->chanbase) == false);
}

static void boundbox_armature(Object *ob)
{
  BoundBox *bb;
  float min[3], max[3];

  if (ob->runtime.bb == NULL) {
    ob->runtime.bb = MEM_callocN(sizeof(BoundBox), "Armature boundbox");
  }
  bb = ob->runtime.bb;

  INIT_MINMAX(min, max);
  if (!minmax_armature(ob, min, max)) {
    min[0] = min[1] = min[2] = -1.0f;
    max[0] = max[1] = max[2] = 1.0f;
  }

  BKE_boundbox_init_from_minmax(bb, min, max);

  bb->flag &= ~BOUNDBOX_DIRTY;
}

BoundBox *BKE_armature_boundbox_get(Object *ob)
{
  boundbox_armature(ob);

  return ob->runtime.bb;
}

bool BKE_pose_minmax(Object *ob, float r_min[3], float r_max[3], bool use_hidden, bool use_select)
{
  bool changed = false;

  if (ob->pose) {
    bArmature *arm = ob->data;
    bPoseChannel *pchan;

    for (pchan = ob->pose->chanbase.first; pchan; pchan = pchan->next) {
      /* XXX pchan->bone may be NULL for duplicated bones, see duplicateEditBoneObjects() comment
       *     (editarmature.c:2592)... Skip in this case too! */
      if (pchan->bone && (!((use_hidden == false) && (PBONE_VISIBLE(arm, pchan->bone) == false)) &&
                          !((use_select == true) && ((pchan->bone->flag & BONE_SELECTED) == 0)))) {
        bPoseChannel *pchan_tx = (pchan->custom && pchan->custom_tx) ? pchan->custom_tx : pchan;
        BoundBox *bb_custom = ((pchan->custom) && !(arm->flag & ARM_NO_CUSTOM)) ?
                                  BKE_object_boundbox_get(pchan->custom) :
                                  NULL;
        if (bb_custom) {
          float mat[4][4], smat[4][4];
          scale_m4_fl(smat, PCHAN_CUSTOM_DRAW_SIZE(pchan));
          mul_m4_series(mat, ob->obmat, pchan_tx->pose_mat, smat);
          BKE_boundbox_minmax(bb_custom, mat, r_min, r_max);
        }
        else {
          float vec[3];
          mul_v3_m4v3(vec, ob->obmat, pchan_tx->pose_head);
          minmax_v3v3_v3(r_min, r_max, vec);
          mul_v3_m4v3(vec, ob->obmat, pchan_tx->pose_tail);
          minmax_v3v3_v3(r_min, r_max, vec);
        }

        changed = true;
      }
    }
  }

  return changed;
}

/************** Graph evaluation ********************/

bPoseChannel *BKE_armature_ik_solver_find_root(bPoseChannel *pchan, bKinematicConstraint *data)
{
  bPoseChannel *rootchan = pchan;
  if (!(data->flag & CONSTRAINT_IK_TIP)) {
    /* Exclude tip from chain. */
    rootchan = rootchan->parent;
  }
  if (rootchan != NULL) {
    int segcount = 0;
    while (rootchan->parent) {
      /* Continue up chain, until we reach target number of items. */
      segcount++;
      if (segcount == data->rootbone) {
        break;
      }
      rootchan = rootchan->parent;
    }
  }
  return rootchan;
}

bPoseChannel *BKE_armature_splineik_solver_find_root(bPoseChannel *pchan,
                                                     bSplineIKConstraint *data)
{
  bPoseChannel *rootchan = pchan;
  int segcount = 0;
  BLI_assert(rootchan != NULL);
  while (rootchan->parent) {
    /* Continue up chain, until we reach target number of items. */
    segcount++;
    if (segcount == data->chainlen) {
      break;
    }
    rootchan = rootchan->parent;
  }
  return rootchan;
}