Welcome to mirror list, hosted at ThFree Co, Russian Federation.

armature_test.cc « intern « blenkernel « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 4d266c8493a7e02efb3aa4d378601fd0933b4403 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
/* SPDX-License-Identifier: GPL-2.0-or-later
 * Copyright 2020 Blender Foundation. All rights reserved. */

#include "BKE_armature.hh"

#include "BLI_listbase.h"
#include "BLI_math.h"

#include "DNA_armature_types.h"

#include "testing/testing.h"

namespace blender::bke::tests {

static const float FLOAT_EPSILON = 1.2e-7;

static const float SCALE_EPSILON = 3.71e-5;
static const float ORTHO_EPSILON = 5e-5;

/** Test that the matrix is orthogonal, i.e. has no scale or shear within acceptable precision. */
static double EXPECT_M3_ORTHOGONAL(const float mat[3][3],
                                   double epsilon_scale,
                                   double epsilon_ortho)
{
  /* Do the checks in double precision to avoid precision issues in the checks themselves. */
  double dmat[3][3];
  copy_m3d_m3(dmat, mat);

  /* Check individual axis scaling. */
  EXPECT_NEAR(len_v3_db(dmat[0]), 1.0, epsilon_scale);
  EXPECT_NEAR(len_v3_db(dmat[1]), 1.0, epsilon_scale);
  EXPECT_NEAR(len_v3_db(dmat[2]), 1.0, epsilon_scale);

  /* Check orthogonality. */
  EXPECT_NEAR(dot_v3v3_db(dmat[0], dmat[1]), 0.0, epsilon_ortho);
  EXPECT_NEAR(dot_v3v3_db(dmat[0], dmat[2]), 0.0, epsilon_ortho);
  EXPECT_NEAR(dot_v3v3_db(dmat[1], dmat[2]), 0.0, epsilon_ortho);

  /* Check determinant to detect flipping and as a secondary volume change check. */
  double determinant = determinant_m3_array_db(dmat);

  EXPECT_NEAR(determinant, 1.0, epsilon_ortho);

  return determinant;
}

TEST(mat3_vec_to_roll, UnitMatrix)
{
  float unit_matrix[3][3];
  float roll;

  unit_m3(unit_matrix);

  /* Any vector with a unit matrix should return zero roll. */
  mat3_vec_to_roll(unit_matrix, unit_matrix[0], &roll);
  EXPECT_FLOAT_EQ(0.0f, roll);

  mat3_vec_to_roll(unit_matrix, unit_matrix[1], &roll);
  EXPECT_FLOAT_EQ(0.0f, roll);

  mat3_vec_to_roll(unit_matrix, unit_matrix[2], &roll);
  EXPECT_FLOAT_EQ(0.0f, roll);

  {
    /* Non-unit vector. */
    float vector[3] = {1.0f, 1.0f, 1.0f};
    mat3_vec_to_roll(unit_matrix, vector, &roll);
    EXPECT_NEAR(0.0f, roll, FLOAT_EPSILON);

    /* Normalized version of the above vector. */
    normalize_v3(vector);
    mat3_vec_to_roll(unit_matrix, vector, &roll);
    EXPECT_NEAR(0.0f, roll, FLOAT_EPSILON);
  }
}

TEST(mat3_vec_to_roll, Rotationmatrix)
{
  float rotation_matrix[3][3];
  float roll;

  const float rot_around_x[3] = {1.234f, 0.0f, 0.0f};
  eul_to_mat3(rotation_matrix, rot_around_x);

  {
    const float unit_axis_x[3] = {1.0f, 0.0f, 0.0f};
    mat3_vec_to_roll(rotation_matrix, unit_axis_x, &roll);
    EXPECT_NEAR(1.234f, roll, FLOAT_EPSILON);
  }

  {
    const float unit_axis_y[3] = {0.0f, 1.0f, 0.0f};
    mat3_vec_to_roll(rotation_matrix, unit_axis_y, &roll);
    EXPECT_NEAR(0, roll, FLOAT_EPSILON);
  }

  {
    const float unit_axis_z[3] = {0.0f, 0.0f, 1.0f};
    mat3_vec_to_roll(rotation_matrix, unit_axis_z, &roll);
    EXPECT_NEAR(0, roll, FLOAT_EPSILON);
  }

  {
    const float between_x_and_y[3] = {1.0f, 1.0f, 0.0f};
    mat3_vec_to_roll(rotation_matrix, between_x_and_y, &roll);
    EXPECT_NEAR(0.57158958f, roll, FLOAT_EPSILON);
  }
}

/** Generic function to test vec_roll_to_mat3_normalized. */
static double test_vec_roll_to_mat3_normalized(const float input[3],
                                               float roll,
                                               const float expected_roll_mat[3][3],
                                               bool normalize = true)
{
  float input_normalized[3];
  float roll_mat[3][3];

  if (normalize) {
    /* The vector is re-normalized to replicate the actual usage. */
    normalize_v3_v3(input_normalized, input);
  }
  else {
    copy_v3_v3(input_normalized, input);
  }

  vec_roll_to_mat3_normalized(input_normalized, roll, roll_mat);

  EXPECT_V3_NEAR(roll_mat[1], input_normalized, FLT_EPSILON);

  if (expected_roll_mat) {
    EXPECT_M3_NEAR(roll_mat, expected_roll_mat, FLT_EPSILON);
  }

  return EXPECT_M3_ORTHOGONAL(roll_mat, SCALE_EPSILON, ORTHO_EPSILON);
}

/** Binary search to test where the code switches to the most degenerate special case. */
static double find_flip_boundary(double x, double z)
{
  /* Irrational scale factor to ensure values aren't 'nice', have a lot of rounding errors,
   * and can't accidentally produce the exact result returned by the special case. */
  const double scale = M_1_PI / 10;
  double theta = x * x + z * z;
  double minv = 0, maxv = 1e-2;

  while (maxv - minv > FLT_EPSILON * 1e-3) {
    double mid = (minv + maxv) / 2;

    float roll_mat[3][3];
    float input[3] = {float(x * mid * scale),
                      -float(sqrt(1 - theta * mid * mid) * scale),
                      float(z * mid * scale)};

    normalize_v3(input);
    vec_roll_to_mat3_normalized(input, 0, roll_mat);

    /* The special case assigns exact constants rather than computing. */
    if (roll_mat[0][0] == -1 && roll_mat[0][1] == 0 && roll_mat[2][1] == 0) {
      minv = mid;
    }
    else {
      maxv = mid;
    }
  }

  return sqrt(theta) * (minv + maxv) * 0.5;
}

TEST(vec_roll_to_mat3_normalized, FlippedBoundary1)
{
  EXPECT_NEAR(find_flip_boundary(0, 1), 2.50e-4, 0.01e-4);
}

TEST(vec_roll_to_mat3_normalized, FlippedBoundary2)
{
  EXPECT_NEAR(find_flip_boundary(1, 1), 2.50e-4, 0.01e-4);
}

/* Test cases close to the -Y axis. */
TEST(vec_roll_to_mat3_normalized, Flipped1)
{
  /* If normalized_vector is -Y, simple symmetry by Z axis. */
  const float input[3] = {0.0f, -1.0f, 0.0f};
  const float expected_roll_mat[3][3] = {
      {-1.0f, 0.0f, 0.0f}, {0.0f, -1.0f, 0.0f}, {0.0f, 0.0f, 1.0f}};
  test_vec_roll_to_mat3_normalized(input, 0.0f, expected_roll_mat, false);
}

TEST(vec_roll_to_mat3_normalized, Flipped2)
{
  /* If normalized_vector is close to -Y and
   * it has X and Z values below a threshold,
   * simple symmetry by Z axis. */
  const float input[3] = {1e-24, -0.999999881, 0};
  const float expected_roll_mat[3][3] = {
      {-1.0f, 0.0f, 0.0f}, {0.0f, -1.0f, 0.0f}, {0.0f, 0.0f, 1.0f}};
  test_vec_roll_to_mat3_normalized(input, 0.0f, expected_roll_mat, false);
}

TEST(vec_roll_to_mat3_normalized, Flipped3)
{
  /* If normalized_vector is in a critical range close to -Y, apply the special case. */
  const float input[3] = {2.5e-4f, -0.999999881f, 2.5e-4f}; /* Corner Case. */
  const float expected_roll_mat[3][3] = {{0.000000f, -2.5e-4f, -1.000000f},
                                         {2.5e-4f, -0.999999881f, 2.5e-4f},
                                         {-1.000000f, -2.5e-4f, 0.000000f}};
  test_vec_roll_to_mat3_normalized(input, 0.0f, expected_roll_mat, false);
}

/* Test 90 degree rotations. */
TEST(vec_roll_to_mat3_normalized, Rotate90_Z_CW)
{
  /* Rotate 90 around Z. */
  const float input[3] = {1, 0, 0};
  const float expected_roll_mat[3][3] = {{0, -1, 0}, {1, 0, 0}, {0, 0, 1}};
  test_vec_roll_to_mat3_normalized(input, 0.0f, expected_roll_mat);
}

TEST(vec_roll_to_mat3_normalized, Rotate90_Z_CCW)
{
  /* Rotate 90 around Z. */
  const float input[3] = {-1, 0, 0};
  const float expected_roll_mat[3][3] = {{0, 1, 0}, {-1, 0, 0}, {0, 0, 1}};
  test_vec_roll_to_mat3_normalized(input, 0.0f, expected_roll_mat);
}

TEST(vec_roll_to_mat3_normalized, Rotate90_X_CW)
{
  /* Rotate 90 around X. */
  const float input[3] = {0, 0, -1};
  const float expected_roll_mat[3][3] = {{1, 0, 0}, {0, 0, -1}, {0, 1, 0}};
  test_vec_roll_to_mat3_normalized(input, 0.0f, expected_roll_mat);
}

TEST(vec_roll_to_mat3_normalized, Rotate90_X_CCW)
{
  /* Rotate 90 around X. */
  const float input[3] = {0, 0, 1};
  const float expected_roll_mat[3][3] = {{1, 0, 0}, {0, 0, 1}, {0, -1, 0}};
  test_vec_roll_to_mat3_normalized(input, 0.0f, expected_roll_mat);
}

/* Test the general case when the vector is far enough from -Y. */
TEST(vec_roll_to_mat3_normalized, Generic1)
{
  const float input[3] = {1.0f, 1.0f, 1.0f}; /* Arbitrary Value. */
  const float expected_roll_mat[3][3] = {{0.788675129f, -0.577350259f, -0.211324856f},
                                         {0.577350259f, 0.577350259f, 0.577350259f},
                                         {-0.211324856f, -0.577350259f, 0.788675129f}};
  test_vec_roll_to_mat3_normalized(input, 0.0f, expected_roll_mat);
}

TEST(vec_roll_to_mat3_normalized, Generic2)
{
  const float input[3] = {1.0f, -1.0f, 1.0f}; /* Arbitrary Value. */
  const float expected_roll_mat[3][3] = {{0.211324856f, -0.577350259f, -0.788675129f},
                                         {0.577350259f, -0.577350259f, 0.577350259f},
                                         {-0.788675129f, -0.577350259f, 0.211324856f}};
  test_vec_roll_to_mat3_normalized(input, 0.0f, expected_roll_mat);
}

TEST(vec_roll_to_mat3_normalized, Generic3)
{
  const float input[3] = {-1.0f, -1.0f, 1.0f}; /* Arbitrary Value. */
  const float expected_roll_mat[3][3] = {{0.211324856f, 0.577350259f, 0.788675129f},
                                         {-0.577350259f, -0.577350259f, 0.577350259f},
                                         {0.788675129f, -0.577350259f, 0.211324856f}};
  test_vec_roll_to_mat3_normalized(input, 0.0f, expected_roll_mat);
}

TEST(vec_roll_to_mat3_normalized, Generic4)
{
  const float input[3] = {-1.0f, -1.0f, -1.0f}; /* Arbitrary Value. */
  const float expected_roll_mat[3][3] = {{0.211324856f, 0.577350259f, -0.788675129f},
                                         {-0.577350259f, -0.577350259f, -0.577350259f},
                                         {-0.788675129f, 0.577350259f, 0.211324856f}};
  test_vec_roll_to_mat3_normalized(input, 0.0f, expected_roll_mat);
}

/* Test roll. */
TEST(vec_roll_to_mat3_normalized, Roll1)
{
  const float input[3] = {1.0f, 1.0f, 1.0f}; /* Arbitrary Value. */
  const float expected_roll_mat[3][3] = {{0.211324856f, 0.577350259f, -0.788675129f},
                                         {0.577350259f, 0.577350259f, 0.577350259f},
                                         {0.788675129f, -0.577350259f, -0.211324856f}};
  test_vec_roll_to_mat3_normalized(input, float(M_PI_2), expected_roll_mat);
}

/** Test that the matrix is orthogonal for an input close to -Y. */
static double test_vec_roll_to_mat3_orthogonal(double s, double x, double z)
{
  const float input[3] = {float(x), float(s * sqrt(1 - x * x - z * z)), float(z)};

  return test_vec_roll_to_mat3_normalized(input, 0.0f, nullptr);
}

/** Test that the matrix is orthogonal for a range of inputs close to -Y. */
static void test_vec_roll_to_mat3_orthogonal(double s, double x1, double x2, double y1, double y2)
{
  const int count = 5000;
  double delta = 0;
  double tmax = 0;

  for (int i = 0; i <= count; i++) {
    double t = double(i) / count;
    double det = test_vec_roll_to_mat3_orthogonal(s, interpd(x2, x1, t), interpd(y2, y1, t));

    /* Find and report maximum error in the matrix determinant. */
    double curdelta = abs(det - 1);
    if (curdelta > delta) {
      delta = curdelta;
      tmax = t;
    }
  }

  printf("             Max determinant deviation %.10f at %f.\n", delta, tmax);
}

#define TEST_VEC_ROLL_TO_MAT3_ORTHOGONAL(name, s, x1, x2, y1, y2) \
  TEST(vec_roll_to_mat3_normalized, name) \
  { \
    test_vec_roll_to_mat3_orthogonal(s, x1, x2, y1, y2); \
  }

/* Moving from -Y towards X. */
TEST_VEC_ROLL_TO_MAT3_ORTHOGONAL(OrthoN_000_005, -1, 0, 0, 3e-4, 0.005)
TEST_VEC_ROLL_TO_MAT3_ORTHOGONAL(OrthoN_000_010, -1, 0, 0, 0.005, 0.010)
TEST_VEC_ROLL_TO_MAT3_ORTHOGONAL(OrthoN_000_050, -1, 0, 0, 0.010, 0.050)
TEST_VEC_ROLL_TO_MAT3_ORTHOGONAL(OrthoN_000_100, -1, 0, 0, 0.050, 0.100)
TEST_VEC_ROLL_TO_MAT3_ORTHOGONAL(OrthoN_000_200, -1, 0, 0, 0.100, 0.200)
TEST_VEC_ROLL_TO_MAT3_ORTHOGONAL(OrthoN_000_300, -1, 0, 0, 0.200, 0.300)

/* Moving from -Y towards X and Y. */
TEST_VEC_ROLL_TO_MAT3_ORTHOGONAL(OrthoN_005_005, -1, 3e-4, 0.005, 3e-4, 0.005)
TEST_VEC_ROLL_TO_MAT3_ORTHOGONAL(OrthoN_010_010, -1, 0.005, 0.010, 0.005, 0.010)
TEST_VEC_ROLL_TO_MAT3_ORTHOGONAL(OrthoN_050_050, -1, 0.010, 0.050, 0.010, 0.050)
TEST_VEC_ROLL_TO_MAT3_ORTHOGONAL(OrthoN_100_100, -1, 0.050, 0.100, 0.050, 0.100)
TEST_VEC_ROLL_TO_MAT3_ORTHOGONAL(OrthoN_200_200, -1, 0.100, 0.200, 0.100, 0.200)

/* Moving from +Y towards X. */
TEST_VEC_ROLL_TO_MAT3_ORTHOGONAL(OrthoP_000_005, 1, 0, 0, 0, 0.005)
TEST_VEC_ROLL_TO_MAT3_ORTHOGONAL(OrthoP_000_100, 1, 0, 0, 0.005, 0.100)

/* Moving from +Y towards X and Y. */
TEST_VEC_ROLL_TO_MAT3_ORTHOGONAL(OrthoP_005_005, 1, 0, 0.005, 0, 0.005)
TEST_VEC_ROLL_TO_MAT3_ORTHOGONAL(OrthoP_100_100, 1, 0.005, 0.100, 0.005, 0.100)

class BKE_armature_find_selected_bones_test : public testing::Test {
 protected:
  bArmature arm;
  Bone bone1, bone2, bone3;

  void SetUp() override
  {
    strcpy(bone1.name, "bone1");
    strcpy(bone2.name, "bone2");
    strcpy(bone3.name, "bone3");

    arm.bonebase = {nullptr, nullptr};
    bone1.childbase = {nullptr, nullptr};
    bone2.childbase = {nullptr, nullptr};
    bone3.childbase = {nullptr, nullptr};

    BLI_addtail(&arm.bonebase, &bone1);    /* bone1 is root bone. */
    BLI_addtail(&arm.bonebase, &bone2);    /* bone2 is root bone. */
    BLI_addtail(&bone2.childbase, &bone3); /* bone3 has bone2 as parent. */

    /* Make sure the armature & its bones are visible, to make them selectable. */
    arm.layer = bone1.layer = bone2.layer = bone3.layer = 1;
  }
};

TEST_F(BKE_armature_find_selected_bones_test, some_bones_selected)
{
  bone1.flag = BONE_SELECTED;
  bone2.flag = 0;
  bone3.flag = BONE_SELECTED;

  std::vector<Bone *> seen_bones;
  auto callback = [&](Bone *bone) { seen_bones.push_back(bone); };

  SelectedBonesResult result = BKE_armature_find_selected_bones(&arm, callback);

  ASSERT_EQ(seen_bones.size(), 2) << "Expected 2 selected bones, got " << seen_bones.size();
  EXPECT_EQ(seen_bones[0], &bone1);
  EXPECT_EQ(seen_bones[1], &bone3);

  EXPECT_FALSE(result.all_bones_selected); /* Bone 2 was not selected. */
  EXPECT_FALSE(result.no_bones_selected);  /* Bones 1 and 3 were selected. */
}

TEST_F(BKE_armature_find_selected_bones_test, no_bones_selected)
{
  bone1.flag = bone2.flag = bone3.flag = 0;

  std::vector<Bone *> seen_bones;
  auto callback = [&](Bone *bone) { seen_bones.push_back(bone); };

  SelectedBonesResult result = BKE_armature_find_selected_bones(&arm, callback);

  EXPECT_TRUE(seen_bones.empty()) << "Expected no selected bones, got " << seen_bones.size();
  EXPECT_FALSE(result.all_bones_selected);
  EXPECT_TRUE(result.no_bones_selected);
}

TEST_F(BKE_armature_find_selected_bones_test, all_bones_selected)
{
  bone1.flag = bone2.flag = bone3.flag = BONE_SELECTED;

  std::vector<Bone *> seen_bones;
  auto callback = [&](Bone *bone) { seen_bones.push_back(bone); };

  SelectedBonesResult result = BKE_armature_find_selected_bones(&arm, callback);

  ASSERT_EQ(seen_bones.size(), 3) << "Expected 3 selected bones, got " << seen_bones.size();
  EXPECT_EQ(seen_bones[0], &bone1);
  EXPECT_EQ(seen_bones[1], &bone2);
  EXPECT_EQ(seen_bones[2], &bone3);

  EXPECT_TRUE(result.all_bones_selected);
  EXPECT_FALSE(result.no_bones_selected);
}

}  // namespace blender::bke::tests