Welcome to mirror list, hosted at ThFree Co, Russian Federation.

BLI_cpp_type.hh « blenlib « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 2f61583589b7bc9a3df5f74b7a14dc97ca74bee2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
/* SPDX-License-Identifier: GPL-2.0-or-later */

#pragma once

/** \file
 * \ingroup bli
 *
 * The `CPPType` class allows working with arbitrary C++ types in a generic way. An instance of
 * #CPPType wraps exactly one type like `int` or `std::string`.
 *
 * With #CPPType one can write generic data structures and algorithms. That is similar to what C++
 * templates allow. The difference is that when using templates, the types have to be known at
 * compile time and the code has to be instantiated multiple times. On the other hand, when using
 * #CPPType, the data type only has to be known at run-time, and the code only has to be compiled
 * once. Whether #CPPType or classic c++ templates should be used depends on the context:
 * - If the data type is not known at run-time, #CPPType should be used.
 * - If the data type is known to be one of a few, it depends on how performance sensitive the code
 *   is.
 *   - If it it's a small hot loop, a template can be used to optimize for every type (at the
 *     cost of longer compile time, a larger binary and the complexity that comes from using
 *     templates).
 *   - If the code is not performance sensitive, it usually makes sense to use #CPPType instead.
 * - Sometimes a combination can make sense. Optimized code can be generated at compile-time for
 *   some types, while there is a fallback code path using #CPPType for all other types.
 *   #CPPType::to_static_type allows dispatching between both versions based on the type.
 *
 * Under some circumstances, #CPPType serves a similar role as #std::type_info. However, #CPPType
 * has much more utility because it contains methods for actually working with instances of the
 * type.
 *
 * Every type has a size and an alignment. Every function dealing with C++ types in a generic way,
 * has to make sure that alignment rules are followed. The methods provided by a #CPPType instance
 * will check for correct alignment as well.
 *
 * Every type has a name that is for debugging purposes only. It should not be used as identifier.
 *
 * To check if two instances of #CPPType represent the same type, only their pointers have to be
 * compared. Any C++ type has at most one corresponding #CPPType instance.
 *
 * A #CPPType instance comes with many methods that allow dealing with types in a generic way. Most
 * methods come in three variants. Using the default-construct methods as an example:
 *  - `default_construct(void *ptr)`:
 *      Constructs a single instance of that type at the given pointer.
 *  - `default_construct_n(void *ptr, int64_t n)`:
 *      Constructs n instances of that type in an array that starts at the given pointer.
 *  - `default_construct_indices(void *ptr, IndexMask mask)`:
 *      Constructs multiple instances of that type in an array that starts at the given pointer.
 *      Only the indices referenced by `mask` will by constructed.
 *
 * In some cases default-construction does nothing (e.g. for trivial types like int). The
 * `default_value` method provides some default value anyway that can be copied instead. What the
 * default value is, depends on the type. Usually it is something like 0 or an empty string.
 *
 *
 * Implementation Considerations
 * -----------------------------
 *
 * Concepts like inheritance are currently not captured by this system. This is not because it is
 * not possible, but because it was not necessary to add this complexity yet.
 *
 * One could also implement CPPType itself using virtual methods and a child class for every
 * wrapped type. However, the approach used now with explicit function pointers to works better.
 * Here are some reasons:
 *  - If CPPType would be inherited once for every used C++ type, we would get a lot of classes
 *    that would only be instanced once each.
 *  - Methods like `default_construct` that operate on a single instance have to be fast. Even this
 *    one necessary indirection using function pointers adds a lot of overhead. If all methods were
 *    virtual, there would be a second level of indirection that increases the overhead even more.
 *  - If it becomes necessary, we could pass the function pointers to C functions more easily than
 *    pointers to virtual member functions.
 */

#include "BLI_hash.hh"
#include "BLI_index_mask.hh"
#include "BLI_map.hh"
#include "BLI_math_base.h"
#include "BLI_parameter_pack_utils.hh"
#include "BLI_string_ref.hh"
#include "BLI_utility_mixins.hh"

/**
 * Different types support different features. Features like copy constructability can be detected
 * automatically easily. For some features this is harder as of C++17. Those have flags in this
 * enum and need to be determined by the programmer.
 */
enum class CPPTypeFlags {
  None = 0,
  Hashable = 1 << 0,
  Printable = 1 << 1,
  EqualityComparable = 1 << 2,

  BasicType = Hashable | Printable | EqualityComparable,
};
ENUM_OPERATORS(CPPTypeFlags, CPPTypeFlags::EqualityComparable)

namespace blender {

class CPPType : NonCopyable, NonMovable {
 private:
  int64_t size_ = 0;
  int64_t alignment_ = 0;
  uintptr_t alignment_mask_ = 0;
  bool is_trivial_ = false;
  bool is_trivially_destructible_ = false;
  bool has_special_member_functions_ = false;

  void (*default_construct_)(void *ptr) = nullptr;
  void (*default_construct_indices_)(void *ptr, IndexMask mask) = nullptr;

  void (*value_initialize_)(void *ptr) = nullptr;
  void (*value_initialize_indices_)(void *ptr, IndexMask mask) = nullptr;

  void (*destruct_)(void *ptr) = nullptr;
  void (*destruct_indices_)(void *ptr, IndexMask mask) = nullptr;

  void (*copy_assign_)(const void *src, void *dst) = nullptr;
  void (*copy_assign_indices_)(const void *src, void *dst, IndexMask mask) = nullptr;
  void (*copy_assign_compressed_)(const void *src, void *dst, IndexMask mask) = nullptr;

  void (*copy_construct_)(const void *src, void *dst) = nullptr;
  void (*copy_construct_indices_)(const void *src, void *dst, IndexMask mask) = nullptr;
  void (*copy_construct_compressed_)(const void *src, void *dst, IndexMask mask) = nullptr;

  void (*move_assign_)(void *src, void *dst) = nullptr;
  void (*move_assign_indices_)(void *src, void *dst, IndexMask mask) = nullptr;

  void (*move_construct_)(void *src, void *dst) = nullptr;
  void (*move_construct_indices_)(void *src, void *dst, IndexMask mask) = nullptr;

  void (*relocate_assign_)(void *src, void *dst) = nullptr;
  void (*relocate_assign_indices_)(void *src, void *dst, IndexMask mask) = nullptr;

  void (*relocate_construct_)(void *src, void *dst) = nullptr;
  void (*relocate_construct_indices_)(void *src, void *dst, IndexMask mask) = nullptr;

  void (*fill_assign_indices_)(const void *value, void *dst, IndexMask mask) = nullptr;

  void (*fill_construct_indices_)(const void *value, void *dst, IndexMask mask) = nullptr;

  void (*print_)(const void *value, std::stringstream &ss) = nullptr;
  bool (*is_equal_)(const void *a, const void *b) = nullptr;
  uint64_t (*hash_)(const void *value) = nullptr;

  const void *default_value_ = nullptr;
  std::string debug_name_;

 public:
  template<typename T, CPPTypeFlags Flags>
  CPPType(TypeTag<T> /*type*/, TypeForValue<CPPTypeFlags, Flags> /*flags*/, StringRef debug_name);
  virtual ~CPPType() = default;

  /**
   * Two types only compare equal when their pointer is equal. No two instances of CPPType for the
   * same C++ type should be created.
   */
  friend bool operator==(const CPPType &a, const CPPType &b)
  {
    return &a == &b;
  }

  friend bool operator!=(const CPPType &a, const CPPType &b)
  {
    return !(&a == &b);
  }

  /**
   * Get the `CPPType` that corresponds to a specific static type.
   * This only works for types that actually implement the template specialization using
   * `BLI_CPP_TYPE_MAKE`.
   */
  template<typename T> static const CPPType &get()
  {
    /* Store the #CPPType locally to avoid making the function call in most cases. */
    static const CPPType &type = CPPType::get_impl<std::decay_t<T>>();
    return type;
  }
  template<typename T> static const CPPType &get_impl();

  /**
   * Returns the name of the type for debugging purposes. This name should not be used as
   * identifier.
   */
  StringRefNull name() const
  {
    return debug_name_;
  }

  /**
   * Required memory in bytes for an instance of this type.
   *
   * C++ equivalent:
   *   `sizeof(T);`
   */
  int64_t size() const
  {
    return size_;
  }

  /**
   * Required memory alignment for an instance of this type.
   *
   * C++ equivalent:
   *   alignof(T);
   */
  int64_t alignment() const
  {
    return alignment_;
  }

  /**
   * When true, the destructor does not have to be called on this type. This can sometimes be used
   * for optimization purposes.
   *
   * C++ equivalent:
   *   std::is_trivially_destructible_v<T>;
   */
  bool is_trivially_destructible() const
  {
    return is_trivially_destructible_;
  }

  /**
   * When true, the value is like a normal C type, it can be copied around with #memcpy and does
   * not have to be destructed.
   *
   * C++ equivalent:
   *   std::is_trivial_v<T>;
   */
  bool is_trivial() const
  {
    return is_trivial_;
  }

  bool is_default_constructible() const
  {
    return default_construct_ != nullptr;
  }

  bool is_copy_constructible() const
  {
    return copy_assign_ != nullptr;
  }

  bool is_move_constructible() const
  {
    return move_assign_ != nullptr;
  }

  bool is_destructible() const
  {
    return destruct_ != nullptr;
  }

  bool is_copy_assignable() const
  {
    return copy_assign_ != nullptr;
  }

  bool is_move_assignable() const
  {
    return copy_construct_ != nullptr;
  }

  bool is_printable() const
  {
    return print_ != nullptr;
  }

  bool is_equality_comparable() const
  {
    return is_equal_ != nullptr;
  }

  bool is_hashable() const
  {
    return hash_ != nullptr;
  }

  /**
   * Returns true, when the type has the following functions:
   * - Default constructor.
   * - Copy constructor.
   * - Move constructor.
   * - Copy assignment operator.
   * - Move assignment operator.
   * - Destructor.
   */
  bool has_special_member_functions() const
  {
    return has_special_member_functions_;
  }

  /**
   * Returns true, when the given pointer fulfills the alignment requirement of this type.
   */
  bool pointer_has_valid_alignment(const void *ptr) const
  {
    return (uintptr_t(ptr) & alignment_mask_) == 0;
  }

  bool pointer_can_point_to_instance(const void *ptr) const
  {
    return ptr != nullptr && pointer_has_valid_alignment(ptr);
  }

  /**
   * Call the default constructor at the given memory location.
   * The memory should be uninitialized before this method is called.
   * For some trivial types (like int), this method does nothing.
   *
   * C++ equivalent:
   *   new (ptr) T;
   */
  void default_construct(void *ptr) const
  {
    BLI_assert(this->pointer_can_point_to_instance(ptr));

    default_construct_(ptr);
  }

  void default_construct_n(void *ptr, int64_t n) const
  {
    this->default_construct_indices(ptr, IndexMask(n));
  }

  void default_construct_indices(void *ptr, IndexMask mask) const
  {
    BLI_assert(mask.size() == 0 || this->pointer_can_point_to_instance(ptr));

    default_construct_indices_(ptr, mask);
  }

  /**
   * Same as #default_construct, but does zero initialization for trivial types.
   *
   * C++ equivalent:
   *   new (ptr) T();
   */
  void value_initialize(void *ptr) const
  {
    BLI_assert(this->pointer_can_point_to_instance(ptr));

    value_initialize_(ptr);
  }

  void value_initialize_n(void *ptr, int64_t n) const
  {
    this->value_initialize_indices(ptr, IndexMask(n));
  }

  void value_initialize_indices(void *ptr, IndexMask mask) const
  {
    BLI_assert(mask.size() == 0 || this->pointer_can_point_to_instance(ptr));

    value_initialize_indices_(ptr, mask);
  }

  /**
   * Call the destructor on the given instance of this type. The pointer must not be nullptr.
   *
   * For some trivial types, this does nothing.
   *
   * C++ equivalent:
   *   ptr->~T();
   */
  void destruct(void *ptr) const
  {
    BLI_assert(this->pointer_can_point_to_instance(ptr));

    destruct_(ptr);
  }

  void destruct_n(void *ptr, int64_t n) const
  {
    this->destruct_indices(ptr, IndexMask(n));
  }

  void destruct_indices(void *ptr, IndexMask mask) const
  {
    BLI_assert(mask.size() == 0 || this->pointer_can_point_to_instance(ptr));

    destruct_indices_(ptr, mask);
  }

  /**
   * Copy an instance of this type from src to dst.
   *
   * C++ equivalent:
   *   dst = src;
   */
  void copy_assign(const void *src, void *dst) const
  {
    BLI_assert(this->pointer_can_point_to_instance(src));
    BLI_assert(this->pointer_can_point_to_instance(dst));

    copy_assign_(src, dst);
  }

  void copy_assign_n(const void *src, void *dst, int64_t n) const
  {
    this->copy_assign_indices(src, dst, IndexMask(n));
  }

  void copy_assign_indices(const void *src, void *dst, IndexMask mask) const
  {
    BLI_assert(mask.size() == 0 || src != dst);
    BLI_assert(mask.size() == 0 || this->pointer_can_point_to_instance(src));
    BLI_assert(mask.size() == 0 || this->pointer_can_point_to_instance(dst));

    copy_assign_indices_(src, dst, mask);
  }

  /**
   * Similar to #copy_assign_indices, but does not leave gaps in the #dst array.
   */
  void copy_assign_compressed(const void *src, void *dst, IndexMask mask) const
  {
    BLI_assert(mask.size() == 0 || src != dst);
    BLI_assert(mask.size() == 0 || this->pointer_can_point_to_instance(src));
    BLI_assert(mask.size() == 0 || this->pointer_can_point_to_instance(dst));

    copy_assign_compressed_(src, dst, mask);
  }

  /**
   * Copy an instance of this type from src to dst.
   *
   * The memory pointed to by dst should be uninitialized.
   *
   * C++ equivalent:
   *   new (dst) T(src);
   */
  void copy_construct(const void *src, void *dst) const
  {
    BLI_assert(src != dst || is_trivial_);
    BLI_assert(this->pointer_can_point_to_instance(src));
    BLI_assert(this->pointer_can_point_to_instance(dst));

    copy_construct_(src, dst);
  }

  void copy_construct_n(const void *src, void *dst, int64_t n) const
  {
    this->copy_construct_indices(src, dst, IndexMask(n));
  }

  void copy_construct_indices(const void *src, void *dst, IndexMask mask) const
  {
    BLI_assert(mask.size() == 0 || src != dst);
    BLI_assert(mask.size() == 0 || this->pointer_can_point_to_instance(src));
    BLI_assert(mask.size() == 0 || this->pointer_can_point_to_instance(dst));

    copy_construct_indices_(src, dst, mask);
  }

  /**
   * Similar to #copy_construct_indices, but does not leave gaps in the #dst array.
   */
  void copy_construct_compressed(const void *src, void *dst, IndexMask mask) const
  {
    BLI_assert(mask.size() == 0 || src != dst);
    BLI_assert(mask.size() == 0 || this->pointer_can_point_to_instance(src));
    BLI_assert(mask.size() == 0 || this->pointer_can_point_to_instance(dst));

    copy_construct_compressed_(src, dst, mask);
  }

  /**
   * Move an instance of this type from src to dst.
   *
   * The memory pointed to by dst should be initialized.
   *
   * C++ equivalent:
   *   dst = std::move(src);
   */
  void move_assign(void *src, void *dst) const
  {
    BLI_assert(this->pointer_can_point_to_instance(src));
    BLI_assert(this->pointer_can_point_to_instance(dst));

    move_assign_(src, dst);
  }

  void move_assign_n(void *src, void *dst, int64_t n) const
  {
    this->move_assign_indices(src, dst, IndexMask(n));
  }

  void move_assign_indices(void *src, void *dst, IndexMask mask) const
  {
    BLI_assert(mask.size() == 0 || src != dst);
    BLI_assert(mask.size() == 0 || this->pointer_can_point_to_instance(src));
    BLI_assert(mask.size() == 0 || this->pointer_can_point_to_instance(dst));

    move_assign_indices_(src, dst, mask);
  }

  /**
   * Move an instance of this type from src to dst.
   *
   * The memory pointed to by dst should be uninitialized.
   *
   * C++ equivalent:
   *   new (dst) T(std::move(src));
   */
  void move_construct(void *src, void *dst) const
  {
    BLI_assert(src != dst || is_trivial_);
    BLI_assert(this->pointer_can_point_to_instance(src));
    BLI_assert(this->pointer_can_point_to_instance(dst));

    move_construct_(src, dst);
  }

  void move_construct_n(void *src, void *dst, int64_t n) const
  {
    this->move_construct_indices(src, dst, IndexMask(n));
  }

  void move_construct_indices(void *src, void *dst, IndexMask mask) const
  {
    BLI_assert(mask.size() == 0 || src != dst);
    BLI_assert(mask.size() == 0 || this->pointer_can_point_to_instance(src));
    BLI_assert(mask.size() == 0 || this->pointer_can_point_to_instance(dst));

    move_construct_indices_(src, dst, mask);
  }

  /**
   * Relocates an instance of this type from src to dst. src will point to uninitialized memory
   * afterwards.
   *
   * C++ equivalent:
   *   dst = std::move(src);
   *   src->~T();
   */
  void relocate_assign(void *src, void *dst) const
  {
    BLI_assert(src != dst || is_trivial_);
    BLI_assert(this->pointer_can_point_to_instance(src));
    BLI_assert(this->pointer_can_point_to_instance(dst));

    relocate_assign_(src, dst);
  }

  void relocate_assign_n(void *src, void *dst, int64_t n) const
  {
    this->relocate_assign_indices(src, dst, IndexMask(n));
  }

  void relocate_assign_indices(void *src, void *dst, IndexMask mask) const
  {
    BLI_assert(mask.size() == 0 || src != dst);
    BLI_assert(mask.size() == 0 || this->pointer_can_point_to_instance(src));
    BLI_assert(mask.size() == 0 || this->pointer_can_point_to_instance(dst));

    relocate_assign_indices_(src, dst, mask);
  }

  /**
   * Relocates an instance of this type from src to dst. src will point to uninitialized memory
   * afterwards.
   *
   * C++ equivalent:
   *   new (dst) T(std::move(src))
   *   src->~T();
   */
  void relocate_construct(void *src, void *dst) const
  {
    BLI_assert(src != dst || is_trivial_);
    BLI_assert(this->pointer_can_point_to_instance(src));
    BLI_assert(this->pointer_can_point_to_instance(dst));

    relocate_construct_(src, dst);
  }

  void relocate_construct_n(void *src, void *dst, int64_t n) const
  {
    this->relocate_construct_indices(src, dst, IndexMask(n));
  }

  void relocate_construct_indices(void *src, void *dst, IndexMask mask) const
  {
    BLI_assert(mask.size() == 0 || src != dst);
    BLI_assert(mask.size() == 0 || this->pointer_can_point_to_instance(src));
    BLI_assert(mask.size() == 0 || this->pointer_can_point_to_instance(dst));

    relocate_construct_indices_(src, dst, mask);
  }

  /**
   * Copy the given value to the first n elements in an array starting at dst.
   *
   * Other instances of the same type should live in the array before this method is called.
   */
  void fill_assign_n(const void *value, void *dst, int64_t n) const
  {
    this->fill_assign_indices(value, dst, IndexMask(n));
  }

  void fill_assign_indices(const void *value, void *dst, IndexMask mask) const
  {
    BLI_assert(mask.size() == 0 || this->pointer_can_point_to_instance(value));
    BLI_assert(mask.size() == 0 || this->pointer_can_point_to_instance(dst));

    fill_assign_indices_(value, dst, mask);
  }

  /**
   * Copy the given value to the first n elements in an array starting at dst.
   *
   * The array should be uninitialized before this method is called.
   */
  void fill_construct_n(const void *value, void *dst, int64_t n) const
  {
    this->fill_construct_indices(value, dst, IndexMask(n));
  }

  void fill_construct_indices(const void *value, void *dst, IndexMask mask) const
  {
    BLI_assert(mask.size() == 0 || this->pointer_can_point_to_instance(value));
    BLI_assert(mask.size() == 0 || this->pointer_can_point_to_instance(dst));

    fill_construct_indices_(value, dst, mask);
  }

  bool can_exist_in_buffer(const int64_t buffer_size, const int64_t buffer_alignment) const
  {
    return size_ <= buffer_size && alignment_ <= buffer_alignment;
  }

  void print(const void *value, std::stringstream &ss) const
  {
    BLI_assert(this->pointer_can_point_to_instance(value));
    print_(value, ss);
  }

  std::string to_string(const void *value) const
  {
    std::stringstream ss;
    this->print(value, ss);
    return ss.str();
  }

  void print_or_default(const void *value, std::stringstream &ss, StringRef default_value) const
  {
    if (this->is_printable()) {
      this->print(value, ss);
    }
    else {
      ss << default_value;
    }
  }

  bool is_equal(const void *a, const void *b) const
  {
    BLI_assert(this->pointer_can_point_to_instance(a));
    BLI_assert(this->pointer_can_point_to_instance(b));
    return is_equal_(a, b);
  }

  bool is_equal_or_false(const void *a, const void *b) const
  {
    if (this->is_equality_comparable()) {
      return this->is_equal(a, b);
    }
    return false;
  }

  uint64_t hash(const void *value) const
  {
    BLI_assert(this->pointer_can_point_to_instance(value));
    return hash_(value);
  }

  uint64_t hash_or_fallback(const void *value, uint64_t fallback_hash) const
  {
    if (this->is_hashable()) {
      return this->hash(value);
    }
    return fallback_hash;
  }

  /**
   * Get a pointer to a constant value of this type. The specific value depends on the type.
   * It is usually a zero-initialized or default constructed value.
   */
  const void *default_value() const
  {
    return default_value_;
  }

  uint64_t hash() const
  {
    return get_default_hash(this);
  }

  void (*destruct_fn() const)(void *)
  {
    return destruct_;
  }

  template<typename T> bool is() const
  {
    return this == &CPPType::get<std::decay_t<T>>();
  }

  /**
   * Convert a #CPPType that is only known at run-time, to a static type that is known at
   * compile-time. This allows the compiler to optimize a function for specific types, while all
   * other types can still use a generic fallback function.
   *
   * \param Types: The types that code should be generated for.
   * \param fn: The function object to call. This is expected to have a templated `operator()` and
   * a non-templated `operator()`. The templated version will be called if the current #CPPType
   *   matches any of the given types. Otherwise, the non-templated function is called.
   */
  template<typename... Types, typename Fn> void to_static_type(const Fn &fn) const
  {
    using Callback = void (*)(const Fn &fn);

    /* Build a lookup table to avoid having to compare the current #CPPType with every type in
     * #Types one after another. */
    static const Map<const CPPType *, Callback> callback_map = []() {
      Map<const CPPType *, Callback> callback_map;
      /* This adds an entry in the map for every type in #Types. */
      (callback_map.add_new(&CPPType::get<Types>(),
                            [](const Fn &fn) {
                              /* Call the templated `operator()` of the given function object. */
                              fn.template operator()<Types>();
                            }),
       ...);
      return callback_map;
    }();

    const Callback callback = callback_map.lookup_default(this, nullptr);
    if (callback != nullptr) {
      callback(fn);
    }
    else {
      /* Call the non-templated `operator()` of the given function object. */
      fn();
    }
  }

 private:
  template<typename Fn> struct TypeTagExecutor {
    const Fn &fn;

    template<typename T> void operator()() const
    {
      fn(TypeTag<T>{});
    }

    void operator()() const
    {
      fn(TypeTag<void>{});
    }
  };

 public:
  /**
   * Similar to #to_static_type but is easier to use with a lambda function. The function is
   * expected to take a single `auto TypeTag` parameter. To extract the static type, use:
   * `using T = typename decltype(TypeTag)::type;`
   *
   * If the current #CPPType is not in #Types, the type tag is `void`.
   */
  template<typename... Types, typename Fn> void to_static_type_tag(const Fn &fn) const
  {
    TypeTagExecutor<Fn> executor{fn};
    this->to_static_type<Types...>(executor);
  }
};

/**
 * Initialize and register basic cpp types.
 */
void register_cpp_types();

}  // namespace blender

/* Utility for allocating an uninitialized buffer for a single value of the given #CPPType. */
#define BUFFER_FOR_CPP_TYPE_VALUE(type, variable_name) \
  blender::DynamicStackBuffer<64, 64> stack_buffer_for_##variable_name((type).size(), \
                                                                       (type).alignment()); \
  void *variable_name = stack_buffer_for_##variable_name.buffer();