Welcome to mirror list, hosted at ThFree Co, Russian Federation.

BLI_dial.c « intern « blenlib « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: cfbb52847fd7691f3bffa48d81d1ef171a614623 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
/*
 * ***** BEGIN GPL LICENSE BLOCK *****
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 *
 * ***** END GPL LICENSE BLOCK *****
 */

#include "BLI_dial.h"
#include "BLI_math.h"

#include "MEM_guardedalloc.h"

struct Dial {
	/* center of the dial */
	float center[2];
	
	/* threshold of the dial. Distance of current position has to be greater 
	 * than the threshold to be used in any calculations */
	float threshold_squared;
	
	/* the direction of the first dial position exceeding the threshold. This
	 * is later used as the basis against which rotation angle is calculated */
	float initial_direction[2];

	/* cache the last angle to detect rotations bigger than -/+ PI */
	float last_angle;
	
	/* number of full rotations */
	int rotations;
	
	/* has initial_direction been initialized */
	bool initialized;
};


Dial *BLI_dial_initialize(float start_position[2], float threshold)
{
	Dial *dial = MEM_callocN(sizeof(Dial), "dial");
	
	copy_v2_v2(dial->center, start_position);
	dial->threshold_squared = threshold * threshold;
	
	return dial;
}

float BLI_dial_angle(Dial *dial, float current_position[2])
{
	float current_direction[2];
	
	sub_v2_v2v2(current_direction, current_position, dial->center);

	/* only update when we have enough precision, by having the mouse adequately away from center */
	if (len_squared_v2(current_direction) > dial->threshold_squared) {
		float angle;
		float cosval, sinval;

		normalize_v2(current_direction);

		if (!dial->initialized) {
			copy_v2_v2(dial->initial_direction, current_direction);
			dial->initialized = true;
		}
		
		/* calculate mouse angle between initial and final mouse position */
		cosval = dot_v2v2(current_direction, dial->initial_direction);
		sinval = cross_v2v2(current_direction, dial->initial_direction);
		
		/* clamp to avoid nans in acos */
		angle = atan2f(sinval, cosval);
		
		/* change of sign, we passed the 180 degree threshold. This means we need to add a turn.
		 * to distinguish between transition from 0 to -1 and -PI to +PI, use comparison with PI/2 */
		if ((angle * dial->last_angle < 0.0f) &&
		    (fabsf(dial->last_angle) > (float)M_PI_2))
		{
			if (dial->last_angle < 0.0f)
				dial->rotations--;
			else
				dial->rotations++;
		}
		dial->last_angle = angle;
		
		return angle + 2.0f * (float)M_PI * dial->rotations;
	}
	
	return dial->last_angle;
}