Welcome to mirror list, hosted at ThFree Co, Russian Federation.

bsdf_common_lib.glsl « shaders « eevee « engines « draw « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 393ecaf1fc5db59b2e3a833cc7b6d41e6bf84aba (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029

#define M_PI 3.14159265358979323846     /* pi */
#define M_2PI 6.28318530717958647692    /* 2*pi */
#define M_PI_2 1.57079632679489661923   /* pi/2 */
#define M_1_PI 0.318309886183790671538  /* 1/pi */
#define M_1_2PI 0.159154943091895335768 /* 1/(2*pi) */
#define M_1_PI2 0.101321183642337771443 /* 1/(pi^2) */
#define FLT_MAX 3.402823e+38

#define LUT_SIZE 64

/* Buffers */
uniform sampler2D colorBuffer;
uniform sampler2D depthBuffer;
uniform sampler2D maxzBuffer;
uniform sampler2D minzBuffer;
uniform sampler2DArray planarDepth;

#define cameraForward ViewMatrixInverse[2].xyz
#define cameraPos ViewMatrixInverse[3].xyz
#define cameraVec \
  ((ProjectionMatrix[3][3] == 0.0) ? normalize(cameraPos - worldPosition) : cameraForward)
#define viewCameraVec \
  ((ProjectionMatrix[3][3] == 0.0) ? normalize(-viewPosition) : vec3(0.0, 0.0, 1.0))

/* ------- Structures -------- */

/* ------ Lights ----- */
struct LightData {
  vec4 position_influence;     /* w : InfluenceRadius (inversed and squared) */
  vec4 color_spec;             /* w : Spec Intensity */
  vec4 spotdata_radius_shadow; /* x : spot size, y : spot blend, z : radius, w: shadow id */
  vec4 rightvec_sizex;         /* xyz: Normalized up vector, w: area size X or spot scale X */
  vec4 upvec_sizey;            /* xyz: Normalized right vector, w: area size Y or spot scale Y */
  vec4 forwardvec_type;        /* xyz: Normalized forward vector, w: Light Type */
};

/* convenience aliases */
#define l_color color_spec.rgb
#define l_spec color_spec.a
#define l_position position_influence.xyz
#define l_influence position_influence.w
#define l_sizex rightvec_sizex.w
#define l_sizey upvec_sizey.w
#define l_right rightvec_sizex.xyz
#define l_up upvec_sizey.xyz
#define l_forward forwardvec_type.xyz
#define l_type forwardvec_type.w
#define l_spot_size spotdata_radius_shadow.x
#define l_spot_blend spotdata_radius_shadow.y
#define l_radius spotdata_radius_shadow.z
#define l_shadowid spotdata_radius_shadow.w

/* ------ Shadows ----- */
#ifndef MAX_CASCADE_NUM
#  define MAX_CASCADE_NUM 4
#endif

struct ShadowData {
  vec4 near_far_bias_id;
  vec4 contact_shadow_data;
};

struct ShadowCubeData {
  mat4 shadowmat;
  vec4 position;
};

struct ShadowCascadeData {
  mat4 shadowmat[MAX_CASCADE_NUM];
  vec4 split_start_distances;
  vec4 split_end_distances;
  vec4 shadow_vec_id;
};

/* convenience aliases */
#define sh_near near_far_bias_id.x
#define sh_far near_far_bias_id.y
#define sh_bias near_far_bias_id.z
#define sh_data_index near_far_bias_id.w
#define sh_contact_dist contact_shadow_data.x
#define sh_contact_offset contact_shadow_data.y
#define sh_contact_spread contact_shadow_data.z
#define sh_contact_thickness contact_shadow_data.w
#define sh_shadow_vec shadow_vec_id.xyz
#define sh_tex_index shadow_vec_id.w

/* ------ Render Passes ----- */
layout(std140) uniform renderpass_block
{
  bool renderPassDiffuse;
  bool renderPassDiffuseLight;
  bool renderPassGlossy;
  bool renderPassGlossyLight;
  bool renderPassEmit;
  bool renderPassSSSColor;
};

vec3 render_pass_diffuse_mask(vec3 diffuse_color, vec3 diffuse_light)
{
  return renderPassDiffuse ? (renderPassDiffuseLight ? diffuse_light : diffuse_color) : vec3(0.0);
}

vec3 render_pass_sss_mask(vec3 sss_color)
{
  return renderPassSSSColor ? sss_color : vec3(0.0);
}

vec3 render_pass_glossy_mask(vec3 specular_color, vec3 specular_light)
{
  return renderPassGlossy ? (renderPassGlossyLight ? specular_light : specular_color) : vec3(0.0);
}

vec3 render_pass_emission_mask(vec3 emission_light)
{
  return renderPassEmit ? emission_light : vec3(0.0);
}

/* ------- Convenience functions --------- */

vec3 mul(mat3 m, vec3 v)
{
  return m * v;
}
mat3 mul(mat3 m1, mat3 m2)
{
  return m1 * m2;
}
vec3 transform_direction(mat4 m, vec3 v)
{
  return mat3(m) * v;
}
vec3 transform_point(mat4 m, vec3 v)
{
  return (m * vec4(v, 1.0)).xyz;
}
vec3 project_point(mat4 m, vec3 v)
{
  vec4 tmp = m * vec4(v, 1.0);
  return tmp.xyz / tmp.w;
}

#define min3(a, b, c) min(a, min(b, c))
#define min4(a, b, c, d) min(a, min3(b, c, d))
#define min5(a, b, c, d, e) min(a, min4(b, c, d, e))
#define min6(a, b, c, d, e, f) min(a, min5(b, c, d, e, f))
#define min7(a, b, c, d, e, f, g) min(a, min6(b, c, d, e, f, g))
#define min8(a, b, c, d, e, f, g, h) min(a, min7(b, c, d, e, f, g, h))
#define min9(a, b, c, d, e, f, g, h, i) min(a, min8(b, c, d, e, f, g, h, i))

#define max3(a, b, c) max(a, max(b, c))
#define max4(a, b, c, d) max(a, max3(b, c, d))
#define max5(a, b, c, d, e) max(a, max4(b, c, d, e))
#define max6(a, b, c, d, e, f) max(a, max5(b, c, d, e, f))
#define max7(a, b, c, d, e, f, g) max(a, max6(b, c, d, e, f, g))
#define max8(a, b, c, d, e, f, g, h) max(a, max7(b, c, d, e, f, g, h))
#define max9(a, b, c, d, e, f, g, h, i) max(a, max8(b, c, d, e, f, g, h, i))

#define avg3(a, b, c) (a + b + c) * (1.0 / 3.0)
#define avg4(a, b, c, d) (a + b + c + d) * (1.0 / 4.0)
#define avg5(a, b, c, d, e) (a + b + c + d + e) * (1.0 / 5.0)
#define avg6(a, b, c, d, e, f) (a + b + c + d + e + f) * (1.0 / 6.0)
#define avg7(a, b, c, d, e, f, g) (a + b + c + d + e + f + g) * (1.0 / 7.0)
#define avg8(a, b, c, d, e, f, g, h) (a + b + c + d + e + f + g + h) * (1.0 / 8.0)
#define avg9(a, b, c, d, e, f, g, h, i) (a + b + c + d + e + f + g + h + i) * (1.0 / 9.0)

float min_v2(vec2 v)
{
  return min(v.x, v.y);
}
float min_v3(vec3 v)
{
  return min(v.x, min(v.y, v.z));
}
float min_v4(vec4 v)
{
  return min(min(v.x, v.y), min(v.z, v.w));
}
float max_v2(vec2 v)
{
  return max(v.x, v.y);
}
float max_v3(vec3 v)
{
  return max(v.x, max(v.y, v.z));
}
float max_v4(vec4 v)
{
  return max(max(v.x, v.y), max(v.z, v.w));
}

float sum(vec2 v)
{
  return dot(vec2(1.0), v);
}
float sum(vec3 v)
{
  return dot(vec3(1.0), v);
}
float sum(vec4 v)
{
  return dot(vec4(1.0), v);
}

float avg(vec2 v)
{
  return dot(vec2(1.0 / 2.0), v);
}
float avg(vec3 v)
{
  return dot(vec3(1.0 / 3.0), v);
}
float avg(vec4 v)
{
  return dot(vec4(1.0 / 4.0), v);
}

float saturate(float a)
{
  return clamp(a, 0.0, 1.0);
}
vec2 saturate(vec2 a)
{
  return clamp(a, 0.0, 1.0);
}
vec3 saturate(vec3 a)
{
  return clamp(a, 0.0, 1.0);
}
vec4 saturate(vec4 a)
{
  return clamp(a, 0.0, 1.0);
}

float distance_squared(vec2 a, vec2 b)
{
  a -= b;
  return dot(a, a);
}
float distance_squared(vec3 a, vec3 b)
{
  a -= b;
  return dot(a, a);
}
float len_squared(vec3 a)
{
  return dot(a, a);
}

float inverse_distance(vec3 V)
{
  return max(1 / length(V), 1e-8);
}

vec2 mip_ratio_interp(float mip)
{
  float low_mip = floor(mip);
  return mix(mipRatio[int(low_mip)], mipRatio[int(low_mip + 1.0)], mip - low_mip);
}

/* ------- RNG ------- */

float wang_hash_noise(uint s)
{
  s = (s ^ 61u) ^ (s >> 16u);
  s *= 9u;
  s = s ^ (s >> 4u);
  s *= 0x27d4eb2du;
  s = s ^ (s >> 15u);

  return fract(float(s) / 4294967296.0);
}

/* ------- Fast Math ------- */

/* [Drobot2014a] Low Level Optimizations for GCN */
float fast_sqrt(float v)
{
  return intBitsToFloat(0x1fbd1df5 + (floatBitsToInt(v) >> 1));
}

vec2 fast_sqrt(vec2 v)
{
  return intBitsToFloat(0x1fbd1df5 + (floatBitsToInt(v) >> 1));
}

/* [Eberly2014] GPGPU Programming for Games and Science */
float fast_acos(float v)
{
  float res = -0.156583 * abs(v) + M_PI_2;
  res *= fast_sqrt(1.0 - abs(v));
  return (v >= 0) ? res : M_PI - res;
}

vec2 fast_acos(vec2 v)
{
  vec2 res = -0.156583 * abs(v) + M_PI_2;
  res *= fast_sqrt(1.0 - abs(v));
  v.x = (v.x >= 0) ? res.x : M_PI - res.x;
  v.y = (v.y >= 0) ? res.y : M_PI - res.y;
  return v;
}

float point_plane_projection_dist(vec3 lineorigin, vec3 planeorigin, vec3 planenormal)
{
  return dot(planenormal, planeorigin - lineorigin);
}

float line_plane_intersect_dist(vec3 lineorigin,
                                vec3 linedirection,
                                vec3 planeorigin,
                                vec3 planenormal)
{
  return dot(planenormal, planeorigin - lineorigin) / dot(planenormal, linedirection);
}

float line_plane_intersect_dist(vec3 lineorigin, vec3 linedirection, vec4 plane)
{
  vec3 plane_co = plane.xyz * (-plane.w / len_squared(plane.xyz));
  vec3 h = lineorigin - plane_co;
  return -dot(plane.xyz, h) / dot(plane.xyz, linedirection);
}

vec3 line_plane_intersect(vec3 lineorigin, vec3 linedirection, vec3 planeorigin, vec3 planenormal)
{
  float dist = line_plane_intersect_dist(lineorigin, linedirection, planeorigin, planenormal);
  return lineorigin + linedirection * dist;
}

vec3 line_plane_intersect(vec3 lineorigin, vec3 linedirection, vec4 plane)
{
  float dist = line_plane_intersect_dist(lineorigin, linedirection, plane);
  return lineorigin + linedirection * dist;
}

float line_aligned_plane_intersect_dist(vec3 lineorigin, vec3 linedirection, vec3 planeorigin)
{
  /* aligned plane normal */
  vec3 L = planeorigin - lineorigin;
  float diskdist = length(L);
  vec3 planenormal = -normalize(L);
  return -diskdist / dot(planenormal, linedirection);
}

vec3 line_aligned_plane_intersect(vec3 lineorigin, vec3 linedirection, vec3 planeorigin)
{
  float dist = line_aligned_plane_intersect_dist(lineorigin, linedirection, planeorigin);
  if (dist < 0) {
    /* if intersection is behind we fake the intersection to be
     * really far and (hopefully) not inside the radius of interest */
    dist = 1e16;
  }
  return lineorigin + linedirection * dist;
}

float line_unit_sphere_intersect_dist(vec3 lineorigin, vec3 linedirection)
{
  float a = dot(linedirection, linedirection);
  float b = dot(linedirection, lineorigin);
  float c = dot(lineorigin, lineorigin) - 1;

  float dist = 1e15;
  float determinant = b * b - a * c;
  if (determinant >= 0) {
    dist = (sqrt(determinant) - b) / a;
  }

  return dist;
}

float line_unit_box_intersect_dist(vec3 lineorigin, vec3 linedirection)
{
  /* https://seblagarde.wordpress.com/2012/09/29/image-based-lighting-approaches-and-parallax-corrected-cubemap/
   */
  vec3 firstplane = (vec3(1.0) - lineorigin) / linedirection;
  vec3 secondplane = (vec3(-1.0) - lineorigin) / linedirection;
  vec3 furthestplane = max(firstplane, secondplane);

  return min_v3(furthestplane);
}

/* Return texture coordinates to sample Surface LUT */
vec2 lut_coords(float cosTheta, float roughness)
{
  float theta = acos(cosTheta);
  vec2 coords = vec2(roughness, theta / M_PI_2);

  /* scale and bias coordinates, for correct filtered lookup */
  return coords * (LUT_SIZE - 1.0) / LUT_SIZE + 0.5 / LUT_SIZE;
}

vec2 lut_coords_ltc(float cosTheta, float roughness)
{
  vec2 coords = vec2(roughness, sqrt(1.0 - cosTheta));

  /* scale and bias coordinates, for correct filtered lookup */
  return coords * (LUT_SIZE - 1.0) / LUT_SIZE + 0.5 / LUT_SIZE;
}

/* -- Tangent Space conversion -- */
vec3 tangent_to_world(vec3 vector, vec3 N, vec3 T, vec3 B)
{
  return T * vector.x + B * vector.y + N * vector.z;
}

vec3 world_to_tangent(vec3 vector, vec3 N, vec3 T, vec3 B)
{
  return vec3(dot(T, vector), dot(B, vector), dot(N, vector));
}

void make_orthonormal_basis(vec3 N, out vec3 T, out vec3 B)
{
  vec3 UpVector = abs(N.z) < 0.99999 ? vec3(0.0, 0.0, 1.0) : vec3(1.0, 0.0, 0.0);
  T = normalize(cross(UpVector, N));
  B = cross(N, T);
}

/* ---- Opengl Depth conversion ---- */

float linear_depth(bool is_persp, float z, float zf, float zn)
{
  if (is_persp) {
    return (zn * zf) / (z * (zn - zf) + zf);
  }
  else {
    return (z * 2.0 - 1.0) * zf;
  }
}

float buffer_depth(bool is_persp, float z, float zf, float zn)
{
  if (is_persp) {
    return (zf * (zn - z)) / (z * (zn - zf));
  }
  else {
    return (z / (zf * 2.0)) + 0.5;
  }
}

float get_view_z_from_depth(float depth)
{
  if (ProjectionMatrix[3][3] == 0.0) {
    float d = 2.0 * depth - 1.0;
    return -ProjectionMatrix[3][2] / (d + ProjectionMatrix[2][2]);
  }
  else {
    return viewVecs[0].z + depth * viewVecs[1].z;
  }
}

float get_depth_from_view_z(float z)
{
  if (ProjectionMatrix[3][3] == 0.0) {
    float d = (-ProjectionMatrix[3][2] / z) - ProjectionMatrix[2][2];
    return d * 0.5 + 0.5;
  }
  else {
    return (z - viewVecs[0].z) / viewVecs[1].z;
  }
}

vec2 get_uvs_from_view(vec3 view)
{
  vec3 ndc = project_point(ProjectionMatrix, view);
  return ndc.xy * 0.5 + 0.5;
}

vec3 get_view_space_from_depth(vec2 uvcoords, float depth)
{
  if (ProjectionMatrix[3][3] == 0.0) {
    return vec3(viewVecs[0].xy + uvcoords * viewVecs[1].xy, 1.0) * get_view_z_from_depth(depth);
  }
  else {
    return viewVecs[0].xyz + vec3(uvcoords, depth) * viewVecs[1].xyz;
  }
}

vec3 get_world_space_from_depth(vec2 uvcoords, float depth)
{
  return (ViewMatrixInverse * vec4(get_view_space_from_depth(uvcoords, depth), 1.0)).xyz;
}

vec3 get_specular_reflection_dominant_dir(vec3 N, vec3 V, float roughness)
{
  vec3 R = -reflect(V, N);
  float smoothness = 1.0 - roughness;
  float fac = smoothness * (sqrt(smoothness) + roughness);
  return normalize(mix(N, R, fac));
}

float specular_occlusion(float NV, float AO, float roughness)
{
  return saturate(pow(NV + AO, roughness) - 1.0 + AO);
}

/* --- Refraction utils --- */

float ior_from_f0(float f0)
{
  float f = sqrt(f0);
  return (-f - 1.0) / (f - 1.0);
}

float f0_from_ior(float eta)
{
  float A = (eta - 1.0) / (eta + 1.0);
  return A * A;
}

vec3 get_specular_refraction_dominant_dir(vec3 N, vec3 V, float roughness, float ior)
{
  /* TODO: This a bad approximation. Better approximation should fit
   * the refracted vector and roughness into the best prefiltered reflection
   * lobe. */
  /* Correct the IOR for ior < 1.0 to not see the abrupt delimitation or the TIR */
  ior = (ior < 1.0) ? mix(ior, 1.0, roughness) : ior;
  float eta = 1.0 / ior;

  float NV = dot(N, -V);

  /* Custom Refraction. */
  float k = 1.0 - eta * eta * (1.0 - NV * NV);
  k = max(0.0, k); /* Only this changes. */
  vec3 R = eta * -V - (eta * NV + sqrt(k)) * N;

  return R;
}

float get_btdf_lut(sampler2DArray btdf_lut_tex, float NV, float roughness, float ior)
{
  const vec3 lut_scale_bias_texel_size = vec3((LUT_SIZE - 1.0), 0.5, 1.5) / LUT_SIZE;

  vec3 coords;
  /* Try to compensate for the low resolution and interpolation error. */
  coords.x = (ior > 1.0) ? (0.9 + lut_scale_bias_texel_size.z) +
                               (0.1 - lut_scale_bias_texel_size.z) * f0_from_ior(ior) :
                           (0.9 + lut_scale_bias_texel_size.z) * ior * ior;
  coords.y = 1.0 - saturate(NV);
  coords.xy *= lut_scale_bias_texel_size.x;
  coords.xy += lut_scale_bias_texel_size.y;

  const float lut_lvl_ofs = 4.0;    /* First texture lvl of roughness. */
  const float lut_lvl_scale = 16.0; /* How many lvl of roughness in the lut. */

  float mip = roughness * lut_lvl_scale;
  float mip_floor = floor(mip);

  coords.z = lut_lvl_ofs + mip_floor + 1.0;
  float btdf_high = textureLod(btdf_lut_tex, coords, 0.0).r;

  coords.z -= 1.0;
  float btdf_low = textureLod(btdf_lut_tex, coords, 0.0).r;

  float btdf = (ior == 1.0) ? 1.0 : mix(btdf_low, btdf_high, mip - coords.z);

  return btdf;
}

/* ---- Encode / Decode Normal buffer data ---- */
/* From http://aras-p.info/texts/CompactNormalStorage.html
 * Using Method #4: Spheremap Transform */
vec2 normal_encode(vec3 n, vec3 view)
{
  float p = sqrt(n.z * 8.0 + 8.0);
  return n.xy / p + 0.5;
}

vec3 normal_decode(vec2 enc, vec3 view)
{
  vec2 fenc = enc * 4.0 - 2.0;
  float f = dot(fenc, fenc);
  float g = sqrt(1.0 - f / 4.0);
  vec3 n;
  n.xy = fenc * g;
  n.z = 1 - f / 2;
  return n;
}

/* ---- RGBM (shared multiplier) encoding ---- */
/* From http://iwasbeingirony.blogspot.fr/2010/06/difference-between-rgbm-and-rgbd.html */

/* Higher RGBM_MAX_RANGE gives imprecision issues in low intensity. */
#define RGBM_MAX_RANGE 512.0

vec4 rgbm_encode(vec3 rgb)
{
  float maxRGB = max_v3(rgb);
  float M = maxRGB / RGBM_MAX_RANGE;
  M = ceil(M * 255.0) / 255.0;
  return vec4(rgb / (M * RGBM_MAX_RANGE), M);
}

vec3 rgbm_decode(vec4 data)
{
  return data.rgb * (data.a * RGBM_MAX_RANGE);
}

/* ---- RGBE (shared exponent) encoding ---- */
vec4 rgbe_encode(vec3 rgb)
{
  float maxRGB = max_v3(rgb);
  float fexp = ceil(log2(maxRGB));
  return vec4(rgb / exp2(fexp), (fexp + 128.0) / 255.0);
}

vec3 rgbe_decode(vec4 data)
{
  float fexp = data.a * 255.0 - 128.0;
  return data.rgb * exp2(fexp);
}

#if 1
#  define irradiance_encode rgbe_encode
#  define irradiance_decode rgbe_decode
#else /* No ecoding (when using floating point format) */
#  define irradiance_encode(X) (X).rgbb
#  define irradiance_decode(X) (X).rgb
#endif

/* Irradiance Visibility Encoding */
#if 1
vec4 visibility_encode(vec2 accum, float range)
{
  accum /= range;

  vec4 data;
  data.x = fract(accum.x);
  data.y = floor(accum.x) / 255.0;
  data.z = fract(accum.y);
  data.w = floor(accum.y) / 255.0;

  return data;
}

vec2 visibility_decode(vec4 data, float range)
{
  return (data.xz + data.yw * 255.0) * range;
}
#else /* No ecoding (when using floating point format) */
vec4 visibility_encode(vec2 accum, float range)
{
  return accum.xyxy;
}

vec2 visibility_decode(vec4 data, float range)
{
  return data.xy;
}
#endif

/* Fresnel monochromatic, perfect mirror */
float F_eta(float eta, float cos_theta)
{
  /* compute fresnel reflectance without explicitly computing
   * the refracted direction */
  float c = abs(cos_theta);
  float g = eta * eta - 1.0 + c * c;
  float result;

  if (g > 0.0) {
    g = sqrt(g);
    vec2 g_c = vec2(g) + vec2(c, -c);
    float A = g_c.y / g_c.x;
    A *= A;
    g_c *= c;
    float B = (g_c.y - 1.0) / (g_c.x + 1.0);
    B *= B;
    result = 0.5 * A * (1.0 + B);
  }
  else {
    result = 1.0; /* TIR (no refracted component) */
  }

  return result;
}

/* Fresnel color blend base on fresnel factor */
vec3 F_color_blend(float eta, float fresnel, vec3 f0_color)
{
  float f0 = F_eta(eta, 1.0);
  float fac = saturate((fresnel - f0) / max(1e-8, 1.0 - f0));
  return mix(f0_color, vec3(1.0), fac);
}

/* Fresnel */
vec3 F_schlick(vec3 f0, float cos_theta)
{
  float fac = 1.0 - cos_theta;
  float fac2 = fac * fac;
  fac = fac2 * fac2 * fac;

  /* Unreal specular matching : if specular color is below 2% intensity,
   * (using green channel for intensity) treat as shadowning */
  return saturate(50.0 * dot(f0, vec3(0.3, 0.6, 0.1))) * fac + (1.0 - fac) * f0;
}

/* Fresnel approximation for LTC area lights (not MRP) */
vec3 F_area(vec3 f0, vec3 f90, vec2 lut)
{
  /* Unreal specular matching : if specular color is below 2% intensity,
   * treat as shadowning */
  return saturate(50.0 * dot(f0, vec3(0.3, 0.6, 0.1))) * lut.y * f90 + lut.x * f0;
}

/* Fresnel approximation for IBL */
vec3 F_ibl(vec3 f0, vec3 f90, vec2 lut)
{
  /* Unreal specular matching : if specular color is below 2% intensity,
   * treat as shadowning */
  return saturate(50.0 * dot(f0, vec3(0.3, 0.6, 0.1))) * lut.y * f90 + lut.x * f0;
}

/* GGX */
float D_ggx_opti(float NH, float a2)
{
  float tmp = (NH * a2 - NH) * NH + 1.0;
  return M_PI * tmp * tmp; /* Doing RCP and mul a2 at the end */
}

float G1_Smith_GGX(float NX, float a2)
{
  /* Using Brian Karis approach and refactoring by NX/NX
   * this way the (2*NL)*(2*NV) in G = G1(V) * G1(L) gets canceled by the brdf denominator 4*NL*NV
   * Rcp is done on the whole G later
   * Note that this is not convenient for the transmission formula */
  return NX + sqrt(NX * (NX - NX * a2) + a2);
  /* return 2 / (1 + sqrt(1 + a2 * (1 - NX*NX) / (NX*NX) ) ); /* Reference function */
}

float bsdf_ggx(vec3 N, vec3 L, vec3 V, float roughness)
{
  float a = roughness;
  float a2 = a * a;

  vec3 H = normalize(L + V);
  float NH = max(dot(N, H), 1e-8);
  float NL = max(dot(N, L), 1e-8);
  float NV = max(dot(N, V), 1e-8);

  float G = G1_Smith_GGX(NV, a2) * G1_Smith_GGX(NL, a2); /* Doing RCP at the end */
  float D = D_ggx_opti(NH, a2);

  /* Denominator is canceled by G1_Smith */
  /* bsdf = D * G / (4.0 * NL * NV); /* Reference function */
  return NL * a2 / (D * G); /* NL to Fit cycles Equation : line. 345 in bsdf_microfacet.h */
}

void accumulate_light(vec3 light, float fac, inout vec4 accum)
{
  accum += vec4(light, 1.0) * min(fac, (1.0 - accum.a));
}

/* ----------- Cone Aperture Approximation --------- */

/* Return a fitted cone angle given the input roughness */
float cone_cosine(float r)
{
  /* Using phong gloss
   * roughness = sqrt(2/(gloss+2)) */
  float gloss = -2 + 2 / (r * r);
  /* Drobot 2014 in GPUPro5 */
  // return cos(2.0 * sqrt(2.0 / (gloss + 2)));
  /* Uludag 2014 in GPUPro5 */
  // return pow(0.244, 1 / (gloss + 1));
  /* Jimenez 2016 in Practical Realtime Strategies for Accurate Indirect Occlusion*/
  return exp2(-3.32193 * r * r);
}

/* --------- Closure ---------- */

#ifdef VOLUMETRICS

struct Closure {
  vec3 absorption;
  vec3 scatter;
  vec3 emission;
  float anisotropy;
};

Closure nodetree_exec(void); /* Prototype */

#  define CLOSURE_DEFAULT Closure(vec3(0.0), vec3(0.0), vec3(0.0), 0.0)

Closure closure_mix(Closure cl1, Closure cl2, float fac)
{
  Closure cl;
  cl.absorption = mix(cl1.absorption, cl2.absorption, fac);
  cl.scatter = mix(cl1.scatter, cl2.scatter, fac);
  cl.emission = mix(cl1.emission, cl2.emission, fac);
  cl.anisotropy = mix(cl1.anisotropy, cl2.anisotropy, fac);
  return cl;
}

Closure closure_add(Closure cl1, Closure cl2)
{
  Closure cl;
  cl.absorption = cl1.absorption + cl2.absorption;
  cl.scatter = cl1.scatter + cl2.scatter;
  cl.emission = cl1.emission + cl2.emission;
  cl.anisotropy = (cl1.anisotropy + cl2.anisotropy) / 2.0; /* Average phase (no multi lobe) */
  return cl;
}

Closure closure_emission(vec3 rgb)
{
  Closure cl = CLOSURE_DEFAULT;
  cl.emission = rgb;
  return cl;
}

#else /* VOLUMETRICS */

struct Closure {
  vec3 radiance;
  vec3 transmittance;
  float holdout;
#  ifdef USE_SSS
  vec3 sss_irradiance;
  vec3 sss_albedo;
  float sss_radius;
#  endif
  vec4 ssr_data;
  vec2 ssr_normal;
  int flag;
};

Closure nodetree_exec(void); /* Prototype */

#  define FLAG_TEST(flag, val) (((flag) & (val)) != 0)

#  define CLOSURE_SSR_FLAG 1
#  define CLOSURE_SSS_FLAG 2
#  define CLOSURE_HOLDOUT_FLAG 4

#  ifdef USE_SSS
#    define CLOSURE_DEFAULT \
      Closure(vec3(0.0), vec3(0.0), 0.0, vec3(0.0), vec3(0.0), 0.0, vec4(0.0), vec2(0.0), 0)
#  else
#    define CLOSURE_DEFAULT Closure(vec3(0.0), vec3(0.0), 0.0, vec4(0.0), vec2(0.0), 0)
#  endif

uniform int outputSsrId = 1;
uniform int outputSssId = 1;

void closure_load_ssr_data(
    vec3 ssr_spec, float roughness, vec3 N, vec3 viewVec, int ssr_id, inout Closure cl)
{
  /* Still encode to avoid artifacts in the SSR pass. */
  vec3 vN = normalize(mat3(ViewMatrix) * N);
  cl.ssr_normal = normal_encode(vN, viewVec);

  if (ssr_id == outputSsrId) {
    cl.ssr_data = vec4(ssr_spec, roughness);
    cl.flag |= CLOSURE_SSR_FLAG;
  }
}

void closure_load_sss_data(
    float radius, vec3 sss_irradiance, vec3 sss_albedo, int sss_id, inout Closure cl)
{
#  ifdef USE_SSS
  if (sss_id == outputSssId) {
    cl.sss_irradiance = sss_irradiance;
    cl.sss_radius = radius;
    cl.sss_albedo = sss_albedo;
    cl.flag |= CLOSURE_SSS_FLAG;
    cl.radiance += render_pass_diffuse_mask(sss_albedo, vec3(0));
  }
  else
#  endif
  {
    cl.radiance += render_pass_diffuse_mask(sss_albedo, sss_irradiance * sss_albedo);
  }
}

Closure closure_mix(Closure cl1, Closure cl2, float fac)
{
  Closure cl;
  cl.holdout = mix(cl1.holdout, cl2.holdout, fac);

  if (FLAG_TEST(cl1.flag, CLOSURE_HOLDOUT_FLAG)) {
    fac = 1.0;
  }
  else if (FLAG_TEST(cl2.flag, CLOSURE_HOLDOUT_FLAG)) {
    fac = 0.0;
  }

  cl.transmittance = mix(cl1.transmittance, cl2.transmittance, fac);
  cl.radiance = mix(cl1.radiance, cl2.radiance, fac);
  cl.flag = cl1.flag | cl2.flag;
  cl.ssr_data = mix(cl1.ssr_data, cl2.ssr_data, fac);
  bool use_cl1_ssr = FLAG_TEST(cl1.flag, CLOSURE_SSR_FLAG);
  /* When mixing SSR don't blend roughness and normals but only specular (ssr_data.xyz).*/
  cl.ssr_data.w = (use_cl1_ssr) ? cl1.ssr_data.w : cl2.ssr_data.w;
  cl.ssr_normal = (use_cl1_ssr) ? cl1.ssr_normal : cl2.ssr_normal;

#  ifdef USE_SSS
  cl.sss_albedo = mix(cl1.sss_albedo, cl2.sss_albedo, fac);
  bool use_cl1_sss = FLAG_TEST(cl1.flag, CLOSURE_SSS_FLAG);
  /* It also does not make sense to mix SSS radius or irradiance. */
  cl.sss_radius = (use_cl1_sss) ? cl1.sss_radius : cl2.sss_radius;
  cl.sss_irradiance = (use_cl1_sss) ? cl1.sss_irradiance : cl2.sss_irradiance;
#  endif
  return cl;
}

Closure closure_add(Closure cl1, Closure cl2)
{
  Closure cl;
  cl.transmittance = cl1.transmittance + cl2.transmittance;
  cl.radiance = cl1.radiance + cl2.radiance;
  cl.holdout = cl1.holdout + cl2.holdout;
  cl.flag = cl1.flag | cl2.flag;
  cl.ssr_data = cl1.ssr_data + cl2.ssr_data;
  bool use_cl1_ssr = FLAG_TEST(cl1.flag, CLOSURE_SSR_FLAG);
  /* When mixing SSR don't blend roughness and normals.*/
  cl.ssr_data.w = (use_cl1_ssr) ? cl1.ssr_data.w : cl2.ssr_data.w;
  cl.ssr_normal = (use_cl1_ssr) ? cl1.ssr_normal : cl2.ssr_normal;

#  ifdef USE_SSS
  cl.sss_albedo = cl1.sss_albedo + cl2.sss_albedo;
  bool use_cl1_sss = FLAG_TEST(cl1.flag, CLOSURE_SSS_FLAG);
  /* It also does not make sense to mix SSS radius or irradiance. */
  cl.sss_radius = (use_cl1_sss) ? cl1.sss_radius : cl2.sss_radius;
  cl.sss_irradiance = (use_cl1_sss) ? cl1.sss_irradiance : cl2.sss_irradiance;
#  endif
  return cl;
}

Closure closure_emission(vec3 rgb)
{
  Closure cl = CLOSURE_DEFAULT;
  cl.radiance = rgb;
  return cl;
}

/* Breaking this across multiple lines causes issues for some older GLSL compilers. */
/* clang-format off */
#  if defined(MESH_SHADER) && !defined(DEPTH_SHADER)
/* clang-format on */
#    ifndef USE_ALPHA_BLEND
layout(location = 0) out vec4 outRadiance;
layout(location = 1) out vec2 ssrNormals;
layout(location = 2) out vec4 ssrData;
#      ifdef USE_SSS
layout(location = 3) out vec3 sssIrradiance;
layout(location = 4) out float sssRadius;
layout(location = 5) out vec3 sssAlbedo;
#      endif
#    else  /* USE_ALPHA_BLEND */
/* Use dual source blending to be able to make a whole range of effects. */
layout(location = 0, index = 0) out vec4 outRadiance;
layout(location = 0, index = 1) out vec4 outTransmittance;
#    endif /* USE_ALPHA_BLEND */

#    if defined(USE_ALPHA_BLEND)
/* Prototype because this file is included before volumetric_lib.glsl */
void volumetric_resolve(vec2 frag_uvs,
                        float frag_depth,
                        out vec3 transmittance,
                        out vec3 scattering);
#    endif

#    define NODETREE_EXEC
void main()
{
  Closure cl = nodetree_exec();

  float holdout = saturate(1.0 - cl.holdout);
  float transmit = saturate(avg(cl.transmittance));
  float alpha = 1.0 - transmit;

#    ifdef USE_ALPHA_BLEND
  vec2 uvs = gl_FragCoord.xy * volCoordScale.zw;
  vec3 vol_transmit, vol_scatter;
  volumetric_resolve(uvs, gl_FragCoord.z, vol_transmit, vol_scatter);

  /* Removes part of the volume scattering that have
   * already been added to the destination pixels.
   * Since we do that using the blending pipeline we need to account for material transmittance. */
  vol_scatter -= vol_scatter * cl.transmittance;

  cl.radiance = cl.radiance * holdout * vol_transmit + vol_scatter;
  outRadiance = vec4(cl.radiance, alpha * holdout);
  outTransmittance = vec4(cl.transmittance, transmit) * holdout;
#    else
  outRadiance = vec4(cl.radiance, holdout);
  ssrNormals = cl.ssr_normal;
  ssrData = cl.ssr_data;
#      ifdef USE_SSS
  sssIrradiance = cl.sss_irradiance;
  sssRadius = cl.sss_radius;
  sssAlbedo = cl.sss_albedo;
#      endif
#    endif

  /* For Probe capture */
#    ifdef USE_SSS
  float fac = float(!sssToggle);

  /* TODO(fclem) we shouldn't need this.
   * Just disable USE_SSS when USE_REFRACTION is enabled. */
#      ifdef USE_REFRACTION
  /* SSRefraction pass is done after the SSS pass.
   * In order to not loose the diffuse light totally we
   * need to merge the SSS radiance to the main radiance. */
  fac = 1.0;
#      endif

  outRadiance.rgb += cl.sss_irradiance.rgb * cl.sss_albedo.rgb * fac;
#    endif

#    ifdef LOOKDEV
  gl_FragDepth = 0.0;
#    endif

#    ifndef USE_ALPHA_BLEND
  float alpha_div = 1.0 / max(1e-8, alpha);
  outRadiance.rgb *= alpha_div;
  ssrData.rgb *= alpha_div;
#      ifdef USE_SSS
  sssAlbedo.rgb *= alpha_div;
#      endif
#    endif
}

#  endif /* MESH_SHADER */

#endif /* VOLUMETRICS */