Welcome to mirror list, hosted at ThFree Co, Russian Federation.

FitCurve.cpp « geometry « intern « freestyle « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: e517bf4f1967e955437c0e2df899095eb3f0fb21 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
/*
 * ***** BEGIN GPL LICENSE BLOCK *****
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 *
 * ***** END GPL LICENSE BLOCK *****
 */

/** \file blender/freestyle/intern/geometry/FitCurve.cpp
 *  \ingroup freestyle
 *  \brief An Algorithm for Automatically Fitting Digitized Curves by Philip J. Schneider,
 *  \brief from "Graphics Gems", Academic Press, 1990
 *  \author Stephane Grabli
 *  \date 06/06/2003
 */

#include <cstdlib> // for malloc and free
#include <stdio.h>
#include <math.h>

#include "FitCurve.h"

using namespace std;

namespace Freestyle {

typedef Vector2 *BezierCurve;

/* Forward declarations */
static double *Reparameterize(Vector2 *d, int first, int last, double *u, BezierCurve bezCurve);
static double NewtonRaphsonRootFind(BezierCurve Q, Vector2 P, double u);
static Vector2 BezierII(int degree, Vector2 *V, double t);
static double B0(double u);
static double B1(double u);
static double B2(double u);
static double B3(double u);
static Vector2 ComputeLeftTangent(Vector2 *d, int end);
static double ComputeMaxError(Vector2 *d, int first, int last, BezierCurve bezCurve, double *u, int *splitPoint);
static double *ChordLengthParameterize(Vector2 *d, int first, int last);
static BezierCurve GenerateBezier(Vector2 *d, int first, int last, double *uPrime, Vector2 tHat1, Vector2 tHat2);
static Vector2 V2AddII(Vector2 a, Vector2 b);
static Vector2 V2ScaleIII(Vector2 v, double s);
static Vector2 V2SubII(Vector2 a, Vector2 b);

/* returns squared length of input vector */
static double V2SquaredLength(Vector2 *a)
{
	return (((*a)[0] * (*a)[0]) + ((*a)[1] * (*a)[1]));
}

/* returns length of input vector */
static double V2Length(Vector2 *a) 
{
	return (sqrt(V2SquaredLength(a)));
}

static Vector2 *V2Scale(Vector2 *v, double newlen)
{
	double len = V2Length(v);
	if (len != 0.0) {
		(*v)[0] *= newlen / len;
		(*v)[1] *= newlen / len;
	}
	return v;
}

/* return the dot product of vectors a and b */
static double V2Dot(Vector2 *a, Vector2 *b)
{
	return (((*a)[0] * (*b)[0]) + ((*a)[1] * (*b)[1]));
}

/* return the distance between two points */
static double V2DistanceBetween2Points(Vector2 *a, Vector2 *b)
{
	double dx = (*a)[0] - (*b)[0];
	double dy = (*a)[1] - (*b)[1];
	return (sqrt((dx * dx) + (dy * dy)));
}

/* return vector sum c = a+b */
static Vector2 *V2Add(Vector2 *a, Vector2 *b, Vector2 *c)
{
	(*c)[0] = (*a)[0] + (*b)[0];
	(*c)[1] = (*a)[1] + (*b)[1];
	return c;
} 

/* normalizes the input vector and returns it */
static Vector2 *V2Normalize(Vector2 *v)
{
	double len = V2Length(v);
	if (len != 0.0) {
		(*v)[0] /= len;
		(*v)[1] /= len;
	}
	return v;
}

/* negates the input vector and returns it */
static Vector2 *V2Negate(Vector2 *v)
{
	(*v)[0] = -(*v)[0];
	(*v)[1] = -(*v)[1];
	return v;
}

/*  GenerateBezier:
 *  Use least-squares method to find Bezier control points for region.
 *    Vector2 *d;           Array of digitized points
 *    int     first, last;  Indices defining region
 *    double  *uPrime;      Parameter values for region
 *    Vector2 tHat1, tHat2; Unit tangents at endpoints
 */
static BezierCurve  GenerateBezier(Vector2 *d, int first, int last, double *uPrime, Vector2 tHat1, Vector2 tHat2)
{
	int i;
	Vector2 A[2];            /* rhs for eqn */
	int nPts;                /* Number of pts in sub-curve */
	double C[2][2];          /* Matrix C */
	double X[2];             /* Matrix X */
	double det_C0_C1;        /* Determinants of matrices */
	double det_C0_X;
	double det_X_C1;
	double alpha_l;          /* Alpha values, left and right */
	double alpha_r;
	Vector2 tmp;             /* Utility variable */
	BezierCurve bezCurve;    /* RETURN bezier curve ctl pts */

	bezCurve = (Vector2 *)malloc(4 * sizeof(Vector2));
	nPts = last - first + 1;

	/* Create the C and X matrices */
	C[0][0] = 0.0;
	C[0][1] = 0.0;
	C[1][0] = 0.0;
	C[1][1] = 0.0;
	X[0]    = 0.0;
	X[1]    = 0.0;
	for (i = 0; i < nPts; i++) {
		/* Compute the A's */
		A[0] = tHat1;
		A[1] = tHat2;
		V2Scale(&A[0], B1(uPrime[i]));
		V2Scale(&A[1], B2(uPrime[i]));

		C[0][0] += V2Dot(&A[0], &A[0]);
		C[0][1] += V2Dot(&A[0], &A[1]);
//		C[1][0] += V2Dot(&A[0], &A[1]);
		C[1][0] = C[0][1];
		C[1][1] += V2Dot(&A[1], &A[1]);

		tmp = V2SubII(d[first + i],
		              V2AddII(V2ScaleIII(d[first], B0(uPrime[i])),
		                      V2AddII(V2ScaleIII(d[first], B1(uPrime[i])),
		                              V2AddII(V2ScaleIII(d[last], B2(uPrime[i])),
		                                      V2ScaleIII(d[last], B3(uPrime[i]))
		                                     )
		                             )
		                     )
		             );

		X[0] += V2Dot(&A[0], &tmp);
		X[1] += V2Dot(&A[1], &tmp);
	}

	/* Compute the determinants of C and X */
	det_C0_C1 = C[0][0] * C[1][1] - C[1][0] * C[0][1];
	det_C0_X  = C[0][0] * X[1]    - C[0][1] * X[0];
	det_X_C1  = X[0]    * C[1][1] - X[1]    * C[0][1];

	/* Finally, derive alpha values */
	if (det_C0_C1 == 0.0) {
		det_C0_C1 = (C[0][0] * C[1][1]) * 10.0e-12;
	}
	alpha_l = det_X_C1 / det_C0_C1;
	alpha_r = det_C0_X / det_C0_C1;


	/* If alpha negative, use the Wu/Barsky heuristic (see text) (if alpha is 0, you get coincident control points
	 * that lead to divide by zero in any subsequent NewtonRaphsonRootFind() call).
	 */
	if (alpha_l < 1.0e-6 || alpha_r < 1.0e-6) {
		double dist = V2DistanceBetween2Points(&d[last], &d[first]) / 3.0;

		bezCurve[0] = d[first];
		bezCurve[3] = d[last];
		V2Add(&(bezCurve[0]), V2Scale(&(tHat1), dist), &(bezCurve[1]));
		V2Add(&(bezCurve[3]), V2Scale(&(tHat2), dist), &(bezCurve[2]));
		return bezCurve;
	}

	/* First and last control points of the Bezier curve are positioned exactly at the first and last data points
	 * Control points 1 and 2 are positioned an alpha distance out on the tangent vectors, left and right, respectively
	 */
	bezCurve[0] = d[first];
	bezCurve[3] = d[last];
	V2Add(&bezCurve[0], V2Scale(&tHat1, alpha_l), &bezCurve[1]);
	V2Add(&bezCurve[3], V2Scale(&tHat2, alpha_r), &bezCurve[2]);
	return (bezCurve);
}

/*
 *  Reparameterize:
 *  Given set of points and their parameterization, try to find a better parameterization.
 *    Vector2     *d;           Array of digitized points
 *    int         first, last;  Indices defining region
 *    double      *u;           Current parameter values
 *    BezierCurve bezCurve;     Current fitted curve
 */
static double *Reparameterize(Vector2 *d, int first, int last, double *u, BezierCurve bezCurve)
{
	int nPts = last - first + 1;
	int i;
	double *uPrime; /* New parameter values */

	uPrime = (double *)malloc(nPts * sizeof(double));
	for (i = first; i <= last; i++) {
		uPrime[i - first] = NewtonRaphsonRootFind(bezCurve, d[i], u[i - first]);
	}
	return (uPrime);
}

/*
 *  NewtonRaphsonRootFind:
 *  Use Newton-Raphson iteration to find better root.
 *    BezierCurve Q;  Current fitted curve
 *    Vector2     P;  Digitized point
 *    double      u;  Parameter value for "P"
 */
static double NewtonRaphsonRootFind(BezierCurve Q, Vector2 P, double u)
{
	double  numerator, denominator;
	Vector2 Q1[3], Q2[2];     /* Q' and Q'' */
	Vector2 Q_u, Q1_u, Q2_u;  /* u evaluated at Q, Q', & Q'' */
	double  uPrime;           /* Improved u */
	int     i;

	/* Compute Q(u) */
	Q_u = BezierII(3, Q, u);

	/* Generate control vertices for Q' */
	for (i = 0; i <= 2; i++) {
		Q1[i][0] = (Q[i + 1][0] - Q[i][0]) * 3.0;
		Q1[i][1] = (Q[i + 1][1] - Q[i][1]) * 3.0;
	}

	/* Generate control vertices for Q'' */
	for (i = 0; i <= 1; i++) {
		Q2[i][0] = (Q1[i + 1][0] - Q1[i][0]) * 2.0;
		Q2[i][1] = (Q1[i + 1][1] - Q1[i][1]) * 2.0;
	}

	/* Compute Q'(u) and Q''(u) */
	Q1_u = BezierII(2, Q1, u);
	Q2_u = BezierII(1, Q2, u);

	/* Compute f(u)/f'(u) */
	numerator = (Q_u[0] - P[0]) * (Q1_u[0]) + (Q_u[1] - P[1]) * (Q1_u[1]);
	denominator = (Q1_u[0]) * (Q1_u[0]) + (Q1_u[1]) * (Q1_u[1]) +
	              (Q_u[0] - P[0]) * (Q2_u[0]) + (Q_u[1] - P[1]) * (Q2_u[1]);

	/* u = u - f(u)/f'(u) */
	if (denominator == 0) // FIXME
		return u;
	uPrime = u - (numerator / denominator);
	return uPrime;
}

/*
 *  Bezier:
 *  Evaluate a Bezier curve at a particular parameter value
 *    int     degree;  The degree of the bezier curve
 *    Vector2 *V;      Array of control points
 *    double  t;       Parametric value to find point for
 */
static Vector2 BezierII(int degree, Vector2 *V, double t)
{
	int i, j;
	Vector2 Q;       /* Point on curve at parameter t */
	Vector2 *Vtemp;  /* Local copy of control points */

	/* Copy array */
	Vtemp = (Vector2 *)malloc((unsigned)((degree + 1) * sizeof(Vector2)));
	for (i = 0; i <= degree; i++) {
		Vtemp[i] = V[i];
	}

	/* Triangle computation	*/
	for (i = 1; i <= degree; i++) {
		for (j = 0; j <= degree - i; j++) {
			Vtemp[j][0] = (1.0 - t) * Vtemp[j][0] + t * Vtemp[j + 1][0];
			Vtemp[j][1] = (1.0 - t) * Vtemp[j][1] + t * Vtemp[j + 1][1];
		}
	}

	Q = Vtemp[0];
	free((void *)Vtemp);
	return Q;
}

/*
 *  B0, B1, B2, B3:
 *  Bezier multipliers
 */
static double B0(double u)
{
	double tmp = 1.0 - u;
	return (tmp * tmp * tmp);
}

static double B1(double u)
{
	double tmp = 1.0 - u;
	return (3 * u * (tmp * tmp));
}

static double B2(double u)
{
	double tmp = 1.0 - u;
	return (3 * u * u * tmp);
}

static double B3(double u)
{
	return (u * u * u);
}

/*
 * ComputeLeftTangent, ComputeRightTangent, ComputeCenterTangent:
 * Approximate unit tangents at endpoints and "center" of digitized curve
 */
/*    Vector2 *d;   Digitized points
 *    int     end;  Index to "left" end of region
 */
static Vector2 ComputeLeftTangent(Vector2 *d, int end)
{
	Vector2 tHat1;
	tHat1 = V2SubII(d[end + 1], d[end]);
	tHat1 = *V2Normalize(&tHat1);
	return tHat1;
}

/*    Vector2 *d;   Digitized points
 *    int     end;  Index to "right" end of region
 */
static Vector2 ComputeRightTangent(Vector2 *d, int end)
{
	Vector2 tHat2;
	tHat2 = V2SubII(d[end - 1], d[end]);
	tHat2 = *V2Normalize(&tHat2);
	return tHat2;
}

/*    Vector2 *d;   Digitized points
 *    int     end;  Index to point inside region
 */
static Vector2 ComputeCenterTangent(Vector2 *d, int center)
{
	Vector2	V1, V2, tHatCenter;

	V1 = V2SubII(d[center - 1], d[center]);
	V2 = V2SubII(d[center], d[center + 1]);
	tHatCenter[0] = (V1[0] + V2[0]) / 2.0;
	tHatCenter[1] = (V1[1] + V2[1]) / 2.0;
	tHatCenter = *V2Normalize(&tHatCenter);

	/* avoid numerical singularity in the special case when V1 == -V2 */
	if (V2Length(&tHatCenter) < M_EPSILON) {
		tHatCenter = *V2Normalize(&V1);
	}

	return tHatCenter;
}

/*
 *  ChordLengthParameterize:
 *  Assign parameter values to digitized points using relative distances between points.
 *    Vector2 *d;           Array of digitized points
 *    int     first, last;  Indices defining region
 */
static double *ChordLengthParameterize(Vector2 *d, int first, int last)
{
	int i;
	double *u; /* Parameterization */

	u = (double *)malloc((unsigned)(last - first + 1) * sizeof(double));

	u[0] = 0.0;
	for (i = first + 1; i <= last; i++) {
		u[i - first] = u[i - first - 1] + V2DistanceBetween2Points(&d[i], &d[i - 1]);
	}

	for (i = first + 1; i <= last; i++) {
		u[i - first] = u[i - first] / u[last - first];
	}

	return u;
}

/*
 *  ComputeMaxError :
 *  Find the maximum squared distance of digitized points to fitted curve.
 *    Vector2     *d;           Array of digitized points
 *    int         first, last;  Indices defining region
 *    BezierCurve bezCurve;     Fitted Bezier curve
 *    double      *u;           Parameterization of points
 *    int         *splitPoint;  Point of maximum error
 */
static double ComputeMaxError(Vector2 *d, int first, int last, BezierCurve bezCurve, double *u, int *splitPoint)
{
	int i;
	double maxDist; /* Maximum error */
	double dist;    /* Current error */
	Vector2 P;      /* Point on curve */
	Vector2 v;      /* Vector from point to curve */

	*splitPoint = (last - first + 1) / 2;
	maxDist = 0.0;
	for (i = first + 1; i < last; i++) {
		P = BezierII(3, bezCurve, u[i - first]);
		v = V2SubII(P, d[i]);
		dist = V2SquaredLength(&v);
		if (dist >= maxDist) {
			maxDist = dist;
			*splitPoint = i;
		}
	}
	return maxDist;
}

static Vector2 V2AddII(Vector2 a, Vector2 b)
{
	Vector2 c;
	c[0] = a[0] + b[0];
	c[1] = a[1] + b[1];
	return c;
}

static Vector2 V2ScaleIII(Vector2 v, double s)
{
	Vector2 result;
	result[0] = v[0] * s;
	result[1] = v[1] * s;
	return result;
}

static Vector2 V2SubII(Vector2 a, Vector2 b)
{
	Vector2	c;
	c[0] = a[0] - b[0];
	c[1] = a[1] - b[1];
	return c;
}

//------------------------- WRAPPER -----------------------------//

FitCurveWrapper::FitCurveWrapper()
{
}

FitCurveWrapper::~FitCurveWrapper()
{
	_vertices.clear();
}

void FitCurveWrapper::DrawBezierCurve(int n, Vector2 *curve)
{
	for (int i = 0; i <= n; ++i)
		_vertices.push_back(curve[i]);
}

void FitCurveWrapper::FitCurve(vector<Vec2d>& data, vector<Vec2d>& oCurve, double error)
{
	int size = data.size();
	Vector2 *d = new Vector2[size];
	for (int i = 0; i < size; ++i) {
		d[i][0] = data[i][0];
		d[i][1] = data[i][1];
	}

	FitCurve(d, size, error);

	delete[] d;

	// copy results
	for (vector<Vector2>::iterator v = _vertices.begin(), vend = _vertices.end(); v != vend; ++v) {
		oCurve.push_back(Vec2d(v->x(), v->y())) ;
	}
}

void FitCurveWrapper::FitCurve(Vector2 *d, int nPts, double error)
{
	Vector2 tHat1, tHat2; /* Unit tangent vectors at endpoints */

	tHat1 = ComputeLeftTangent(d, 0);
	tHat2 = ComputeRightTangent(d, nPts - 1);
	FitCubic(d, 0, nPts - 1, tHat1, tHat2, error);
}

void FitCurveWrapper::FitCubic(Vector2 *d, int first, int last, Vector2 tHat1, Vector2 tHat2, double error)
{
	BezierCurve bezCurve;          /* Control points of fitted Bezier curve */
	double      *u;                /* Parameter values for point */
	double      *uPrime;           /* Improved parameter values */
	double      maxError;          /* Maximum fitting error */
	int         splitPoint;        /* Point to split point set at */
	int         nPts;              /* Number of points in subset */
	double      iterationError;    /* Error below which you try iterating */
	int         maxIterations = 4; /* Max times to try iterating */
	Vector2     tHatCenter;        /* Unit tangent vector at splitPoint */
	int         i;

	iterationError = error * error;
	nPts = last - first + 1;

	/* Use heuristic if region only has two points in it */
	if (nPts == 2) {
		double dist = V2DistanceBetween2Points(&d[last], &d[first]) / 3.0;

		bezCurve = (Vector2 *)malloc(4 * sizeof(Vector2));
		bezCurve[0] = d[first];
		bezCurve[3] = d[last];
		V2Add(&bezCurve[0], V2Scale(&tHat1, dist), &bezCurve[1]);
		V2Add(&bezCurve[3], V2Scale(&tHat2, dist), &bezCurve[2]);
		DrawBezierCurve(3, bezCurve);
		free((void *)bezCurve);
		return;
	}

	/* Parameterize points, and attempt to fit curve */
	u = ChordLengthParameterize(d, first, last);
	bezCurve = GenerateBezier(d, first, last, u, tHat1, tHat2);

	/* Find max deviation of points to fitted curve */
	maxError = ComputeMaxError(d, first, last, bezCurve, u, &splitPoint);
	if (maxError < error) {
		DrawBezierCurve(3, bezCurve);
		free((void *)u);
		free((void *)bezCurve);
		return;
	}

	/* If error not too large, try some reparameterization and iteration */
	if (maxError < iterationError) {
		for (i = 0; i < maxIterations; i++) {
			uPrime = Reparameterize(d, first, last, u, bezCurve);
			bezCurve = GenerateBezier(d, first, last, uPrime, tHat1, tHat2);
			maxError = ComputeMaxError(d, first, last,
			bezCurve, uPrime, &splitPoint);
			if (maxError < error) {
				DrawBezierCurve(3, bezCurve);
				free((void *)u);
				free((void *)bezCurve);
				return;
			}
			free((void *)u);
			u = uPrime;
		}
	}

	/* Fitting failed -- split at max error point and fit recursively */
	free((void *)u);
	free((void *)bezCurve);
	tHatCenter = ComputeCenterTangent(d, splitPoint);
	FitCubic(d, first, splitPoint, tHat1, tHatCenter, error);
	V2Negate(&tHatCenter);
	FitCubic(d, splitPoint, last, tHatCenter, tHat2, error);
}

} /* namespace Freestyle */