Welcome to mirror list, hosted at ThFree Co, Russian Federation.

GeomUtils.cpp « geometry « intern « freestyle « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: a750cf2f7cf23032cf9a3b2aa0794267d71a82a8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
/*
 * ***** BEGIN GPL LICENSE BLOCK *****
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 *
 * ***** END GPL LICENSE BLOCK *****
 */

/** \file blender/freestyle/intern/geometry/GeomUtils.cpp
 *  \ingroup freestyle
 *  \brief Various tools for geometry
 *  \author Stephane Grabli
 *  \date 12/04/2002
 */

#include "GeomUtils.h"

namespace Freestyle {

namespace GeomUtils {

// This internal procedure is defined below.
bool intersect2dSegPoly(Vec2r *seg, Vec2r *poly, unsigned n);

bool intersect2dSeg2dArea(const Vec2r& min, const Vec2r& max, const Vec2r& A, const Vec2r& B)
{
	Vec2r seg[2];
	seg[0] = A;
	seg[1] = B;

	Vec2r poly[5];
	poly[0][0] = min[0];
	poly[0][1] = min[1];
	poly[1][0] = max[0];
	poly[1][1] = min[1];
	poly[2][0] = max[0];
	poly[2][1] = max[1];
	poly[3][0] = min[0];
	poly[3][1] = max[1];
	poly[4][0] = min[0];
	poly[4][1] = min[1];

	return intersect2dSegPoly(seg, poly, 4);
}

bool include2dSeg2dArea(const Vec2r& min, const Vec2r& max, const Vec2r& A, const Vec2r& B)
{
	if ((((max[0] > A[0]) && (A[0] > min[0])) && ((max[0] > B[0]) && (B[0] > min[0]))) &&
	    (((max[1] > A[1]) && (A[1] > min[1])) && ((max[1] > B[1]) && (B[1] > min[1]))))
	{
		return true;
	}
	return false;
}

intersection_test intersect2dSeg2dSeg(const Vec2r& p1, const Vec2r& p2, const Vec2r& p3, const Vec2r& p4, Vec2r& res)
{
	real a1, a2, b1, b2, c1, c2; // Coefficients of line eqns
	real r1, r2, r3, r4;         // 'Sign' values
	real denom, num;             // Intermediate values

	// Compute a1, b1, c1, where line joining points p1 and p2 is "a1 x  +  b1 y  +  c1  =  0".
	a1 = p2[1] - p1[1];
	b1 = p1[0] - p2[0];
	c1 = p2[0] * p1[1] - p1[0] * p2[1];

	// Compute r3 and r4.
	r3 = a1 * p3[0] + b1 * p3[1] + c1;
	r4 = a1 * p4[0] + b1 * p4[1] + c1;

	// Check signs of r3 and r4.  If both point 3 and point 4 lie on same side of line 1,
	// the line segments do not intersect.
	if ( r3 != 0 && r4 != 0 && r3 * r4 > 0.0)
	return (DONT_INTERSECT);

	// Compute a2, b2, c2
	a2 = p4[1] - p3[1];
	b2 = p3[0] - p4[0];
	c2 = p4[0] * p3[1] - p3[0] * p4[1];

	// Compute r1 and r2
	r1 = a2 * p1[0] + b2 * p1[1] + c2;
	r2 = a2 * p2[0] + b2 * p2[1] + c2;

	// Check signs of r1 and r2.  If both point 1 and point 2 lie on same side of second line segment,
	// the line segments do not intersect.
	if (r1 != 0 && r2 != 0 && r1 * r2 > 0.0)
		return (DONT_INTERSECT);

	// Line segments intersect: compute intersection point.
	denom = a1 * b2 - a2 * b1;
	if (fabs(denom) < M_EPSILON)
		return (COLINEAR);

	num = b1 * c2 - b2 * c1;
	res[0] = num / denom;

	num = a2 * c1 - a1 * c2;
	res[1] = num / denom;

	return (DO_INTERSECT);
}

intersection_test intersect2dLine2dLine(const Vec2r& p1, const Vec2r& p2, const Vec2r& p3, const Vec2r& p4, Vec2r& res)
{
	real a1, a2, b1, b2, c1, c2; // Coefficients of line eqns
	real denom, num;             // Intermediate values

	// Compute a1, b1, c1, where line joining points p1 and p2 is "a1 x  +  b1 y  +  c1  =  0".
	a1 = p2[1] - p1[1];
	b1 = p1[0] - p2[0];
	c1 = p2[0] * p1[1] - p1[0] * p2[1];

	// Compute a2, b2, c2
	a2 = p4[1] - p3[1];
	b2 = p3[0] - p4[0];
	c2 = p4[0] * p3[1] - p3[0] * p4[1];

	// Line segments intersect: compute intersection point.
	denom = a1 * b2 - a2 * b1;
	if (fabs(denom) < M_EPSILON)
		return (COLINEAR);

	num = b1 * c2 - b2 * c1;
	res[0] = num / denom;

	num = a2 * c1 - a1 * c2;
	res[1] = num / denom;

	return (DO_INTERSECT);
}

intersection_test intersect2dSeg2dSegParametric(const Vec2r& p1, const Vec2r& p2, const Vec2r& p3, const Vec2r& p4,
                                                real& t, real& u, real epsilon)
{
	real a1, a2, b1, b2, c1, c2; // Coefficients of line eqns
	real r1, r2, r3, r4;         // 'Sign' values
	real denom, num;             // Intermediate values

	// Compute a1, b1, c1, where line joining points p1 and p2 is "a1 x  +  b1 y  +  c1  =  0".
	a1 = p2[1] - p1[1];
	b1 = p1[0] - p2[0];
	c1 = p2[0] * p1[1] - p1[0] * p2[1];

	// Compute r3 and r4.
	r3 = a1 * p3[0] + b1 * p3[1] + c1;
	r4 = a1 * p4[0] + b1 * p4[1] + c1;

	// Check signs of r3 and r4.  If both point 3 and point 4 lie on same side of line 1,
	// the line segments do not intersect.
	if (r3 != 0 && r4 != 0 && r3 * r4 > 0.0)
		return (DONT_INTERSECT);

	// Compute a2, b2, c2
	a2 = p4[1] - p3[1];
	b2 = p3[0] - p4[0];
	c2 = p4[0] * p3[1] - p3[0] * p4[1];

	// Compute r1 and r2
	r1 = a2 * p1[0] + b2 * p1[1] + c2;
	r2 = a2 * p2[0] + b2 * p2[1] + c2;

	// Check signs of r1 and r2.  If both point 1 and point 2 lie on same side of second line segment,
	// the line segments do not intersect.
	if (r1 != 0 && r2 != 0 && r1 * r2 > 0.0)
		return (DONT_INTERSECT);

	// Line segments intersect: compute intersection point.
	denom = a1 * b2 - a2 * b1;
	if (fabs(denom) < epsilon)
		return (COLINEAR);

	real d1, e1;

	d1 = p1[1] - p3[1];
	e1 = p1[0] - p3[0];

	num = -b2 * d1 - a2 * e1;
	t = num / denom;

	num = -b1 * d1 - a1 * e1;
	u = num / denom;

	return (DO_INTERSECT);
}

// AABB-triangle overlap test code by Tomas Akenine-Möller
// Function: int triBoxOverlap(real boxcenter[3], real boxhalfsize[3],real triverts[3][3]);
// History:
//   2001-03-05: released the code in its first version
//   2001-06-18: changed the order of the tests, faster
//
// Acknowledgement: Many thanks to Pierre Terdiman for suggestions and discussions on how to optimize code.
// Thanks to David Hunt for finding a ">="-bug!

#define X 0
#define Y 1
#define Z 2

#define FINDMINMAX(x0, x1, x2, min, max) \
	{                                    \
		min = max = x0;                  \
		if (x1 < min)                    \
			min = x1;                    \
		if (x1 > max)                    \
			max = x1;                    \
		if (x2 < min)                    \
			min = x2;                    \
		if (x2 > max)                    \
			max = x2;                    \
	} (void)0

//======================== X-tests ========================//
#define AXISTEST_X01(a, b, fa, fb)                       \
	{                                                    \
		p0 = a * v0[Y] - b * v0[Z];                      \
		p2 = a * v2[Y] - b * v2[Z];                      \
		if (p0 < p2) {                                   \
			min = p0;                                    \
			max = p2;                                    \
		}                                                \
		else {                                           \
			min = p2;                                    \
			max = p0;                                    \
		}                                                \
		rad = fa * boxhalfsize[Y] + fb * boxhalfsize[Z]; \
		if (min > rad || max < -rad)                     \
			return 0;                                    \
	} (void)0

#define AXISTEST_X2(a, b, fa, fb)                        \
	{                                                    \
		p0 = a * v0[Y] - b * v0[Z];                      \
		p1 = a * v1[Y] - b * v1[Z];                      \
		if (p0 < p1) {                                   \
			min = p0;                                    \
			max = p1;                                    \
		}                                                \
		else {                                           \
			min = p1;                                    \
			max = p0;                                    \
		}                                                \
		rad = fa * boxhalfsize[Y] + fb * boxhalfsize[Z]; \
		if (min > rad || max < -rad)                     \
			return 0;                                    \
	} (void)0

//======================== Y-tests ========================//
#define AXISTEST_Y02(a, b, fa, fb)                       \
	{                                                    \
		p0 = -a * v0[X] + b * v0[Z];                     \
		p2 = -a * v2[X] + b * v2[Z];                     \
		if (p0 < p2) {                                   \
			min = p0;                                    \
			max = p2;                                    \
		}                                                \
		else {                                           \
			min = p2;                                    \
			max = p0;                                    \
		}                                                \
		rad = fa * boxhalfsize[X] + fb * boxhalfsize[Z]; \
		if (min > rad || max < -rad)                     \
			return 0;                                    \
	} (void)0

#define AXISTEST_Y1(a, b, fa, fb)                        \
	{                                                    \
		p0 = -a * v0[X] + b * v0[Z];                     \
		p1 = -a * v1[X] + b * v1[Z];                     \
		if (p0 < p1) {                                   \
			min = p0;                                    \
			max = p1;                                    \
		}                                                \
		else {                                           \
			min = p1;                                    \
			max = p0;                                    \
		}                                                \
		rad = fa * boxhalfsize[X] + fb * boxhalfsize[Z]; \
		if (min > rad || max < -rad)                     \
			return 0;                                    \
	} (void)0

//======================== Z-tests ========================//
#define AXISTEST_Z12(a, b, fa, fb)                       \
	{                                                    \
		p1 = a * v1[X] - b * v1[Y];                      \
		p2 = a * v2[X] - b * v2[Y];                      \
		if (p2 < p1) {                                   \
			min = p2;                                    \
			max = p1;                                    \
		}                                                \
		else {                                           \
			min = p1;                                    \
			max = p2;                                    \
		}                                                \
		rad = fa * boxhalfsize[X] + fb * boxhalfsize[Y]; \
		if (min > rad || max < -rad)                     \
			return 0;                                    \
	} (void)0

#define AXISTEST_Z0(a, b, fa, fb)                        \
	{                                                    \
		p0 = a * v0[X] - b * v0[Y];                      \
		p1 = a * v1[X] - b * v1[Y];                      \
		if (p0 < p1) {                                   \
			min = p0;                                    \
			max = p1;                                    \
		}                                                \
		else {                                           \
			min = p1;                                    \
			max = p0;                                    \
		}                                                \
		rad = fa * boxhalfsize[X] + fb * boxhalfsize[Y]; \
		if (min > rad || max < -rad)                     \
			return 0;                                    \
	} (void)0

// This internal procedure is defined below.
bool overlapPlaneBox(Vec3r& normal, real d, Vec3r& maxbox);

// Use separating axis theorem to test overlap between triangle and box need to test for overlap in these directions:
// 1) the {x,y,z}-directions (actually, since we use the AABB of the triangle we do not even need to test these)
// 2) normal of the triangle
// 3) crossproduct(edge from tri, {x,y,z}-directin) this gives 3x3=9 more tests
bool overlapTriangleBox(Vec3r& boxcenter, Vec3r& boxhalfsize, Vec3r triverts[3])
{
	Vec3r v0, v1, v2, normal, e0, e1, e2;
	real min, max, d, p0, p1, p2, rad, fex, fey, fez;

	// This is the fastest branch on Sun
	// move everything so that the boxcenter is in (0, 0, 0)
	v0 = triverts[0] - boxcenter;
	v1 = triverts[1] - boxcenter;
	v2 = triverts[2] - boxcenter;

	// compute triangle edges
	e0 = v1 - v0;
	e1 = v2 - v1;
	e2 = v0 - v2;

	// Bullet 3:
	// Do the 9 tests first (this was faster)
	fex = fabs(e0[X]);
	fey = fabs(e0[Y]);
	fez = fabs(e0[Z]);
	AXISTEST_X01(e0[Z], e0[Y], fez, fey);
	AXISTEST_Y02(e0[Z], e0[X], fez, fex);
	AXISTEST_Z12(e0[Y], e0[X], fey, fex);

	fex = fabs(e1[X]);
	fey = fabs(e1[Y]);
	fez = fabs(e1[Z]);
	AXISTEST_X01(e1[Z], e1[Y], fez, fey);
	AXISTEST_Y02(e1[Z], e1[X], fez, fex);
	AXISTEST_Z0(e1[Y], e1[X], fey, fex);

	fex = fabs(e2[X]);
	fey = fabs(e2[Y]);
	fez = fabs(e2[Z]);
	AXISTEST_X2(e2[Z], e2[Y], fez, fey);
	AXISTEST_Y1(e2[Z], e2[X], fez, fex);
	AXISTEST_Z12(e2[Y], e2[X], fey, fex);

	// Bullet 1:
	// first test overlap in the {x,y,z}-directions
	// find min, max of the triangle each direction, and test for overlap in that direction -- this is equivalent
	// to testing a minimal AABB around the triangle against the AABB

	// test in X-direction
	FINDMINMAX(v0[X], v1[X], v2[X], min, max);
	if (min > boxhalfsize[X] || max < -boxhalfsize[X])
		return false;

	// test in Y-direction
	FINDMINMAX(v0[Y], v1[Y], v2[Y], min, max);
	if (min > boxhalfsize[Y] || max < -boxhalfsize[Y])
		return false;

	// test in Z-direction
	FINDMINMAX(v0[Z], v1[Z], v2[Z], min, max);
	if (min > boxhalfsize[Z] || max < -boxhalfsize[Z])
		return false;

	// Bullet 2:
	// test if the box intersects the plane of the triangle
	// compute plane equation of triangle: normal * x + d = 0
	normal = e0 ^ e1;
	d = -(normal * v0); // plane eq: normal.x + d = 0
	if (!overlapPlaneBox(normal, d, boxhalfsize))
		return false;

	return true; // box and triangle overlaps
}

// Fast, Minimum Storage Ray-Triangle Intersection
//
// Tomas Möller
// Prosolvia Clarus AB
// Sweden
// tompa@clarus.se
//
// Ben Trumbore
// Cornell University
// Ithaca, New York
// wbt@graphics.cornell.edu
bool intersectRayTriangle(const Vec3r& orig, const Vec3r& dir, const Vec3r& v0, const Vec3r& v1, const Vec3r& v2,
                          real& t, real& u, real& v, const real epsilon)
{
	Vec3r edge1, edge2, tvec, pvec, qvec;
	real det, inv_det;

	// find vectors for two edges sharing v0
	edge1 = v1 - v0;
	edge2 = v2 - v0;

	// begin calculating determinant - also used to calculate U parameter
	pvec = dir ^ edge2;

	// if determinant is near zero, ray lies in plane of triangle
	det = edge1 * pvec;

	// calculate distance from v0 to ray origin
	tvec = orig - v0;
	inv_det = 1.0 / det;

	qvec = tvec ^ edge1;

	if (det > epsilon) {
		u = tvec * pvec;
		if (u < 0.0 || u > det)
			return false;

		// calculate V parameter and test bounds
		v = dir * qvec;
		if (v < 0.0 || u + v > det)
			return false;
	}
	else if (det < -epsilon) {
		// calculate U parameter and test bounds
		u = tvec * pvec;
		if (u > 0.0 || u < det)
			return false;

		// calculate V parameter and test bounds
		v = dir * qvec;
		if (v > 0.0 || u + v < det)
			return false;
	}
	else {
		return false;  // ray is parallell to the plane of the triangle
	}

	u *= inv_det;
	v *= inv_det;
	t = (edge2 * qvec) * inv_det;

	return true;
}

// Intersection between plane and ray, adapted from Graphics Gems, Didier Badouel
intersection_test intersectRayPlane(const Vec3r& orig, const Vec3r& dir, const Vec3r& norm, const real d,
                                    real& t, const real epsilon)
{
	real denom = norm * dir;

	if (fabs(denom) <= epsilon) { // plane and ray are parallel
		if (fabs((norm * orig) + d) <= epsilon)
			return COINCIDENT; // plane and ray are coincident
		else
			return COLINEAR;
	}

	t = -(d + (norm * orig)) / denom;

	if (t < 0.0f)
		return DONT_INTERSECT;

	return DO_INTERSECT;
}

bool intersectRayBBox(const Vec3r& orig, const Vec3r& dir,      // ray origin and direction
                      const Vec3r& boxMin, const Vec3r& boxMax, // the bbox
                      real t0, real t1,
                      real& tmin,                               // I0 = orig + tmin * dir is the first intersection
                      real& tmax,                               // I1 = orig + tmax * dir is the second intersection
                      real epsilon)
{
	float tymin, tymax, tzmin, tzmax;
	Vec3r inv_direction(1.0 / dir[0], 1.0 / dir[1], 1.0 / dir[2]);
	int sign[3];
	sign[0] = (inv_direction.x() < 0);
	sign[1] = (inv_direction.y() < 0);
	sign[2] = (inv_direction.z() < 0);

	Vec3r bounds[2];
	bounds[0] = boxMin;
	bounds[1] = boxMax;

	tmin = (bounds[sign[0]].x() - orig.x()) * inv_direction.x();
	tmax = (bounds[1 - sign[0]].x() - orig.x()) * inv_direction.x();
	tymin = (bounds[sign[1]].y() - orig.y()) * inv_direction.y();
	tymax = (bounds[1 - sign[1]].y() - orig.y()) * inv_direction.y();
	if ((tmin > tymax) || (tymin > tmax))
		return false;
	if (tymin > tmin)
		tmin = tymin;
	if (tymax < tmax)
		tmax = tymax;
	tzmin = (bounds[sign[2]].z() - orig.z()) * inv_direction.z();
	tzmax = (bounds[1 - sign[2]].z() - orig.z()) * inv_direction.z();
	if ((tmin > tzmax) || (tzmin > tmax))
		return false;
	if (tzmin > tmin)
		tmin = tzmin;
	if (tzmax < tmax)
		tmax = tzmax;
	return ((tmin < t1) && (tmax > t0));
}

// Checks whether 3D points p lies inside or outside of the triangle ABC
bool includePointTriangle(const Vec3r& P, const Vec3r& A, const Vec3r& B, const Vec3r& C)
{
	Vec3r AB(B - A);
	Vec3r BC(C - B);
	Vec3r CA(A - C);
	Vec3r AP(P - A);
	Vec3r BP(P - B);
	Vec3r CP(P - C);

	Vec3r N(AB ^ BC); // triangle's normal

	N.normalize();

	Vec3r J(AB ^ AP), K(BC ^ BP), L(CA ^ CP);
	J.normalize();
	K.normalize();
	L.normalize();

	if (J * N < 0)
		return false; // on the right of AB

	if (K * N < 0)
		return false; // on the right of BC

	if (L * N < 0)
		return false; // on the right of CA

	return true;
}

void transformVertex(const Vec3r& vert, const Matrix44r& matrix, Vec3r& res)
{
	HVec3r hvert(vert), res_tmp;
	real scale;
	for (unsigned int j = 0; j < 4; j++) {
		scale = hvert[j];
		for (unsigned int i = 0; i < 4; i++)
			res_tmp[i] += matrix(i, j) * scale;
	}

	res[0] = res_tmp.x();
	res[1] = res_tmp.y();
	res[2] = res_tmp.z();
}

void transformVertices(const vector<Vec3r>& vertices, const Matrix44r& trans, vector<Vec3r>& res)
{
	size_t i;
	res.resize(vertices.size());
	for (i = 0; i < vertices.size(); i++) {
		transformVertex(vertices[i], trans, res[i]);
	}
}

Vec3r rotateVector(const Matrix44r& mat, const Vec3r& v)
{
	Vec3r res;
	for (unsigned int i = 0; i < 3; i++) {
		res[i] = 0;
		for (unsigned int j = 0; j < 3; j++)
			res[i] += mat(i, j) * v[j];
	}
	res.normalize();
	return res;
}

// This internal procedure is defined below.
void fromCoordAToCoordB(const Vec3r& p, Vec3r& q, const real transform[4][4]);

void fromWorldToCamera(const Vec3r& p, Vec3r& q, const real model_view_matrix[4][4])
{
	fromCoordAToCoordB(p, q, model_view_matrix);
}

void fromCameraToRetina(const Vec3r& p, Vec3r& q, const real projection_matrix[4][4])
{
	fromCoordAToCoordB(p, q, projection_matrix);
}

void fromRetinaToImage(const Vec3r& p, Vec3r& q, const int viewport[4])
{
	// winX:
	q[0] = viewport[0] + viewport[2] * (p[0] + 1.0) / 2.0;

	// winY:
	q[1] = viewport[1] + viewport[3] * (p[1] + 1.0) / 2.0;

	// winZ:
	q[2] = (p[2] + 1.0) / 2.0;
}

void fromWorldToImage(const Vec3r& p, Vec3r& q, const real model_view_matrix[4][4],
                      const real projection_matrix[4][4], const int viewport[4])
{
	Vec3r p1, p2;
	fromWorldToCamera(p, p1, model_view_matrix);
	fromCameraToRetina(p1, p2, projection_matrix);
	fromRetinaToImage(p2, q, viewport);
	q[2] = p1[2];
}

void fromWorldToImage(const Vec3r& p, Vec3r& q, const real transform[4][4], const int viewport[4])
{
	fromCoordAToCoordB(p, q, transform);

	// winX:
	q[0] = viewport[0] + viewport[2] * (q[0] + 1.0) / 2.0;

	//winY:
	q[1] = viewport[1] + viewport[3] * (q[1] + 1.0) / 2.0;
}

void fromImageToRetina(const Vec3r& p, Vec3r& q, const int viewport[4])
{
	q = p;
	q[0] = 2.0 * (q[0] - viewport[0]) / viewport[2] - 1.0;
	q[1] = 2.0 * (q[1] - viewport[1]) / viewport[3] - 1.0;
}

void fromRetinaToCamera(const Vec3r& p, Vec3r& q, real focal, const real projection_matrix[4][4])
{
	if (projection_matrix[3][3] == 0.0) { // perspective
		q[0] = (-p[0] * focal) / projection_matrix[0][0];
		q[1] = (-p[1] * focal) / projection_matrix[1][1];
		q[2] = focal;
	}
	else { // orthogonal
		q[0] = p[0] / projection_matrix[0][0];
		q[1] = p[1] / projection_matrix[1][1];
		q[2] = focal;
	}
}

void fromCameraToWorld(const Vec3r& p, Vec3r& q, const real model_view_matrix[4][4])
{
	real translation[3] = {
		model_view_matrix[0][3],
		model_view_matrix[1][3],
		model_view_matrix[2][3]
	};
	for (unsigned short i = 0; i < 3; i++) {
		q[i] = 0.0;
		for (unsigned short j = 0; j < 3; j++)
			q[i] += model_view_matrix[j][i] * (p[j] - translation[j]);
	}
}


//
// Internal code
//
/////////////////////////////////////////////////////////////////////////////

// Copyright 2001, softSurfer (www.softsurfer.com)
// This code may be freely used and modified for any purpose providing that this copyright notice is included with it.
// SoftSurfer makes no warranty for this code, and cannot be held liable for any real or imagined damage resulting
// from its use.
// Users of this code must verify correctness for their application.

#define PERP(u, v) ((u)[0] * (v)[1] - (u)[1] * (v)[0])   // 2D perp product

inline bool intersect2dSegPoly(Vec2r *seg, Vec2r *poly, unsigned n)
{
	if (seg[0] == seg[1])
		return false;

	real  tE = 0;                 // the maximum entering segment parameter
	real  tL = 1;                 // the minimum leaving segment parameter
	real  t, N, D;                // intersect parameter t = N / D
	Vec2r dseg = seg[1] - seg[0]; // the segment direction vector
	Vec2r e;                      // edge vector

	for (unsigned int i = 0; i < n; i++) { // process polygon edge poly[i]poly[i+1]
		e = poly[i + 1] - poly[i];
		N = PERP(e, seg[0] - poly[i]);
		D = -PERP(e, dseg);
		if (fabs(D) < M_EPSILON) {
			if (N < 0)
				return false;
			else
				continue;
		}

		t = N / D;
		if (D < 0) { // segment seg is entering across this edge
			if (t > tE) { // new max tE
				tE = t;
				if (tE > tL) // seg enters after leaving polygon
					return false;
			}
		}
		else { // segment seg is leaving across this edge
			if (t < tL) { // new min tL
				tL = t;
				if (tL < tE) // seg leaves before entering polygon
					return false;
			}
		}
	}

	// tE <= tL implies that there is a valid intersection subsegment
	return true;
}

inline bool overlapPlaneBox(Vec3r& normal, real d, Vec3r& maxbox)
{
	Vec3r vmin, vmax;

	for (unsigned int q = X; q <= Z; q++) {
		if (normal[q] > 0.0f) {
			vmin[q] = -maxbox[q];
			vmax[q] = maxbox[q];
		}
		else {
			vmin[q] = maxbox[q];
			vmax[q] = -maxbox[q];
		}
	}
	if ((normal * vmin) + d > 0.0f)
		return false;
	if ((normal * vmax) + d >= 0.0f)
		return true;
	return false;
}

inline void fromCoordAToCoordB(const Vec3r&p, Vec3r& q, const real transform[4][4])
{
	HVec3r hp(p);
	HVec3r hq(0, 0, 0, 0);

	for (unsigned int i = 0; i < 4; i++) {
		for (unsigned int j = 0; j < 4; j++) {
			hq[i] += transform[i][j] * hp[j];
		}
	}

	if (hq[3] == 0) {
		q = p;
		return;
	}

	for (unsigned int k = 0; k < 3; k++)
		q[k] = hq[k] / hq[3];
}

} // end of namespace GeomUtils

} /* namespace Freestyle */