Welcome to mirror list, hosted at ThFree Co, Russian Federation.

volume_precache.c « source « intern « render « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 54a8ba99db5262b5e94ac65a592cbb21d3d9b5d5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
/*
 *
 * ***** BEGIN GPL LICENSE BLOCK *****
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 *
 * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
 * All rights reserved.
 *
 * The Original Code is: all of this file.
 *
 * Contributor(s): Matt Ebb, Ra˙l Fern·ndez Hern·ndez (Farsthary).
 *
 * ***** END GPL LICENSE BLOCK *****
 */

/** \file blender/render/intern/source/volume_precache.c
 *  \ingroup render
 */


#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <float.h>

#include "MEM_guardedalloc.h"

#include "BLI_blenlib.h"
#include "BLI_math.h"
#include "BLI_threads.h"
#include "BLI_voxel.h"
#include "BLI_utildefines.h"

#include "PIL_time.h"

#include "RE_shader_ext.h"

#include "DNA_material_types.h"

#include "rayintersection.h"
#include "rayobject.h"
#include "render_types.h"
#include "rendercore.h"
#include "renderdatabase.h"
#include "volumetric.h"
#include "volume_precache.h"

#if defined( _MSC_VER ) && !defined( __cplusplus )
# define inline __inline
#endif // defined( _MSC_VER ) && !defined( __cplusplus )

#include "BKE_global.h"

/* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */
/* defined in pipeline.c, is hardcopy of active dynamic allocated Render */
/* only to be used here in this file, it's for speed */
extern struct Render R;
/* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */

/* *** utility code to set up an individual raytree for objectinstance, for checking inside/outside *** */

/* Recursive test for intersections, from a point inside the mesh, to outside
 * Number of intersections (depth) determine if a point is inside or outside the mesh */
int intersect_outside_volume(RayObject *tree, Isect *isect, float *offset, int limit, int depth)
{
	if (limit == 0) return depth;
	
	if (RE_rayobject_raycast(tree, isect)) {
		
		isect->start[0] = isect->start[0] + isect->dist*isect->dir[0];
		isect->start[1] = isect->start[1] + isect->dist*isect->dir[1];
		isect->start[2] = isect->start[2] + isect->dist*isect->dir[2];
		
		isect->dist = FLT_MAX;
		isect->skip = RE_SKIP_VLR_NEIGHBOUR;
		isect->orig.face= isect->hit.face;
		isect->orig.ob= isect->hit.ob;
		
		return intersect_outside_volume(tree, isect, offset, limit-1, depth+1);
	} else {
		return depth;
	}
}

/* Uses ray tracing to check if a point is inside or outside an ObjectInstanceRen */
int point_inside_obi(RayObject *tree, ObjectInstanceRen *UNUSED(obi), float *co)
{
	Isect isect= {{0}};
	float dir[3] = {0.0f,0.0f,1.0f};
	int final_depth=0, depth=0, limit=20;
	
	/* set up the isect */
	VECCOPY(isect.start, co);
	VECCOPY(isect.dir, dir);
	isect.mode= RE_RAY_MIRROR;
	isect.last_hit= NULL;
	isect.lay= -1;
	
	isect.dist = FLT_MAX;
	isect.orig.face= NULL;
	isect.orig.ob = NULL;

	final_depth = intersect_outside_volume(tree, &isect, dir, limit, depth);
	
	/* even number of intersections: point is outside
	 * odd number: point is inside */
	if (final_depth % 2 == 0) return 0;
	else return 1;
}

/* find the bounding box of an objectinstance in global space */
void global_bounds_obi(Render *re, ObjectInstanceRen *obi, float *bbmin, float *bbmax)
{
	ObjectRen *obr = obi->obr;
	VolumePrecache *vp = obi->volume_precache;
	VertRen *ver= NULL;
	float co[3];
	int a;
	
	if (vp->bbmin != NULL && vp->bbmax != NULL) {
		copy_v3_v3(bbmin, vp->bbmin);
		copy_v3_v3(bbmax, vp->bbmax);
		return;
	}
	
	vp->bbmin = MEM_callocN(sizeof(float)*3, "volume precache min boundbox corner");
	vp->bbmax = MEM_callocN(sizeof(float)*3, "volume precache max boundbox corner");
	
	INIT_MINMAX(bbmin, bbmax);
	
	for(a=0; a<obr->totvert; a++) {
		if((a & 255)==0) ver= obr->vertnodes[a>>8].vert;
		else ver++;
		
		copy_v3_v3(co, ver->co);
		
		/* transformed object instance in camera space */
		if(obi->flag & R_TRANSFORMED)
			mul_m4_v3(obi->mat, co);
		
		/* convert to global space */
		mul_m4_v3(re->viewinv, co);
		
		DO_MINMAX(co, vp->bbmin, vp->bbmax);
	}
	
	copy_v3_v3(bbmin, vp->bbmin);
	copy_v3_v3(bbmax, vp->bbmax);
	
}

/* *** light cache filtering *** */

static float get_avg_surrounds(float *cache, int *res, int xx, int yy, int zz)
{
	int x, y, z, x_, y_, z_;
	int added=0;
	float tot=0.0f;
	
	for (z=-1; z <= 1; z++) {
		z_ = zz+z;
		if (z_ >= 0 && z_ <= res[2]-1) {
		
			for (y=-1; y <= 1; y++) {
				y_ = yy+y;
				if (y_ >= 0 && y_ <= res[1]-1) {
				
					for (x=-1; x <= 1; x++) {
						x_ = xx+x;
						if (x_ >= 0 && x_ <= res[0]-1) {
							const int i= V_I(x_, y_, z_, res);
							
							if (cache[i] > 0.0f) {
								tot += cache[i];
								added++;
							}
							
						}
					}
				}
			}
		}
	}
	
	if (added > 0) tot /= added;
	
	return tot;
}

/* function to filter the edges of the light cache, where there was no volume originally.
 * For each voxel which was originally external to the mesh, it finds the average values of
 * the surrounding internal voxels and sets the original external voxel to that average amount.
 * Works almost a bit like a 'dilate' filter */
static void lightcache_filter(VolumePrecache *vp)
{
	int x, y, z;

	for (z=0; z < vp->res[2]; z++) {
		for (y=0; y < vp->res[1]; y++) {
			for (x=0; x < vp->res[0]; x++) {
				/* trigger for outside mesh */
				const int i= V_I(x, y, z, vp->res);
				
				if (vp->data_r[i] < -0.f)
					vp->data_r[i] = get_avg_surrounds(vp->data_r, vp->res, x, y, z);
				if (vp->data_g[i] < -0.f)
					vp->data_g[i] = get_avg_surrounds(vp->data_g, vp->res, x, y, z);
				if (vp->data_b[i] < -0.f)
					vp->data_b[i] = get_avg_surrounds(vp->data_b, vp->res, x, y, z);
			}
		}
	}
}

#if 0
static void lightcache_filter2(VolumePrecache *vp)
{
	int x, y, z;
	float *new_r, *new_g, *new_b;
	int field_size = vp->res[0]*vp->res[1]*vp->res[2]*sizeof(float);
	
	new_r = MEM_mallocN(field_size, "temp buffer for light cache filter r channel");
	new_g = MEM_mallocN(field_size, "temp buffer for light cache filter g channel");
	new_b = MEM_mallocN(field_size, "temp buffer for light cache filter b channel");
	
	memcpy(new_r, vp->data_r, field_size);
	memcpy(new_g, vp->data_g, field_size);
	memcpy(new_b, vp->data_b, field_size);
	
	for (z=0; z < vp->res[2]; z++) {
		for (y=0; y < vp->res[1]; y++) {
			for (x=0; x < vp->res[0]; x++) {
				/* trigger for outside mesh */
				const int i= V_I(x, y, z, vp->res);
				if (vp->data_r[i] < -0.f)
					new_r[i] = get_avg_surrounds(vp->data_r, vp->res, x, y, z);
				if (vp->data_g[i] < -0.f)
					new_g[i] = get_avg_surrounds(vp->data_g, vp->res, x, y, z);
				if (vp->data_b[i] < -0.f)
					new_b[i] = get_avg_surrounds(vp->data_b, vp->res, x, y, z);
			}
		}
	}
	
	SWAP(float *, vp->data_r, new_r);
	SWAP(float *, vp->data_g, new_g);
	SWAP(float *, vp->data_b, new_b);
	
	if (new_r) { MEM_freeN(new_r); new_r=NULL; }
	if (new_g) { MEM_freeN(new_g); new_g=NULL; }
	if (new_b) { MEM_freeN(new_b); new_b=NULL; }
}
#endif

static inline int ms_I(int x, int y, int z, int *n) //has a pad of 1 voxel surrounding the core for boundary simulation
{ 
	/* different ordering to light cache */
	return x*(n[1]+2)*(n[2]+2) + y*(n[2]+2) + z; 	
}

static inline int v_I_pad(int x, int y, int z, int *n) //has a pad of 1 voxel surrounding the core for boundary simulation
{ 
	/* same ordering to light cache, with padding */
	return z*(n[1]+2)*(n[0]+2) + y*(n[0]+2) + x;  	
}

static inline int lc_to_ms_I(int x, int y, int z, int *n)
{ 
	/* converting light cache index to multiple scattering index */
	return (x-1)*(n[1]*n[2]) + (y-1)*(n[2]) + z-1;
}

/* *** multiple scattering approximation *** */

/* get the total amount of light energy in the light cache. used to normalise after multiple scattering */
static float total_ss_energy(VolumePrecache *vp)
{
	int x, y, z;
	int *res = vp->res;
	float energy=0.f;
	
	for (z=0; z < res[2]; z++) {
		for (y=0; y < res[1]; y++) {
			for (x=0; x < res[0]; x++) {
				const int i=V_I(x, y, z, res);
			
				if (vp->data_r[i] > 0.f) energy += vp->data_r[i];
				if (vp->data_g[i] > 0.f) energy += vp->data_g[i];
				if (vp->data_b[i] > 0.f) energy += vp->data_b[i];
			}
		}
	}
	
	return energy;
}

static float total_ms_energy(float *sr, float *sg, float *sb, int *res)
{
	int x, y, z;
	float energy=0.f;
	
	for (z=1;z<=res[2];z++) {
		for (y=1;y<=res[1];y++) {
			for (x=1;x<=res[0];x++) {
				const int i = ms_I(x,y,z,res);
				
				if (sr[i] > 0.f) energy += sr[i];
				if (sg[i] > 0.f) energy += sg[i];
				if (sb[i] > 0.f) energy += sb[i];
			}
		}
	}
	
	return energy;
}

static void ms_diffuse(float *x0, float *x, float diff, int *n) //n is the unpadded resolution
{
	int i, j, k, l;
	const float dt = VOL_MS_TIMESTEP;
	const float a = dt*diff*n[0]*n[1]*n[2];
	
	for (l=0; l<20; l++)
	{
		for (k=1; k<=n[2]; k++)
		{
			for (j=1; j<=n[1]; j++)
			{
				for (i=1; i<=n[0]; i++)
				{
				   x[v_I_pad(i,j,k,n)] = (x0[v_I_pad(i,j,k,n)]) + a*(	x0[v_I_pad(i-1,j,k,n)]+ x0[v_I_pad(i+1,j,k,n)]+ x0[v_I_pad(i,j-1,k,n)]+
																		x0[v_I_pad(i,j+1,k,n)]+ x0[v_I_pad(i,j,k-1,n)]+x0[v_I_pad(i,j,k+1,n)]
																		) / (1+6*a);
				}
			}
		}
	}
}

void multiple_scattering_diffusion(Render *re, VolumePrecache *vp, Material *ma)
{
	const float diff = ma->vol.ms_diff * 0.001f; 	/* compensate for scaling for a nicer UI range */
	const int simframes = (int)(ma->vol.ms_spread * (float)MAX3(vp->res[0], vp->res[1], vp->res[2]));
	const int shade_type = ma->vol.shade_type;
	float fac = ma->vol.ms_intensity;
	
	int x, y, z, m;
	int *n = vp->res;
	const int size = (n[0]+2)*(n[1]+2)*(n[2]+2);
	double time, lasttime= PIL_check_seconds_timer();
	float total;
	float c=1.0f;
	float origf;	/* factor for blending in original light cache */
	float energy_ss, energy_ms;

	float *sr0=(float *)MEM_callocN(size*sizeof(float), "temporary multiple scattering buffer");
	float *sr=(float *)MEM_callocN(size*sizeof(float), "temporary multiple scattering buffer");
	float *sg0=(float *)MEM_callocN(size*sizeof(float), "temporary multiple scattering buffer");
	float *sg=(float *)MEM_callocN(size*sizeof(float), "temporary multiple scattering buffer");
	float *sb0=(float *)MEM_callocN(size*sizeof(float), "temporary multiple scattering buffer");
	float *sb=(float *)MEM_callocN(size*sizeof(float), "temporary multiple scattering buffer");

	total = (float)(n[0]*n[1]*n[2]*simframes);
	
	energy_ss = total_ss_energy(vp);
	
	/* Scattering as diffusion pass */
	for (m=0; m<simframes; m++)
	{
		/* add sources */
		for (z=1; z<=n[2]; z++)
		{
			for (y=1; y<=n[1]; y++)
			{
				for (x=1; x<=n[0]; x++)
				{
					const int i = lc_to_ms_I(x, y ,z, n);	//lc index					
					const int j = ms_I(x, y, z, n);			//ms index
					
					time= PIL_check_seconds_timer();
					c++;										
					if (vp->data_r[i] > 0.0f)
						sr[j] += vp->data_r[i];
					if (vp->data_g[i] > 0.0f)
						sg[j] += vp->data_g[i];
					if (vp->data_b[i] > 0.0f)
						sb[j] += vp->data_b[i];
					
					/* Displays progress every second */
					if(time-lasttime>1.0f) {
						char str[64];
						BLI_snprintf(str, sizeof(str), "Simulating multiple scattering: %d%%", (int)(100.0f * (c / total)));
						re->i.infostr= str;
						re->stats_draw(re->sdh, &re->i);
						re->i.infostr= NULL;
						lasttime= time;
					}
				}
			}
		}
		SWAP(float *,sr,sr0);
		SWAP(float *,sg,sg0);
		SWAP(float *,sb,sb0);
               
		/* main diffusion simulation */
		ms_diffuse(sr0, sr, diff, n);
		ms_diffuse(sg0, sg, diff, n);
		ms_diffuse(sb0, sb, diff, n);
		
		if (re->test_break(re->tbh)) break;
	}
	
	/* normalisation factor to conserve energy */
	energy_ms = total_ms_energy(sr, sg, sb, n);
	fac *= (energy_ss / energy_ms);
	
	/* blend multiple scattering back in the light cache */
	if (shade_type == MA_VOL_SHADE_SHADEDPLUSMULTIPLE) {
		/* conserve energy - half single, half multiple */
		origf = 0.5f;
		fac *= 0.5f;
	} else {
		origf = 0.0f;
	}

	for (z=1;z<=n[2];z++)
	{
		for (y=1;y<=n[1];y++)
		{
			for (x=1;x<=n[0];x++)
			{
				const int i = lc_to_ms_I(x, y ,z, n);	//lc index					
				const int j = ms_I(x, y, z, n);			//ms index
				
				vp->data_r[i] = origf * vp->data_r[i] + fac * sr[j];
				vp->data_g[i] = origf * vp->data_g[i] + fac * sg[j];
				vp->data_b[i] = origf * vp->data_b[i] + fac * sb[j];
			}
		}
	}

	MEM_freeN(sr0);
	MEM_freeN(sr);
	MEM_freeN(sg0);
	MEM_freeN(sg);
	MEM_freeN(sb0);
	MEM_freeN(sb);
}



#if 0 // debug stuff
static void *vol_precache_part_test(void *data)
{
	VolPrecachePart *pa = data;

	printf("part number: %d \n", pa->num);
	printf("done: %d \n", pa->done);
	printf("x min: %d   x max: %d \n", pa->minx, pa->maxx);
	printf("y min: %d   y max: %d \n", pa->miny, pa->maxy);
	printf("z min: %d   z max: %d \n", pa->minz, pa->maxz);

	return NULL;
}
#endif

/* Iterate over the 3d voxel grid, and fill the voxels with scattering information
 *
 * It's stored in memory as 3 big float grids next to each other, one for each RGB channel.
 * I'm guessing the memory alignment may work out better this way for the purposes
 * of doing linear interpolation, but I haven't actually tested this theory! :)
 */
static void *vol_precache_part(void *data)
{
	VolPrecachePart *pa =  (VolPrecachePart *)data;
	ObjectInstanceRen *obi = pa->obi;
	RayObject *tree = pa->tree;
	ShadeInput *shi = pa->shi;
	float scatter_col[3] = {0.f, 0.f, 0.f};
	float co[3], cco[3];
	int x, y, z, i;
	int res[3];

	res[0]= pa->res[0];
	res[1]= pa->res[1];
	res[2]= pa->res[2];

	for (z= pa->minz; z < pa->maxz; z++) {
		co[2] = pa->bbmin[2] + (pa->voxel[2] * (z + 0.5f));
		
		for (y= pa->miny; y < pa->maxy; y++) {
			co[1] = pa->bbmin[1] + (pa->voxel[1] * (y + 0.5f));
			
			for (x=pa->minx; x < pa->maxx; x++) {
				co[0] = pa->bbmin[0] + (pa->voxel[0] * (x + 0.5f));
				
				/* convert from world->camera space for shading */
				mul_v3_m4v3(cco, pa->viewmat, co);
				
				i= V_I(x, y, z, res);
				
				// don't bother if the point is not inside the volume mesh
				if (!point_inside_obi(tree, obi, cco)) {
					obi->volume_precache->data_r[i] = -1.0f;
					obi->volume_precache->data_g[i] = -1.0f;
					obi->volume_precache->data_b[i] = -1.0f;
					continue;
				}
				
				/* this view coordinate is very wrong! */
				copy_v3_v3(shi->view, cco);
				normalize_v3(shi->view);
				vol_get_scattering(shi, scatter_col, cco);
			
				obi->volume_precache->data_r[i] = scatter_col[0];
				obi->volume_precache->data_g[i] = scatter_col[1];
				obi->volume_precache->data_b[i] = scatter_col[2];
				
			}
		}
	}
	
	pa->done = 1;
	
	return 0;
}


static void precache_setup_shadeinput(Render *re, ObjectInstanceRen *obi, Material *ma, ShadeInput *shi)
{
	memset(shi, 0, sizeof(ShadeInput)); 
	shi->depth= 1;
	shi->mask= 1;
	shi->mat = ma;
	shi->vlr = NULL;
	memcpy(&shi->r, &shi->mat->r, 23*sizeof(float));	// note, keep this synced with render_types.h
	shi->har= shi->mat->har;
	shi->obi= obi;
	shi->obr= obi->obr;
	shi->lay = re->lay;
}

static void precache_init_parts(Render *re, RayObject *tree, ShadeInput *shi, ObjectInstanceRen *obi, int totthread, int *parts)
{
	VolumePrecache *vp = obi->volume_precache;
	int i=0, x, y, z;
	float voxel[3];
	int sizex, sizey, sizez;
	float bbmin[3], bbmax[3];
	int *res;
	int minx, maxx;
	int miny, maxy;
	int minz, maxz;
	
	if (!vp) return;

	BLI_freelistN(&re->volume_precache_parts);
	
	/* currently we just subdivide the box, number of threads per side */
	parts[0] = parts[1] = parts[2] = totthread;
	res = vp->res;
	
	/* using boundbox in worldspace */
	global_bounds_obi(re, obi, bbmin, bbmax);
	sub_v3_v3v3(voxel, bbmax, bbmin);
	
	voxel[0] /= (float)res[0];
	voxel[1] /= (float)res[1];
	voxel[2] /= (float)res[2];

	for (x=0; x < parts[0]; x++) {
		sizex = ceil(res[0] / (float)parts[0]);
		minx = x * sizex;
		maxx = minx + sizex;
		maxx = (maxx>res[0])?res[0]:maxx;
		
		for (y=0; y < parts[1]; y++) {
			sizey = ceil(res[1] / (float)parts[1]);
			miny = y * sizey;
			maxy = miny + sizey;
			maxy = (maxy>res[1])?res[1]:maxy;
			
			for (z=0; z < parts[2]; z++) {
				VolPrecachePart *pa= MEM_callocN(sizeof(VolPrecachePart), "new precache part");
				
				sizez = ceil(res[2] / (float)parts[2]);
				minz = z * sizez;
				maxz = minz + sizez;
				maxz = (maxz>res[2])?res[2]:maxz;
						
				pa->done = 0;
				pa->working = 0;
				
				pa->num = i;
				pa->tree = tree;
				pa->shi = shi;
				pa->obi = obi;
				copy_m4_m4(pa->viewmat, re->viewmat);
				
				copy_v3_v3(pa->bbmin, bbmin);
				copy_v3_v3(pa->voxel, voxel);
				VECCOPY(pa->res, res);
				
				pa->minx = minx; pa->maxx = maxx;
				pa->miny = miny; pa->maxy = maxy;
				pa->minz = minz; pa->maxz = maxz;
				
				
				BLI_addtail(&re->volume_precache_parts, pa);
				
				i++;
			}
		}
	}
}

static VolPrecachePart *precache_get_new_part(Render *re)
{
	VolPrecachePart *pa, *nextpa=NULL;
	
	for (pa = re->volume_precache_parts.first; pa; pa=pa->next)
	{
		if (pa->done==0 && pa->working==0) {
			nextpa = pa;
			break;
		}
	}

	return nextpa;
}

/* calculate resolution from bounding box in world space */
static int precache_resolution(Render *re, VolumePrecache *vp, ObjectInstanceRen *obi, int res)
{
	float dim[3], div;
	float bbmin[3], bbmax[3];
	
	/* bound box in global space */
	global_bounds_obi(re, obi, bbmin, bbmax);
	sub_v3_v3v3(dim, bbmax, bbmin);
	
	div = MAX3(dim[0], dim[1], dim[2]);
	dim[0] /= div;
	dim[1] /= div;
	dim[2] /= div;
	
	vp->res[0] = ceil(dim[0] * res);
	vp->res[1] = ceil(dim[1] * res);
	vp->res[2] = ceil(dim[2] * res);
	
	if ((vp->res[0] < 1) || (vp->res[1] < 1) || (vp->res[2] < 1))
		return 0;
	
	return 1;
}

/* Precache a volume into a 3D voxel grid.
 * The voxel grid is stored in the ObjectInstanceRen, 
 * in camera space, aligned with the ObjectRen's bounding box.
 * Resolution is defined by the user.
 */
void vol_precache_objectinstance_threads(Render *re, ObjectInstanceRen *obi, Material *ma)
{
	VolumePrecache *vp;
	VolPrecachePart *nextpa, *pa;
	RayObject *tree;
	ShadeInput shi;
	ListBase threads;
	int parts[3] = {1, 1, 1}, totparts;
	
	int caching=1, counter=0;
	int totthread = re->r.threads;
	
	double time, lasttime= PIL_check_seconds_timer();
	
	R = *re;

	/* create a raytree with just the faces of the instanced ObjectRen, 
	 * used for checking if the cached point is inside or outside. */
	tree = makeraytree_object(&R, obi);
	if (!tree) return;

	vp = MEM_callocN(sizeof(VolumePrecache), "volume light cache");
	obi->volume_precache = vp;
	
	if (!precache_resolution(re, vp, obi, ma->vol.precache_resolution)) {
		MEM_freeN(vp);
		vp = NULL;
		return;
	}

	vp->data_r = MEM_callocN(sizeof(float)*vp->res[0]*vp->res[1]*vp->res[2], "volume light cache data red channel");
	vp->data_g = MEM_callocN(sizeof(float)*vp->res[0]*vp->res[1]*vp->res[2], "volume light cache data green channel");
	vp->data_b = MEM_callocN(sizeof(float)*vp->res[0]*vp->res[1]*vp->res[2], "volume light cache data blue channel");
	if (vp->data_r==0 || vp->data_g==0 || vp->data_b==0) {
		MEM_freeN(vp);
		vp = NULL;
		return;
	}

	/* Need a shadeinput to calculate scattering */
	precache_setup_shadeinput(re, obi, ma, &shi);
	
	precache_init_parts(re, tree, &shi, obi, totthread, parts);
	totparts = parts[0] * parts[1] * parts[2];
	
	BLI_init_threads(&threads, vol_precache_part, totthread);
	
	while(caching) {

		if(BLI_available_threads(&threads) && !(re->test_break(re->tbh))) {
			nextpa = precache_get_new_part(re);
			if (nextpa) {
				nextpa->working = 1;
				BLI_insert_thread(&threads, nextpa);
			}
		}
		else PIL_sleep_ms(50);

		caching=0;
		counter=0;
		for(pa= re->volume_precache_parts.first; pa; pa= pa->next) {
			
			if(pa->done) {
				counter++;
				BLI_remove_thread(&threads, pa);
			} else
				caching = 1;
		}
		
		if (re->test_break(re->tbh) && BLI_available_threads(&threads)==totthread)
			caching=0;
		
		time= PIL_check_seconds_timer();
		if(time-lasttime>1.0f) {
			char str[64];
			BLI_snprintf(str, sizeof(str), "Precaching volume: %d%%", (int)(100.0f * ((float)counter / (float)totparts)));
			re->i.infostr= str;
			re->stats_draw(re->sdh, &re->i);
			re->i.infostr= NULL;
			lasttime= time;
		}
	}
	
	BLI_end_threads(&threads);
	BLI_freelistN(&re->volume_precache_parts);
	
	if(tree) {
		//TODO: makeraytree_object creates a tree and saves it on OBI, if we free this tree we should also clear other pointers to it
		//RE_rayobject_free(tree);
		//tree= NULL;
	}
	
	if (ELEM(ma->vol.shade_type, MA_VOL_SHADE_MULTIPLE, MA_VOL_SHADE_SHADEDPLUSMULTIPLE))
	{
		/* this should be before the filtering */
		multiple_scattering_diffusion(re, obi->volume_precache, ma);
	}
		
	lightcache_filter(obi->volume_precache);
}

static int using_lightcache(Material *ma)
{
	return (((ma->vol.shadeflag & MA_VOL_PRECACHESHADING) && (ma->vol.shade_type == MA_VOL_SHADE_SHADED))
		|| (ELEM(ma->vol.shade_type, MA_VOL_SHADE_MULTIPLE, MA_VOL_SHADE_SHADEDPLUSMULTIPLE)));
}

/* loop through all objects (and their associated materials)
 * marked for pre-caching in convertblender.c, and pre-cache them */
void volume_precache(Render *re)
{
	ObjectInstanceRen *obi;
	VolumeOb *vo;

	for(vo= re->volumes.first; vo; vo= vo->next) {
		if (using_lightcache(vo->ma)) {
			for(obi= re->instancetable.first; obi; obi= obi->next) {
				if (obi->obr == vo->obr) {
					vol_precache_objectinstance_threads(re, obi, vo->ma);
				}
			}
		}
	}
	
	re->i.infostr= NULL;
	re->stats_draw(re->sdh, &re->i);
}

void free_volume_precache(Render *re)
{
	ObjectInstanceRen *obi;
	
	for(obi= re->instancetable.first; obi; obi= obi->next) {
		if (obi->volume_precache != NULL) {
			MEM_freeN(obi->volume_precache->data_r);
			MEM_freeN(obi->volume_precache->data_g);
			MEM_freeN(obi->volume_precache->data_b);
			MEM_freeN(obi->volume_precache->bbmin);
			MEM_freeN(obi->volume_precache->bbmax);
			MEM_freeN(obi->volume_precache);
			obi->volume_precache = NULL;
		}
	}
	
	BLI_freelistN(&re->volumes);
}

int point_inside_volume_objectinstance(Render *re, ObjectInstanceRen *obi, float *co)
{
	RayObject *tree;
	int inside=0;
	
	tree = makeraytree_object(re, obi);
	if (!tree) return 0;
	
	inside = point_inside_obi(tree, obi, co);
	
	//TODO: makeraytree_object creates a tree and saves it on OBI, if we free this tree we should also clear other pointers to it
	//RE_rayobject_free(tree);
	//tree= NULL;
	
	return inside;
}