Welcome to mirror list, hosted at ThFree Co, Russian Federation.

SM_Object.cpp « src « Fuzzics « Sumo « Physics « gameengine « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 655590c208658fc08e604eb3524a3bee5c0bf9be (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
/**
 * $Id$
 * Copyright (C) 2001 NaN Technologies B.V.
 * The basic physics object.
 */

#ifdef WIN32
// This warning tells us about truncation of __long__ stl-generated names.
// It can occasionally cause DevStudio to have internal compiler warnings.
#pragma warning( disable : 4786 )     
#endif

#include "SM_Object.h"
#include "SM_Scene.h"
#include "SM_FhObject.h"

#include "MT_MinMax.h"


// Tweak parameters
static MT_Scalar ImpulseThreshold = 0.5;

SM_Object::SM_Object(
	DT_ShapeHandle shape, 
	const SM_MaterialProps *materialProps,
	const SM_ShapeProps *shapeProps,
	SM_Object *dynamicParent
) :
	m_shape(shape),
	m_materialProps(materialProps),
	m_materialPropsBackup(0),
	m_shapeProps(shapeProps),
	m_shapePropsBackup(0),
	m_dynamicParent(dynamicParent),
	m_object(DT_CreateObject(this, shape)),
	m_margin(0.0),
	m_scaling(1.0, 1.0, 1.0),
	m_reaction_impulse(0.0, 0.0, 0.0),
	m_reaction_force(0.0, 0.0, 0.0),
	m_kinematic(false),
	m_prev_kinematic(false),
	m_is_rigid_body(false),
	m_lin_mom(0.0, 0.0, 0.0),
	m_ang_mom(0.0, 0.0, 0.0),
	m_force(0.0, 0.0, 0.0),
	m_torque(0.0, 0.0, 0.0),
	m_client_object(0),
	m_fh_object(0),

	m_combined_lin_vel (0.0, 0.0, 0.0),
	m_combined_ang_vel (0.0, 0.0, 0.0)
{
	m_xform.setIdentity();
	m_xform.getValue(m_ogl_matrix);
	if (shapeProps && 
		(shapeProps->m_do_fh || shapeProps->m_do_rot_fh)) {
		MT_Vector3 ray(0.0, 0.0, -10.0);
		m_fh_object = new SM_FhObject(ray, this);
	}
	m_suspended = false;
}


	void 
SM_Object::
integrateForces(
	MT_Scalar timeStep
){
	if (!m_suspended) {
		m_prev_state = *this;
		m_prev_state.setLinearVelocity(actualLinVelocity());
		m_prev_state.setAngularVelocity(actualAngVelocity());
		if (isDynamic()) {
			// Integrate momentum (forward Euler)
			m_lin_mom += m_force * timeStep;
			m_ang_mom += m_torque * timeStep;
			// Drain momentum because of air/water resistance
			m_lin_mom *= pow(m_shapeProps->m_lin_drag, timeStep);
			m_ang_mom *= pow(m_shapeProps->m_ang_drag, timeStep);
			// Set velocities according momentum
			m_lin_vel = m_lin_mom / m_shapeProps->m_mass;
			m_ang_vel = m_ang_mom / m_shapeProps->m_inertia;
		}
	}	

};

	void 
SM_Object::
integrateMomentum(
	MT_Scalar timeStep
){
	// Integrate position and orientation

	// only do it for objects with linear and/or angular velocity
	// else clients with hierarchies may get into trouble
	if (!actualLinVelocity().fuzzyZero() || !actualAngVelocity().fuzzyZero()) 
	{

	// those MIDPOINT and BACKWARD integration methods are
	// in this form not ok with some testfiles ! 
	// For a release build please use forward euler unless completely tested
[
//#define MIDPOINT
//#define BACKWARD
#ifdef  MIDPOINT
// Midpoint rule
		m_pos += (m_prev_state.getLinearVelocity() + actualLinVelocity()) * (timeStep * 0.5);
		m_orn += (m_prev_state.getAngularVelocity() * m_prev_state.getOrientation() + actualAngVelocity() * m_orn) * (timeStep * 0.25);
#elif defined BACKWARD
// Backward Euler
		m_pos += actualLinVelocity() * timeStep;
		m_orn += actualAngVelocity() * m_orn * (timeStep * 0.5);
#else 
// Forward Euler

		m_pos += m_prev_state.getLinearVelocity() * timeStep;
		m_orn += m_prev_state.getAngularVelocity() * m_orn * (timeStep * 0.5);
#endif
		m_orn.normalize(); // I might not be necessary to do this every call

		calcXform();
		notifyClient();		

	}
}


void SM_Object::boing(
	void *client_data,  
	void *object1,
	void *object2,
	const DT_CollData *coll_data
){
	SM_Scene  *scene = (SM_Scene *)client_data; 
	SM_Object *obj1  = (SM_Object *)object1;  
	SM_Object *obj2  = (SM_Object *)object2;  
	
	scene->addPair(obj1, obj2); // Record this collision for client callbacks
	

	// If one of the objects is a ghost then ignore it for the dynamics
	if (obj1->isGhost() || obj2->isGhost()) {
		return;
	}

	
	if (!obj2->isDynamic()) {
		std::swap(obj1, obj2);
	}

	if (!obj2->isDynamic()) {
		return;
	}

	// obj1 points to a dynamic object


	// This distinction between dynamic and non-dynamic objects should not be 
	// necessary. Non-dynamic objects are assumed to have infinite mass.

	if (obj1->isDynamic()) {
		// normal to the contact plane 
		MT_Vector3 normal = obj2->m_pos - obj1->m_pos;
		MT_Scalar  dist = normal.length(); 
		
		if (MT_EPSILON < dist && dist <= obj1->getMargin() + obj2->getMargin())
		{
			normal /= dist;
			// relative velocity of the contact points
			MT_Vector3 rel_vel       = obj2->actualLinVelocity() - obj1->actualLinVelocity();
			// relative velocity projected onto the normal
			MT_Scalar rel_vel_normal = normal.dot(rel_vel);
			
			// if the objects are approaching eachother...
			if (rel_vel_normal < 0.0) {
				MT_Scalar restitution;
				// ...and the approaching velocity is large enough... 
				if (-rel_vel_normal > ImpulseThreshold) {
					// ...this must be a true collision.
					restitution = 
						MT_min(obj1->getMaterialProps()->m_restitution,
								obj2->getMaterialProps()->m_restitution);
				}
				else {
					// otherwise, it is a resting contact, and thus the 
					// relative velocity must be made zero
					restitution = 0.0;
					// We also need to interfere with the positions of the
					// objects, otherwise they might drift into eachother. 
					MT_Vector3 penalty = normal * 
						(0.5 * (obj1->getMargin() + obj2->getMargin() - dist));
					obj1->m_pos -= penalty;
					obj2->m_pos += penalty;
				}
				
				// Compute the impulse necessary to yield the desired relative velocity...
                MT_Scalar impulse = -(1.0 + restitution) * rel_vel_normal /
                    (obj1->getInvMass() + obj2->getInvMass());
               
				// ... and apply it.
				obj1->applyCenterImpulse(-impulse * normal);
				obj2->applyCenterImpulse( impulse * normal);
            }
		}
	}
	else {
		// Same again but now obj1 is non-dynamic

		// Compute the point on obj1 closest to obj2 (= sphere with radius = 0)
		MT_Point3 local1, local2;
		MT_Scalar dist = DT_GetClosestPair(obj1->m_object, obj2->m_object,
										   local1.getValue(), local2.getValue());
		
        // local1 is th point closest to obj2
        // local2 is the local origin of obj2 

		if (MT_EPSILON < dist && dist <= obj2->getMargin()) {
			MT_Point3 world1 = obj1->getWorldCoord(local1);
			MT_Point3 world2 = obj2->getWorldCoord(local2);
			MT_Vector3 vel1  = obj1->getVelocity(local1) + obj1->m_combined_lin_vel;
			MT_Vector3 vel2  = obj2->getVelocity(local2) + obj2->m_combined_lin_vel;
            
            // the normal to the contact plane
			MT_Vector3 normal = world2 - world1; 
			normal /= dist;

			// wr2 points from obj2's origin to the global contact point
			// wr2 is only needed for rigid bodies (objects for which the 
			// friction can change the angular momentum).
			// vel2 is adapted to denote the velocity of the contact point 
			MT_Vector3 wr2;
			if (obj2->isRigidBody()) {
				wr2 = -obj2->getMargin() * normal;
				vel2 += obj2->actualAngVelocity().cross(wr2);
			}


			// This should look familiar....
			MT_Vector3 rel_vel        = vel2 - vel1;
			MT_Scalar  rel_vel_normal = normal.dot(rel_vel);
			
			if (rel_vel_normal < 0.0) {
				MT_Scalar restitution;
				if (-rel_vel_normal > ImpulseThreshold) {
					restitution = 
						MT_min(obj1->getMaterialProps()->m_restitution,
								obj2->getMaterialProps()->m_restitution);
				}
				else {
					restitution = 0.0;
					// We fix drift by moving obj2 only, since obj1 was 
					// non-dynamic.
					obj2->m_pos += normal * (obj2->getMargin() - dist);

				}
				
				MT_Scalar impulse = -(1.0 + restitution) * rel_vel_normal /
					(obj1->getInvMass() + obj2->getInvMass());


				obj2->applyCenterImpulse( impulse * normal);
	   	
// The friction part starts here!!!!!!!!

				// Compute the lateral component of the relative velocity
				// lateral actually points in the opposite direction, i.e.,
				// into the direction of the friction force.

#if 1
				// test - only do friction on the physics part of the 
				// velocity.
				vel1  -= obj1->m_combined_lin_vel;
				vel2  -= obj2->m_combined_lin_vel;

				// This should look familiar....
				rel_vel        = vel2 - vel1;
				rel_vel_normal = normal.dot(rel_vel);
#endif
				
				MT_Vector3 lateral = normal * rel_vel_normal - rel_vel;
				
				const SM_ShapeProps *shapeProps = obj2->getShapeProps();
				
				if (shapeProps->m_do_anisotropic) {

					// For anisotropic friction we scale the lateral component,
					// rather than compute a direction-dependent fricition 
					// factor. For this the lateral component is transformed to
					// local coordinates.

					MT_Matrix3x3 lcs(obj2->m_orn);
					// We cannot use m_xform.getBasis() for the matrix, since 
					// it might contain a non-uniform scaling. 
					// OPT: it's a bit daft to compute the matrix since the 
					// quaternion itself can be used to do the transformation.

					MT_Vector3 loc_lateral = lateral * lcs;
					// lcs is orthogonal so lcs.inversed() == lcs.transposed(),
					// and lcs.transposed() * lateral == lateral * lcs.

					const MT_Vector3& friction_scaling = 
						shapeProps->m_friction_scaling; 
					
					// Scale the local lateral...
					loc_lateral.scale(friction_scaling[0], 
									  friction_scaling[1], 
									  friction_scaling[2]);
					// ... and transform it back to global coordinates
					lateral = lcs * loc_lateral;
				}
				
				// A tiny Coulomb friction primer:
				// The Coulomb friction law states that the magnitude of the
				// maximum possible friction force depends linearly on the 
				// magnitude of the normal force.
				//
				// F_max_friction = friction_factor * F_normal 
				//
				// (NB: independent of the contact area!!)
				//
				// The friction factor depends on the material. 
				// We use impulses rather than forces but let us not be 
				// bothered by this. 


				MT_Scalar  rel_vel_lateral = lateral.length();
				
				if (rel_vel_lateral > MT_EPSILON) {
					lateral /= rel_vel_lateral;
					
					MT_Scalar friction_factor = 
						MT_min(obj1->getMaterialProps()->m_friction, 
								obj2->getMaterialProps()->m_friction);
					
					// Compute the maximum friction impulse

					MT_Scalar max_friction = 
						friction_factor * MT_max(0.0, impulse);
					
					// I guess the GEN_max is not necessary, so let's check it

					assert(impulse >= 0.0);

					// Here's the trick. We compute the impulse to make the
					// lateral velocity zero. (Make the objects stick together
					// at the contact point. If this impulse is larger than
					// the maximum possible friction impulse, then shrink its
					// magnitude to the maximum friction.

					if (obj2->isRigidBody()) {
						
						// For rigid bodies we take the inertia into account, 
						// since the friciton impulse is going to change the
						// angular momentum as well.
						MT_Scalar impulse_lateral = rel_vel_lateral /
							(obj1->getInvMass() + obj2->getInvMass() +
							 ((obj2->getInvInertia() * wr2.cross(lateral)).cross(wr2)).dot(lateral));
						MT_Scalar friction = MT_min(impulse_lateral, max_friction);
						obj2->applyImpulse(world2 + wr2,  friction * lateral);
					}
					else {
						MT_Scalar impulse_lateral = rel_vel_lateral /
							(obj1->getInvMass() + obj2->getInvMass());
						
						MT_Scalar friction = MT_min(impulse_lateral, max_friction);
						obj2->applyCenterImpulse( friction * lateral);
					}
				}	
				
				obj2->calcXform();
				obj2->notifyClient();		
			}
		}
	}
}



SM_Object::SM_Object(
) {
	// warning no initialization of variables done by moto.
}

SM_Object::
~SM_Object() { 
	delete m_fh_object;
	DT_DeleteObject(m_object); 
}

	bool 
SM_Object::
isDynamic(
) const {
	return m_shapeProps != 0; 
} 

/* nzc experimental. There seem to be two places where kinematics
 * are evaluated: proceedKinematic (called from SM_Scene) and
 * proceed() in this object. I'll just try and bunge these out for
 * now.  */
	void 
SM_Object::
suspend(
){
	if (!m_suspended) {
		m_suspended = true;
		suspendDynamics();
	}
}

	void 
SM_Object::
resume(
) {
	if (m_suspended) {
		m_suspended = false;
		restoreDynamics();
	}
}

	void 
SM_Object::
suspendDynamics(
) {
	if (m_shapeProps) {
		m_shapePropsBackup = m_shapeProps;
		m_shapeProps = 0;
	}
}

	void 
SM_Object::
restoreDynamics(
) {
	if (m_shapePropsBackup) {
		m_shapeProps = m_shapePropsBackup;
		m_shapePropsBackup = 0;
	}
}

	bool 
SM_Object::
isGhost(
) const {
	return m_materialProps == 0;
} 

	void 
SM_Object::
suspendMaterial(
) {
	if (m_materialProps) {
		m_materialPropsBackup = m_materialProps;
		m_materialProps = 0;
	}
}

	void 
SM_Object::
restoreMaterial(
) {
	if (m_materialPropsBackup) {
		m_materialProps = m_materialPropsBackup;
		m_materialPropsBackup = 0;
	}
}

	SM_FhObject *
SM_Object::
getFhObject(
) const {
	return m_fh_object;
} 

	void 
SM_Object::
registerCallback(
	SM_Callback& callback
) {
	m_callbackList.push_back(&callback);
}

// Set the local coordinate system according to the current state 
	void 
SM_Object::
calcXform() {
	m_xform.setOrigin(m_pos);
	m_xform.setBasis(MT_Matrix3x3(m_orn, m_scaling));
	m_xform.getValue(m_ogl_matrix);
	DT_SetMatrixd(m_object, m_ogl_matrix);
	if (m_fh_object) {
		m_fh_object->setPosition(m_pos);
		m_fh_object->calcXform();
	}
}

// Call callbacks to notify the client of a change of placement
	void 
SM_Object::
notifyClient() {
	T_CallbackList::iterator i;
	for (i = m_callbackList.begin(); i != m_callbackList.end(); ++i) {
		(*i)->do_me();
	}
}


// Save the current state information for use in the velocity computation in the next frame.  
	void 
SM_Object::
proceedKinematic(
	MT_Scalar timeStep
) {
	/* nzc: need to bunge this for the logic bubbling as well? */
	if (!m_suspended) {
		m_prev_kinematic = m_kinematic;              
		if (m_kinematic) {
			m_prev_xform = m_xform;
			m_timeStep = timeStep;
			calcXform();
			m_kinematic  = false;
		}
	}
}

	void 
SM_Object::
saveReactionForce(
	MT_Scalar timeStep
) {
	if (isDynamic()) {
		m_reaction_force   = m_reaction_impulse / timeStep;
		m_reaction_impulse.setValue(0.0, 0.0, 0.0);
	}
}

	void 
SM_Object::
clearForce(
) {
	m_force.setValue(0.0, 0.0, 0.0);
	m_torque.setValue(0.0, 0.0, 0.0);
}

	void 
SM_Object::
clearMomentum(
) {
	m_lin_mom.setValue(0.0, 0.0, 0.0);
	m_ang_mom.setValue(0.0, 0.0, 0.0);
}

	void 
SM_Object::
setMargin(
	MT_Scalar margin
) {
	m_margin = margin;
    DT_SetMargin(m_object, margin);
}

	MT_Scalar 
SM_Object::
getMargin(
) const {
    return m_margin;
}

const 
	SM_MaterialProps *
SM_Object::
getMaterialProps(
) const {
    return m_materialProps;
}

const 
	SM_ShapeProps *
SM_Object::
getShapeProps(
) const {
    return m_shapeProps;
}

	void 
SM_Object::
setPosition(
	const MT_Point3& pos
){
	m_kinematic = true;
	m_pos = pos;
}

	void 
SM_Object::
setOrientation(
	const MT_Quaternion& orn
){
	assert(!orn.fuzzyZero());
	m_kinematic = true;
	m_orn = orn;
}

	void 
SM_Object::
setScaling(
	const MT_Vector3& scaling
){
	m_kinematic = true;
	m_scaling = scaling;
}

/**
 * Functions to handle linear velocity
 */

	void 
SM_Object::
setExternalLinearVelocity(
	const MT_Vector3& lin_vel
) {
	m_combined_lin_vel=lin_vel;
}

	void 
SM_Object::
addExternalLinearVelocity(
	const MT_Vector3& lin_vel
) {
	m_combined_lin_vel+=lin_vel;
}

	void 
SM_Object::
addLinearVelocity(
	const MT_Vector3& lin_vel
){
	m_lin_vel += lin_vel;
	if (m_shapeProps) {
		m_lin_mom = m_lin_vel * m_shapeProps->m_mass;
	}
}

	void 
SM_Object::
setLinearVelocity(
	const MT_Vector3& lin_vel
){
	m_lin_vel = lin_vel;
	if (m_shapeProps) {
		m_lin_mom = m_lin_vel * m_shapeProps->m_mass;
	}
}

/**
 * Functions to handle angular velocity
 */

	void 
SM_Object::
setExternalAngularVelocity(
	const MT_Vector3& ang_vel
) {
	m_combined_ang_vel = ang_vel;
}

	void
SM_Object::
addExternalAngularVelocity(
	const MT_Vector3& ang_vel
) {
	m_combined_ang_vel += ang_vel;
}

	void 
SM_Object::
setAngularVelocity(
	const MT_Vector3& ang_vel
) {
	m_ang_vel = ang_vel;
	if (m_shapeProps) {
		m_ang_mom = m_ang_vel * m_shapeProps->m_inertia;
	}
}

	void
SM_Object::
addAngularVelocity(
	const MT_Vector3& ang_vel
) {
	m_ang_vel += ang_vel;
	if (m_shapeProps) {
		m_ang_mom = m_ang_vel * m_shapeProps->m_inertia;
	}
}


	void 
SM_Object::
clearCombinedVelocities(
) {
	m_combined_lin_vel = MT_Vector3(0,0,0);
	m_combined_ang_vel = MT_Vector3(0,0,0);
}

	void 
SM_Object::
resolveCombinedVelocities(
	const MT_Vector3 & lin_vel,
	const MT_Vector3 & ang_vel
) {

	// Different behaviours for dynamic and non-dynamic 
	// objects. For non-dynamic we just set the velocity to 
	// zero. For dynmic the physics velocity has to be 
	// taken into account. We must make an arbitrary decision
	// on how to resolve the 2 velocities. Choices are
	// Add the physics velocity to the linear velocity. Objects
	// will just keep on moving in the direction they were
	// last set in - untill external forces affect them.
	// Set the combinbed linear and physics velocity to zero.
	// Set the physics velocity in the direction of the set velocity
	// zero.
	if (isDynamic()) {		

#if 1
		m_lin_vel += lin_vel;
		m_ang_vel += ang_vel;
#else

		//compute the component of the physics velocity in the 
		// direction of the set velocity and set it to zero.
		MT_Vector3 lin_vel_norm = lin_vel.normalized();

		m_lin_vel -= (m_lin_vel.dot(lin_vel_norm) * lin_vel_norm);
#endif
		m_lin_mom = m_lin_vel * m_shapeProps->m_mass;
		m_ang_mom = m_ang_vel * m_shapeProps->m_inertia;
		clearCombinedVelocities();

	}

}		


	MT_Scalar 
SM_Object::
getInvMass(
) const { 
	return m_shapeProps ? 1.0 / m_shapeProps->m_mass : 0.0;
	// OPT: cache the result of this division rather than compute it each call
}

	MT_Scalar 
SM_Object::
getInvInertia(
) const { 
	return m_shapeProps ? 1.0 / m_shapeProps->m_inertia : 0.0;
	// OPT: cache the result of this division rather than compute it each call
}

	void 
SM_Object::
applyForceField(
	const MT_Vector3& accel
) {
	if (m_shapeProps) {
		m_force += m_shapeProps->m_mass * accel;  // F = m * a
	}
}

	void 
SM_Object::
applyCenterForce(
	const MT_Vector3& force
) {
	m_force += force;
}

	void 
SM_Object::
applyTorque(
	const MT_Vector3& torque
) {
	m_torque += torque;
}

	void 
SM_Object::
applyImpulse(
	const MT_Point3& attach, const MT_Vector3& impulse
) {
	applyCenterImpulse(impulse);                          // Change in linear momentum
	applyAngularImpulse((attach - m_pos).cross(impulse)); // Change in angular momentump
}

	void 
SM_Object::
applyCenterImpulse(
	const MT_Vector3& impulse
) {
	if (m_shapeProps) {
		m_lin_mom          += impulse;
		m_reaction_impulse += impulse;
		m_lin_vel           = m_lin_mom / m_shapeProps->m_mass;

		// The linear velocity is immedialtely updated since otherwise
		// simultaneous collisions will get a double impulse. 
	}
}

	void 
SM_Object::
applyAngularImpulse(
	const MT_Vector3& impulse
) {
	if (m_shapeProps) {
		m_ang_mom += impulse;
		m_ang_vel = m_ang_mom / m_shapeProps->m_inertia;
	}
}

	MT_Point3 
SM_Object::
getWorldCoord(
	const MT_Point3& local
) const {
    return m_xform(local);
}

	MT_Vector3 
SM_Object::
getVelocity(
	const MT_Point3& local
) const {
	// For displaced objects the velocity is faked using the previous state. 
	// Dynamic objects get their own velocity, not the faked velocity.
	// (Dynamic objects shouldn't be displaced in the first place!!)

	return m_prev_kinematic && !isDynamic() ? 
		(m_xform(local) - m_prev_xform(local)) / m_timeStep :
		m_lin_vel +	m_ang_vel.cross(m_xform.getBasis() * local);

	// NB: m_xform.getBasis() * local == m_xform(local) - m_xform.getOrigin()

}


const 
	MT_Vector3& 
SM_Object::
getReactionForce(
) const {
	return m_reaction_force;
}

	void 
SM_Object::
getMatrix(
	double *m
) const {
    std::copy(&m_ogl_matrix[0], &m_ogl_matrix[16], &m[0]);
}

const 
	double *
SM_Object::
getMatrix(
) const {
	return m_ogl_matrix;
}

// Still need this???
const 
	MT_Transform&  
SM_Object::
getScaledTransform(
) const {
	return m_xform;
}

	DT_ObjectHandle 
SM_Object::
getObjectHandle(
) const {
	return m_object;
}

	DT_ShapeHandle 
SM_Object::
getShapeHandle(
) const { 
	return m_shape;
}

	void  
SM_Object::
setClientObject(
	void *clientobj
) {
	m_client_object = clientobj;
}

	void *
SM_Object::
getClientObject(
){ 
	return m_client_object;
}

	SM_Object *
SM_Object::
getDynamicParent(
) {
	return m_dynamicParent;
}

	void 
SM_Object::
setRigidBody(
	bool is_rigid_body
) { 
	m_is_rigid_body = is_rigid_body;
} 

	bool 
SM_Object::
isRigidBody(
) const {
	return m_is_rigid_body;
}

const 
	MT_Vector3
SM_Object::
actualLinVelocity(
) const {
	return m_combined_lin_vel + m_lin_vel;
};

const 
	MT_Vector3
SM_Object::
actualAngVelocity(
) const {
	return m_combined_ang_vel + m_ang_vel;
};