Welcome to mirror list, hosted at ThFree Co, Russian Federation.

github.com/FormerLurker/ArcWelderLib.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorFormerLurker <hochgebe@gmail.com>2021-01-17 23:15:33 +0300
committerFormerLurker <hochgebe@gmail.com>2021-01-17 23:15:33 +0300
commitae7b425561749844da1cc5e23135625b22367be5 (patch)
tree80f39c15aaa04ba84343772db5bf8500462f174a
parentb3de4f60d34ad25fff265bb2b0c469e74da5b0f2 (diff)
Debug installlate_arc_checking
-rw-r--r--ArcWelder/CMakeLists.txt2
-rw-r--r--ArcWelder/arc_welder.cpp2
-rw-r--r--ArcWelderConsole/CMakeLists.txt2
-rw-r--r--ArcWelderInverseProcessor/ArcWelderInverseProcessor.cpp87
-rw-r--r--ArcWelderInverseProcessor/CMakeLists.txt2
-rw-r--r--ArcWelderInverseProcessor/inverse_processor.cpp267
-rw-r--r--ArcWelderInverseProcessor/inverse_processor.h17
-rw-r--r--ArcWelderLib.sln4
-rw-r--r--ArcWelderTest/ArcWelderTest.cpp2
-rw-r--r--ArcWelderTest/ArcWelderTest.h4
-rw-r--r--CMakeLists.txt2
-rw-r--r--GcodeProcessorLib/CMakeLists.txt2
-rw-r--r--PyArcWelder/CMakeLists.txt2
-rw-r--r--TCLAP/CMakeLists.txt2
14 files changed, 329 insertions, 68 deletions
diff --git a/ArcWelder/CMakeLists.txt b/ArcWelder/CMakeLists.txt
index 5a1569b..688a466 100644
--- a/ArcWelder/CMakeLists.txt
+++ b/ArcWelder/CMakeLists.txt
@@ -1,4 +1,4 @@
-cmake_minimum_required (VERSION "3.15")
+cmake_minimum_required (VERSION "3.13")
project(ArcWelder C CXX)
diff --git a/ArcWelder/arc_welder.cpp b/ArcWelder/arc_welder.cpp
index d4b4e67..b720f05 100644
--- a/ArcWelder/arc_welder.cpp
+++ b/ArcWelder/arc_welder.cpp
@@ -213,7 +213,7 @@ arc_welder_results results;
bool continue_processing = true;
p_logger_->log(logger_type_, DEBUG, "Configuring progress updates.");
- int read_lines_before_clock_check = 1000;
+ int read_lines_before_clock_check = 500;
double next_update_time = get_next_update_time();
const clock_t start_clock = clock();
p_logger_->log(logger_type_, DEBUG, "Getting source file size.");
diff --git a/ArcWelderConsole/CMakeLists.txt b/ArcWelderConsole/CMakeLists.txt
index 0859c5b..f8f8990 100644
--- a/ArcWelderConsole/CMakeLists.txt
+++ b/ArcWelderConsole/CMakeLists.txt
@@ -1,4 +1,4 @@
-cmake_minimum_required (VERSION "3.15")
+cmake_minimum_required (VERSION "3.13")
project(ArcWelderConsole C CXX)
diff --git a/ArcWelderInverseProcessor/ArcWelderInverseProcessor.cpp b/ArcWelderInverseProcessor/ArcWelderInverseProcessor.cpp
index ea333b3..54c8630 100644
--- a/ArcWelderInverseProcessor/ArcWelderInverseProcessor.cpp
+++ b/ArcWelderInverseProcessor/ArcWelderInverseProcessor.cpp
@@ -60,11 +60,17 @@ int main(int argc, char* argv[])
double mm_per_arc_segment;
double min_mm_per_arc_segment;
int min_arc_segments;
+ int n_arc_corrections;
double arc_segments_per_sec;
std::string log_level_string;
std::string log_level_string_default = "INFO";
int log_level_value;
+
+ std::string interpolation_function_string;
+ std::string interpolation_function_string_default = "INT_SEGMENTS";
+ int interpolation_function_value;
+
// Extract arguments
try {
// Define the command line object
@@ -102,6 +108,12 @@ int main(int argc, char* argv[])
arg_description_stream << "The minimum number of segments within a circle of the same radius as the arc. Can be used to increase detail on small arcs. The smallest segment generated will be no larger than min_mm_per_arc_segment. A value less than or equal to 0 will disable this feature. Default Value: " << DEFAULT_MIN_ARC_SEGMENTS;
TCLAP::ValueArg<int> min_arc_segments_arg("r", "min-arc-segments", arg_description_stream.str(), false, DEFAULT_MIN_ARC_SEGMENTS, "int");
+ // -c --n_arc_correction
+ arg_description_stream.clear();
+ arg_description_stream.str("");
+ arg_description_stream << "The number of segments to interpolate using the small angle approximation before correcting with real sin/cos values. Default Value: " << DEFAULT_N_ARC_CORRECTIONS;
+ TCLAP::ValueArg<int> n_arc_corrections_arg("C", "n-arc-corrections", arg_description_stream.str(), false, DEFAULT_N_ARC_CORRECTIONS, "int");
+
// -s --arc-segments-per-second
arg_description_stream.clear();
arg_description_stream.str("");
@@ -124,6 +136,17 @@ int main(int argc, char* argv[])
arg_description_stream << "Sets console log level. Default Value: " << log_level_string_default;
TCLAP::ValueArg<std::string> log_level_arg("l", "log-level", arg_description_stream.str(), false, log_level_string_default, &log_levels_constraint);
+ // -i --interpolation-function
+ std::vector<std::string> interpolation_functions_vector;
+ interpolation_functions_vector.push_back("INT_SEGMENTS");
+ interpolation_functions_vector.push_back("FLOAT_SEGMENTS");
+ TCLAP::ValuesConstraint<std::string> interpolation_functions_constraint(interpolation_functions_vector);
+ arg_description_stream.clear();
+ arg_description_stream.str("");
+ arg_description_stream << "Sets the interpolation function to be used. Options are INT_SEGMENTS and FLOAT_SEGMENTS. Default Value: " << interpolation_function_string_default;
+ TCLAP::ValueArg<std::string> interpolation_function_arg("i", "interpolation-type", arg_description_stream.str(), false, interpolation_function_string_default, &interpolation_functions_constraint);
+
+
// Add all arguments
cmd.add(source_arg);
cmd.add(target_arg);
@@ -132,9 +155,10 @@ int main(int argc, char* argv[])
cmd.add(mm_per_arc_segment_arg);
cmd.add(min_mm_per_arc_segment_arg);
cmd.add(min_arc_segments_arg);
+ cmd.add(n_arc_corrections_arg);
cmd.add(arc_segments_per_sec_arg);
-
cmd.add(log_level_arg);
+ cmd.add(interpolation_function_arg);
// Parse the argv array.
cmd.parse(argc, argv);
@@ -145,11 +169,14 @@ int main(int argc, char* argv[])
mm_per_arc_segment = mm_per_arc_segment_arg.getValue();
min_mm_per_arc_segment = min_mm_per_arc_segment_arg.getValue();
min_arc_segments = min_arc_segments_arg.getValue();
+ n_arc_corrections = n_arc_corrections_arg.getValue();
arc_segments_per_sec = arc_segments_per_sec_arg.getValue();
+ interpolation_function_string = interpolation_function_arg.getValue();
cs.mm_per_arc_segment = (float)mm_per_arc_segment;
cs.min_mm_per_arc_segment = (float)min_mm_per_arc_segment;
cs.min_arc_segments = min_arc_segments;
+ cs.n_arc_correction = n_arc_corrections;
cs.arc_segments_per_sec = arc_segments_per_sec;
if (target_file_path.size() == 0)
@@ -158,9 +185,25 @@ int main(int argc, char* argv[])
}
g90_g91_influences_extruder = g90_arg.getValue();
+ interpolation_function_string = interpolation_function_arg.getValue();
+ interpolation_function_value = -1;
+ for (unsigned int interpolation_function_index = 0; interpolation_function_index < interpolation_function_names_size; interpolation_function_index++)
+ {
+ if (interpolation_function_string == interpolation_function_names[interpolation_function_index])
+ {
+ interpolation_function_value = interpolation_function_index;
+ break;
+ }
+ }
+ if (interpolation_function_value == -1)
+ {
+ // TODO: Does this work?
+ throw new TCLAP::ArgException("Unknown interpolation function");
+ }
+ cs.interpolation_function = (InterpolationFunction)interpolation_function_value;
+
log_level_string = log_level_arg.getValue();
log_level_value = -1;
-
for (unsigned int log_name_index = 0; log_name_index < log_level_names_size; log_name_index++)
{
if (log_level_string == log_level_names[log_name_index])
@@ -175,6 +218,29 @@ int main(int argc, char* argv[])
throw new TCLAP::ArgException("Unknown log level");
}
+ // Do some parameter sanity checking.
+ if (cs.n_arc_correction < 0)
+ {
+ cs.n_arc_correction = 0;
+ }
+ if (cs.mm_per_arc_segment <= 0)
+ {
+ cs.mm_per_arc_segment = 1;
+ }
+ if (cs.min_mm_per_arc_segment < cs.mm_per_arc_segment)
+ {
+ cs.min_mm_per_arc_segment = 0;
+ }
+ if (cs.min_arc_segments < 0)
+ {
+ cs.min_arc_segments = 0;
+ }
+ if (cs.arc_segments_per_sec < 0)
+ {
+ cs.arc_segments_per_sec = 0;
+ }
+
+
}
// catch argument exceptions
catch (TCLAP::ArgException& e)
@@ -224,8 +290,23 @@ int main(int argc, char* argv[])
{
log_messages << "\tTarget File File : " << target_file_path << "\n";
}
-
log_messages << "\tLog Level : " << log_level_string << "\n";
+
+ // Log the parameters used
+ log_messages << "\tMax MM Per Arc Segment : " << cs.mm_per_arc_segment << "\n";
+ log_messages << "\tMin MM Per Arc Segment : " << cs.min_mm_per_arc_segment << "\n";
+ log_messages << "\tMin Arc Segments : " << cs.min_arc_segments << "\n";
+ log_messages << "\tArc Segments per Second : " << cs.arc_segments_per_sec << "\n";
+ log_messages << "\tN Arc Corrections : " << cs.n_arc_correction << "\n";
+ log_messages << "\tInterpolation Function : " << interpolation_function_string << "\n";
+
+ cs.mm_per_arc_segment = (float)mm_per_arc_segment;
+ cs.min_mm_per_arc_segment = (float)min_mm_per_arc_segment;
+ cs.min_arc_segments = min_arc_segments;
+ cs.n_arc_correction = n_arc_corrections;
+ cs.arc_segments_per_sec = arc_segments_per_sec;
+
+
p_logger->log(0, INFO, log_messages.str());
if (overwrite_source_file)
diff --git a/ArcWelderInverseProcessor/CMakeLists.txt b/ArcWelderInverseProcessor/CMakeLists.txt
index 5636096..3962858 100644
--- a/ArcWelderInverseProcessor/CMakeLists.txt
+++ b/ArcWelderInverseProcessor/CMakeLists.txt
@@ -1,4 +1,4 @@
-cmake_minimum_required (VERSION "3.15")
+cmake_minimum_required (VERSION "3.13")
project(ArcWelderInverseProcessor C CXX)
diff --git a/ArcWelderInverseProcessor/inverse_processor.cpp b/ArcWelderInverseProcessor/inverse_processor.cpp
index 4b287d7..70adb8d 100644
--- a/ArcWelderInverseProcessor/inverse_processor.cpp
+++ b/ArcWelderInverseProcessor/inverse_processor.cpp
@@ -200,7 +200,15 @@ void inverse_processor::process()
float radius = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
uint8_t isclockwise = cmd.command == "G2" ? 1 : 0;
output_relative_ = p_cur_pos->is_extruder_relative;
- mc_arc(position, target, offset, static_cast<float>(p_cur_pos->f), radius, isclockwise, 0);
+ switch (cs.interpolation_function)
+ {
+ case InterpolationFunction::INT_SEGMENTS:
+ mc_arc_int_segments(position, target, offset, static_cast<float>(p_cur_pos->f), radius, isclockwise, 0);
+ break;
+ case InterpolationFunction::FLOAT_SEGMENTS:
+ mc_arc_float_segments(position, target, offset, static_cast<float>(p_cur_pos->f), radius, isclockwise, 0);
+ }
+
}
else
{
@@ -237,59 +245,53 @@ void inverse_processor::process()
// The arc is approximated by generating a huge number of tiny, linear segments. The length of each
// segment is configured in settings.mm_per_arc_segment.
-void inverse_processor::mc_arc(float* position, float* target, float* offset, float feed_rate, float radius, uint8_t isclockwise, uint8_t extruder)
+void inverse_processor::mc_arc_int_segments(float* position, float* target, float* offset, float feed_rate, float radius, uint8_t isclockwise, uint8_t extruder)
{
float r_axis_x = -offset[X_AXIS]; // Radius vector from center to current location
float r_axis_y = -offset[Y_AXIS];
float center_axis_x = position[X_AXIS] - r_axis_x;
float center_axis_y = position[Y_AXIS] - r_axis_y;
float travel_z = target[Z_AXIS] - position[Z_AXIS];
- float extruder_travel_total = target[E_AXIS] - position[E_AXIS];
-
float rt_x = target[X_AXIS] - center_axis_x;
float rt_y = target[Y_AXIS] - center_axis_y;
// 20200419 - Add a variable that will be used to hold the arc segment length
float mm_per_arc_segment = cs.mm_per_arc_segment;
// 20210109 - Add a variable to hold the n_arc_correction value
- bool correction_enabled = cs.n_arc_correction > 1;
uint8_t n_arc_correction = cs.n_arc_correction;
// CCW angle between position and target from circle center. Only one atan2() trig computation required.
float angular_travel_total = atan2(r_axis_x * rt_y - r_axis_y * rt_x, r_axis_x * rt_x + r_axis_y * rt_y);
if (angular_travel_total < 0) { angular_travel_total += 2 * M_PI; }
- bool check_mm_per_arc_segment_max = false;
if (cs.min_arc_segments > 0)
{
// 20200417 - FormerLurker - Implement MIN_ARC_SEGMENTS if it is defined - from Marlin 2.0 implementation
// Do this before converting the angular travel for clockwise rotation
mm_per_arc_segment = radius * ((2.0f * M_PI) / cs.min_arc_segments);
- check_mm_per_arc_segment_max = true;
}
-
if (cs.arc_segments_per_sec > 0)
{
// 20200417 - FormerLurker - Implement MIN_ARC_SEGMENTS if it is defined - from Marlin 2.0 implementation
float mm_per_arc_segment_sec = (feed_rate / 60.0f) * (1.0f / cs.arc_segments_per_sec);
if (mm_per_arc_segment_sec < mm_per_arc_segment)
mm_per_arc_segment = mm_per_arc_segment_sec;
- check_mm_per_arc_segment_max = true;
}
- if (cs.min_mm_per_arc_segment > 0)
+ // Note: no need to check to see if min_mm_per_arc_segment is enabled or not (i.e. = 0), since mm_per_arc_segment can never be below 0.
+ if (mm_per_arc_segment < cs.min_mm_per_arc_segment)
{
- check_mm_per_arc_segment_max = true;
// 20200417 - FormerLurker - Implement MIN_MM_PER_ARC_SEGMENT if it is defined
// This prevents a very high number of segments from being generated for curves of a short radius
- if (mm_per_arc_segment < cs.min_mm_per_arc_segment) mm_per_arc_segment = cs.min_mm_per_arc_segment;
+ mm_per_arc_segment = cs.min_mm_per_arc_segment;
+ }
+ else if (mm_per_arc_segment > cs.mm_per_arc_segment) {
+ // 20210113 - This can be implemented in an else if since we can't be below the min AND above the max at the same time.
+ // 20200417 - FormerLurker - Implement MIN_MM_PER_ARC_SEGMENT if it is defined
+ mm_per_arc_segment = cs.mm_per_arc_segment;
}
-
- if (check_mm_per_arc_segment_max && mm_per_arc_segment > cs.mm_per_arc_segment) mm_per_arc_segment = cs.mm_per_arc_segment;
-
-
// Adjust the angular travel if the direction is clockwise
- if (isclockwise) { angular_travel_total -= 2 * M_PI; }
+ if (isclockwise) { angular_travel_total -= 2.0f * M_PI; }
//20141002:full circle for G03 did not work, e.g. G03 X80 Y80 I20 J0 F2000 is giving an Angle of zero so head is not moving
//to compensate when start pos = target pos && angle is zero -> angle = 2Pi
@@ -301,18 +303,13 @@ void inverse_processor::mc_arc(float* position, float* target, float* offset, fl
// 20200417 - FormerLurker - rename millimeters_of_travel to millimeters_of_travel_arc to better describe what we are
// calculating here
- float millimeters_of_travel_arc = hypot(angular_travel_total * radius, fabs(travel_z));
- if (millimeters_of_travel_arc < 0.001) { return; }
+ const float millimeters_of_travel_arc = hypot(angular_travel_total * radius, fabs(travel_z));
+ if (millimeters_of_travel_arc < 0.001f) { return; }
// Calculate the total travel per segment
- // Calculate the number of arc segments
+ // Calculate the number of arc segments as a float. This is important so that the extrusion
+ // and z travel is consistant throughout the arc. Otherwise we will see artifacts and gaps
uint16_t segments = static_cast<uint16_t>(ceil(millimeters_of_travel_arc / mm_per_arc_segment));
-
- // Calculate theta per segments and linear (z) travel per segment
- float theta_per_segment = angular_travel_total / segments;
- float linear_per_segment = travel_z / (segments);
- // Calculate the extrusion amount per segment
- float segment_extruder_travel = extruder_travel_total / (segments);
/* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
r_T = [cos(phi) -sin(phi);
@@ -334,44 +331,201 @@ void inverse_processor::mc_arc(float* position, float* target, float* offset, fl
Finding a faster way to approximate sin, knowing that there can be substantial deviations from the true
arc when using the previous approximation, would be beneficial.
*/
-
- // Don't bother calculating cot_T or sin_T if there is only 1 segment.
+ //std::cout << "Generating arc with " << segments << " segments. Extruding " << target[E_AXIS] - position[E_AXIS] << "mm.\n";
+ // There must be more than 1 segment, else this is just a linear move
+ float interpolatedExtrusion = 0;
+ float interpolatedTravel = 0;
+ float totalExtrusion = target[E_AXIS] - position[E_AXIS];
if (segments > 1)
{
- // Initialize the extruder axis
-
- float cos_T;
- float sin_T;
-
- if (correction_enabled > 1) {
- float sq_theta_per_segment = theta_per_segment * theta_per_segment;
- // Small angle approximation
+
+ // Calculate theta per segments and linear (z) travel per segment
+ const float theta_per_segment = angular_travel_total / segments,
+ linear_per_segment = travel_z / (segments),
+ segment_extruder_travel = (target[E_AXIS] - position[E_AXIS]) / (segments),
+ sq_theta_per_segment = theta_per_segment * theta_per_segment,
sin_T = theta_per_segment - sq_theta_per_segment * theta_per_segment / 6,
- cos_T = 1 - 0.5f * sq_theta_per_segment;
+ cos_T = 1 - 0.5f * sq_theta_per_segment;
+ // Calculate the number of interpolations we will do, but use the ceil
+ // function so that we can start our index with I=1. This is important
+ // so that the arc correction starts out with segment 1, and not 0, without
+ // doing extra calculations
+
+ for (uint16_t i = 1; i < segments; i++) { // Increment (segments-1)
+ if (n_arc_correction-- == 0) {
+ // Calculate the actual position for r_axis_x and r_axis_y
+ const float cos_Ti = cos((i) * theta_per_segment), sin_Ti = sin((i) * theta_per_segment);
+ r_axis_x = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
+ r_axis_y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
+ // reset n_arc_correction
+ n_arc_correction = cs.n_arc_correction;
+ }
+ else {
+ const float r_axisi = r_axis_x * sin_T + r_axis_y * cos_T;
+ r_axis_x = r_axis_x * cos_T - r_axis_y * sin_T;
+ r_axis_y = r_axisi;
+ }
+ interpolatedExtrusion += segment_extruder_travel;
+ interpolatedTravel += hypot(position[X_AXIS] - (center_axis_x + r_axis_x), position[Y_AXIS] - (center_axis_y + r_axis_y));
+ // Update arc_target location
+ position[X_AXIS] = center_axis_x + r_axis_x;
+ position[Y_AXIS] = center_axis_y + r_axis_y;
+ position[Z_AXIS] += linear_per_segment;
+ position[E_AXIS] += segment_extruder_travel;
+ // We can't clamp to the target because we are interpolating! We would need to update a position, clamp to it
+ // after updating from calculated values.
+ clamp_to_software_endstops(position);
+
+ plan_buffer_line(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS], feed_rate, extruder);
}
- else {
- cos_T = cos(theta_per_segment);
- sin_T = sin(theta_per_segment);
+ }
+ // Ensure last segment arrives at target location.
+ // Here we could clamp, but why bother. We would need to update our current position, clamp to it
+ clamp_to_software_endstops(target);
+ if (segments > 1)
+ {
+ float fil_per_mm_interpolated = interpolatedTravel == 0 ? 0 : interpolatedExtrusion / interpolatedTravel;
+ float mm_travel_final = hypot(target[X_AXIS] - position[X_AXIS], target[Y_AXIS] - position[Y_AXIS]);
+ float extrusion_final = target[E_AXIS] - position[E_AXIS];
+ float fil_per_mm_final = mm_travel_final == 0 ? 0 : extrusion_final / mm_travel_final;
+ float fil_per_mm_difference = fabs(fil_per_mm_interpolated - fil_per_mm_final);
+ //if (mm_travel_final > 0.001 && totalExtrusion - (interpolatedExtrusion + extrusion_final) > 0.00001f && max_extrusion_rate_difference < fil_per_mm_difference)
+ if (mm_travel_final > 0.001 && (totalExtrusion - interpolatedExtrusion) > 0.00001f && max_extrusion_rate_difference < fil_per_mm_difference)
+ {
+ max_extrusion_rate_difference = fil_per_mm_difference;
+ std::cout << "New Maximum extrusion rate difference detected:" << max_extrusion_rate_difference << "\n";
}
+ }
+
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, extruder);
+
+}
+
+
+// The arc is approximated by generating a huge number of tiny, linear segments. The length of each
+// segment is configured in settings.mm_per_arc_segment.
+void inverse_processor::mc_arc_float_segments(float* position, float* target, float* offset, float feed_rate, float radius, uint8_t isclockwise, uint8_t extruder)
+{
+ float r_axis_x = -offset[X_AXIS]; // Radius vector from center to current location
+ float r_axis_y = -offset[Y_AXIS];
+ float center_axis_x = position[X_AXIS] - r_axis_x;
+ float center_axis_y = position[Y_AXIS] - r_axis_y;
+ float travel_z = target[Z_AXIS] - position[Z_AXIS];
+ float rt_x = target[X_AXIS] - center_axis_x;
+ float rt_y = target[Y_AXIS] - center_axis_y;
+ // 20200419 - Add a variable that will be used to hold the arc segment length
+ float mm_per_arc_segment = cs.mm_per_arc_segment;
+ // 20210109 - Add a variable to hold the n_arc_correction value
+ uint8_t n_arc_correction = cs.n_arc_correction;
+
+ // CCW angle between position and target from circle center. Only one atan2() trig computation required.
+ float angular_travel_total = atan2(r_axis_x * rt_y - r_axis_y * rt_x, r_axis_x * rt_x + r_axis_y * rt_y);
+ if (angular_travel_total < 0) { angular_travel_total += 2 * M_PI; }
- float r_axisi;
- uint16_t i;
+ if (cs.min_arc_segments > 0)
+ {
+ // 20200417 - FormerLurker - Implement MIN_ARC_SEGMENTS if it is defined - from Marlin 2.0 implementation
+ // Do this before converting the angular travel for clockwise rotation
+ mm_per_arc_segment = radius * ((2.0f * M_PI) / cs.min_arc_segments);
+ }
+ if (cs.arc_segments_per_sec > 0)
+ {
+ // 20200417 - FormerLurker - Implement MIN_ARC_SEGMENTS if it is defined - from Marlin 2.0 implementation
+ float mm_per_arc_segment_sec = (feed_rate / 60.0f) * (1.0f / cs.arc_segments_per_sec);
+ if (mm_per_arc_segment_sec < mm_per_arc_segment)
+ mm_per_arc_segment = mm_per_arc_segment_sec;
+ }
- for (i = 1; i < segments; i++) { // Increment (segments-1)
- if (correction_enabled && --n_arc_correction == 0) {
+ // Note: no need to check to see if min_mm_per_arc_segment is enabled or not (i.e. = 0), since mm_per_arc_segment can never be below 0.
+ if (mm_per_arc_segment < cs.min_mm_per_arc_segment)
+ {
+ // 20200417 - FormerLurker - Implement MIN_MM_PER_ARC_SEGMENT if it is defined
+ // This prevents a very high number of segments from being generated for curves of a short radius
+ mm_per_arc_segment = cs.min_mm_per_arc_segment;
+ }
+ else if (mm_per_arc_segment > cs.mm_per_arc_segment) {
+ // 20210113 - This can be implemented in an else if since we can't be below the min AND above the max at the same time.
+ // 20200417 - FormerLurker - Implement MIN_MM_PER_ARC_SEGMENT if it is defined
+ mm_per_arc_segment = cs.mm_per_arc_segment;
+ }
+
+ // Adjust the angular travel if the direction is clockwise
+ if (isclockwise) { angular_travel_total -= 2 * M_PI; }
+
+ //20141002:full circle for G03 did not work, e.g. G03 X80 Y80 I20 J0 F2000 is giving an Angle of zero so head is not moving
+ //to compensate when start pos = target pos && angle is zero -> angle = 2Pi
+ if (position[X_AXIS] == target[X_AXIS] && position[Y_AXIS] == target[Y_AXIS] && angular_travel_total == 0)
+ {
+ angular_travel_total += 2 * M_PI;
+ }
+ //end fix G03
+
+ // 20200417 - FormerLurker - rename millimeters_of_travel to millimeters_of_travel_arc to better describe what we are
+ // calculating here
+ const float millimeters_of_travel_arc = hypot(angular_travel_total * radius, fabs(travel_z));
+ if (millimeters_of_travel_arc < 0.001) { return; }
+ // Calculate the total travel per segment
+ // Calculate the number of arc segments as a float. This is important so that the extrusion
+ // and z travel is consistant throughout the arc. Otherwise we will see artifacts and gaps
+ float segments = millimeters_of_travel_arc / mm_per_arc_segment;
+
+ /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
+ and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
+ r_T = [cos(phi) -sin(phi);
+ sin(phi) cos(phi] * r ;
+
+ For arc generation, the center of the circle is the axis of rotation and the radius vector is
+ defined from the circle center to the initial position. Each line segment is formed by successive
+ vector rotations. This requires only two cos() and sin() computations to form the rotation
+ matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
+ all double numbers are single precision on the Arduino. (True double precision will not have
+ round off issues for CNC applications.) Single precision error can accumulate to be greater than
+ tool precision in some cases. Therefore, arc path correction is implemented.
+
+ The small angle approximation was removed because of excessive errors for small circles (perhaps unique to
+ 3d printing applications, causing significant path deviation and extrusion issues).
+ Now there will be no corrections applied, but an accurate initial sin and cos will be calculated.
+ This seems to work with a very high degree of accuracy and results in much simpler code.
+
+ Finding a faster way to approximate sin, knowing that there can be substantial deviations from the true
+ arc when using the previous approximation, would be beneficial.
+ */
+ float interpolatedExtrusion = 0;
+ float interpolatedTravel = 0;
+ float totalExtrusion = target[E_AXIS] - position[E_AXIS];
+ // There must be more than 1 segment, else this is just a linear move
+ if (segments > 1)
+ {
+ // Calculate theta per segments and linear (z) travel per segment
+ const float theta_per_segment = angular_travel_total / segments,
+ linear_per_segment = travel_z / (segments),
+ segment_extruder_travel = (target[E_AXIS] - position[E_AXIS]) / (segments),
+ sq_theta_per_segment = theta_per_segment * theta_per_segment,
+ //sin_T = theta_per_segment - sq_theta_per_segment * theta_per_segment / 6,
+ //cos_T = 1 - 0.5f * sq_theta_per_segment;
+ sin_T = sin(theta_per_segment),
+ cos_T = cos(theta_per_segment);
+ // Calculate the number of interpolations we will do, but use the ceil
+ // function so that we can start our index with I=1. This is important
+ // so that the arc correction starts out with segment 1, and not 0, without
+ // doing extra calculations
+ uint16_t num_interpolations = static_cast<uint16_t>(ceil(segments));
+ for (uint16_t i = 1; i < num_interpolations; i++) { // Increment (segments-1)
+ /*if (n_arc_correction-- == 0) {
// Calculate the actual position for r_axis_x and r_axis_y
- const float cos_Ti = cos(i * theta_per_segment), sin_Ti = sin(i * theta_per_segment);
+ const float cos_Ti = cos((i)*theta_per_segment), sin_Ti = sin((i)*theta_per_segment);
r_axis_x = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
r_axis_y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
// reset n_arc_correction
n_arc_correction = cs.n_arc_correction;
}
- else {
- r_axisi = r_axis_x * sin_T + r_axis_y * cos_T;
+ else { */
+ const float r_axisi = r_axis_x * sin_T + r_axis_y * cos_T;
r_axis_x = r_axis_x * cos_T - r_axis_y * sin_T;
r_axis_y = r_axisi;
- }
-
+ //}
+ interpolatedExtrusion += segment_extruder_travel;
+ interpolatedTravel += hypot(position[X_AXIS] - (center_axis_x + r_axis_x), position[Y_AXIS] - (center_axis_y + r_axis_y));
// Update arc_target location
position[X_AXIS] = center_axis_x + r_axis_x;
position[Y_AXIS] = center_axis_y + r_axis_y;
@@ -386,7 +540,22 @@ void inverse_processor::mc_arc(float* position, float* target, float* offset, fl
// Ensure last segment arrives at target location.
// Here we could clamp, but why bother. We would need to update our current position, clamp to it
clamp_to_software_endstops(target);
+ if (segments > 1)
+ {
+ float fil_per_mm_interpolated = interpolatedTravel == 0 ? 0 : interpolatedExtrusion / interpolatedTravel;
+ float mm_travel_final = hypot(target[X_AXIS] - position[X_AXIS], target[Y_AXIS] - position[Y_AXIS]);
+ float extrusion_final = target[E_AXIS] - position[E_AXIS];
+ float fil_per_mm_final = mm_travel_final == 0 ? 0 : extrusion_final / mm_travel_final;
+ float fil_per_mm_difference = fabs(fil_per_mm_interpolated - fil_per_mm_final);
+ if (segments > 1 && mm_travel_final > 0.001 && totalExtrusion - (interpolatedExtrusion + extrusion_final) > 0.00001f && max_extrusion_rate_difference < fil_per_mm_difference)
+ {
+ max_extrusion_rate_difference = fil_per_mm_difference;
+ std::cout << "New Maximum extrusion rate difference detected:" << max_extrusion_rate_difference << "\n";
+ }
+ }
+
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, extruder);
+
}
void inverse_processor::clamp_to_software_endstops(float* target)
diff --git a/ArcWelderInverseProcessor/inverse_processor.h b/ArcWelderInverseProcessor/inverse_processor.h
index 9fe99a0..f880898 100644
--- a/ArcWelderInverseProcessor/inverse_processor.h
+++ b/ArcWelderInverseProcessor/inverse_processor.h
@@ -35,17 +35,22 @@
typedef unsigned char uint8_t;
typedef unsigned short uint16_t;
typedef signed char int8_t;
-#define M_PI 3.14159265358979323846 // pi
+#define M_PI 3.14159265358979323846f // pi
enum AxisEnum { X_AXIS = 0, Y_AXIS= 1, Z_AXIS = 2, E_AXIS = 3, X_HEAD = 4, Y_HEAD = 5 };
+enum InterpolationFunction {INT_SEGMENTS = 0, FLOAT_SEGMENTS = 1};
+static const int interpolation_function_names_size = 2;
+static const char* interpolation_function_names[] = { "INT_SEGMENTS", "FLOAT_SEGMENTS"};
+
// Arc interpretation settings:
#define DEFAULT_MM_PER_ARC_SEGMENT 1.0 // REQUIRED - The enforced maximum length of an arc segment
#define DEFAULT_MIN_MM_PER_ARC_SEGMENT 0 /* OPTIONAL - the enforced minimum length of an interpolated segment. Must be smaller than
MM_PER_ARC_SEGMENT. Only has an effect if MIN_ARC_SEGMENTS > 0 or ARC_SEGMENTS_PER_SEC > 0 */
// If both MIN_ARC_SEGMENTS and ARC_SEGMENTS_PER_SEC is defined, the minimum calculated segment length is used.
-#define DEFAULT_MIN_ARC_SEGMENTS 0 // OPTIONAL - The enforced minimum segments in a full circle of the same radius.
+#define DEFAULT_MIN_ARC_SEGMENTS 24 // OPTIONAL - The enforced minimum segments in a full circle of the same radius.
#define DEFAULT_ARC_SEGMENTS_PER_SEC 0 // OPTIONAL - Use feedrate to choose segment length.
// approximation will not be used for the first segment. Subsequent segments will be corrected following DEFAULT_N_ARC_CORRECTION.
-#define DEFAULT_N_ARC_CORRECTIONS 1
+#define DEFAULT_N_ARC_CORRECTIONS 25
+#define DEFAULT_INTERPOLATION_FUNCTION InterpolationFunction::INT_SEGMENTS
struct ConfigurationStore {
ConfigurationStore() {
@@ -54,12 +59,14 @@ struct ConfigurationStore {
min_arc_segments = DEFAULT_MIN_ARC_SEGMENTS;
arc_segments_per_sec = DEFAULT_ARC_SEGMENTS_PER_SEC;
n_arc_correction = DEFAULT_N_ARC_CORRECTIONS;
+ interpolation_function = DEFAULT_INTERPOLATION_FUNCTION;
}
float mm_per_arc_segment; // This value is ALWAYS used.
float min_mm_per_arc_segment; // if less than or equal to 0, this is disabled
int min_arc_segments; // If less than or equal to zero, this is disabled
double arc_segments_per_sec; // If less than or equal to zero, this is disabled
int n_arc_correction;
+ InterpolationFunction interpolation_function;
};
class inverse_processor {
@@ -67,7 +74,8 @@ public:
inverse_processor(std::string source_path, std::string target_path, bool g90_g91_influences_extruder, int buffer_size, ConfigurationStore cs = ConfigurationStore());
virtual ~inverse_processor();
void process();
- void mc_arc(float* position, float* target, float* offset, float feed_rate, float radius, uint8_t isclockwise, uint8_t extruder);
+ void mc_arc_float_segments(float* position, float* target, float* offset, float feed_rate, float radius, uint8_t isclockwise, uint8_t extruder);
+ void mc_arc_int_segments(float* position, float* target, float* offset, float feed_rate, float radius, uint8_t isclockwise, uint8_t extruder);
private:
ConfigurationStore cs;
@@ -82,6 +90,7 @@ private:
float total_e_adjustment;
int trig_calc_count = 0;
int lines_processed_ = 0;
+ float max_extrusion_rate_difference = 0;
void clamp_to_software_endstops(float* target);
void plan_buffer_line(float x, float y, float z, const float& e, float feed_rate, uint8_t extruder, const float* gcode_target=NULL);
diff --git a/ArcWelderLib.sln b/ArcWelderLib.sln
index e254539..23395a1 100644
--- a/ArcWelderLib.sln
+++ b/ArcWelderLib.sln
@@ -57,8 +57,8 @@ Global
{1A4DBAB1-BB42-4DB1-B168-F113784EFCEF}.Release|x64.Build.0 = Release|x64
{1A4DBAB1-BB42-4DB1-B168-F113784EFCEF}.Release|x86.ActiveCfg = Release|Win32
{1A4DBAB1-BB42-4DB1-B168-F113784EFCEF}.Release|x86.Build.0 = Release|Win32
- {1A4DBAB1-BB42-4DB1-B168-F113784EFCEF}.Remote_Pi|ARM.ActiveCfg = Remote_Pi|ARM
- {1A4DBAB1-BB42-4DB1-B168-F113784EFCEF}.Remote_Pi|ARM.Build.0 = Remote_Pi|ARM
+ {1A4DBAB1-BB42-4DB1-B168-F113784EFCEF}.Remote_Pi|ARM.ActiveCfg = Remote_Pi|Win32
+ {1A4DBAB1-BB42-4DB1-B168-F113784EFCEF}.Remote_Pi|ARM.Build.0 = Remote_Pi|Win32
{1A4DBAB1-BB42-4DB1-B168-F113784EFCEF}.Remote_Pi|x64.ActiveCfg = Remote_Pi|x64
{1A4DBAB1-BB42-4DB1-B168-F113784EFCEF}.Remote_Pi|x64.Build.0 = Remote_Pi|x64
{1A4DBAB1-BB42-4DB1-B168-F113784EFCEF}.Remote_Pi|x86.ActiveCfg = Remote_Pi|Win32
diff --git a/ArcWelderTest/ArcWelderTest.cpp b/ArcWelderTest/ArcWelderTest.cpp
index 054ed36..4ce65de 100644
--- a/ArcWelderTest/ArcWelderTest.cpp
+++ b/ArcWelderTest/ArcWelderTest.cpp
@@ -293,7 +293,7 @@ static void TestAntiStutter(std::string filePath)
//arc_welder arc_welder_obj(BENCHY_0_5_MM_NO_WIPE, "C:\\Users\\Brad\\Documents\\3DPrinter\\AntiStutter\\test_output.gcode", p_logger, max_resolution, false, 50, static_cast<progress_callback>(on_progress));
//arc_welder arc_welder_obj(SIX_SPEED_TEST, "C:\\Users\\Brad\\Documents\\3DPrinter\\AntiStutter\\test_output.gcode", p_logger, max_resolution, false, 50, on_progress);
arc_welder arc_welder_obj(
- SLOW_COUPLER,
+ SIX_SPEED_TEST,
"C:\\Users\\Brad\\Documents\\3DPrinter\\AntiStutter\\test_output.gcode",
p_logger,
max_resolution,
diff --git a/ArcWelderTest/ArcWelderTest.h b/ArcWelderTest/ArcWelderTest.h
index fd690d1..e250426 100644
--- a/ArcWelderTest/ArcWelderTest.h
+++ b/ArcWelderTest/ArcWelderTest.h
@@ -73,7 +73,7 @@ static std::string BENCHY_DIFFICULT = "C:\\Users\\Brad\\Documents\\3DPrinter\\An
static std::string BENCHY_L1_DIFFICULT = "C:\\Users\\Brad\\Documents\\3DPrinter\\AntiStutter\\BenchyArc_L1_Difficult.gcode";
-static std::string SIX_SPEED_TEST = "C:\\Users\\Brad\\Documents\\3DPrinter\\AntiStutter\\6_speed_test.gcode";
+static std::string SIX_SPEED_TEST = "C:\\Users\\Brad\\Documents\\3DPrinter\\AntiStutter\\SixSpeedTest_print.gcode";
// Issues
static std::string ISSUE_MIMUPREFERIDA = "C:\\Users\\Brad\\Documents\\AntiStutter\\Issues\\MIMUPREFERIDA\\TESTSTUTTER.gcode";
static std::string BARBARIAN = "C:\\Users\\Brad\\Documents\\AntiStutter\\Issues\\PricklyPear\\Barbarian.gcode";
@@ -109,3 +109,5 @@ static std::string UNICODE_TEST = "C:\\Users\\Brad\\Documents\\3DPrinter\\AntiSt
+
+
diff --git a/CMakeLists.txt b/CMakeLists.txt
index bc84053..4c4bce6 100644
--- a/CMakeLists.txt
+++ b/CMakeLists.txt
@@ -1,4 +1,4 @@
-cmake_minimum_required (VERSION "3.15")
+cmake_minimum_required (VERSION "3.13")
set(CMAKE_VERBOSE_MAKEFILE ON)
# You can tweak some common (for all subprojects) stuff here. For example:
diff --git a/GcodeProcessorLib/CMakeLists.txt b/GcodeProcessorLib/CMakeLists.txt
index 8e1ed3e..09b8044 100644
--- a/GcodeProcessorLib/CMakeLists.txt
+++ b/GcodeProcessorLib/CMakeLists.txt
@@ -1,4 +1,4 @@
-cmake_minimum_required (VERSION "3.15")
+cmake_minimum_required (VERSION "3.13")
project(GcodeProcessorLib C CXX)
diff --git a/PyArcWelder/CMakeLists.txt b/PyArcWelder/CMakeLists.txt
index c4462a6..f14b908 100644
--- a/PyArcWelder/CMakeLists.txt
+++ b/PyArcWelder/CMakeLists.txt
@@ -1,4 +1,4 @@
-cmake_minimum_required (VERSION "3.15")
+cmake_minimum_required (VERSION "3.13")
project(PyArcWelder C CXX)
diff --git a/TCLAP/CMakeLists.txt b/TCLAP/CMakeLists.txt
index eefe7d0..6b0b43f 100644
--- a/TCLAP/CMakeLists.txt
+++ b/TCLAP/CMakeLists.txt
@@ -1,4 +1,4 @@
-cmake_minimum_required (VERSION "3.15")
+cmake_minimum_required (VERSION "3.13")
project(TCLAP C CXX)