Welcome to mirror list, hosted at ThFree Co, Russian Federation.

toolhead.py « klippy - github.com/Klipper3d/klipper.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 2398d7ca1c5ccf0afb32e637a4d63a1f63ffdefa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
# Code for coordinating events on the printer toolhead
#
# Copyright (C) 2016-2021  Kevin O'Connor <kevin@koconnor.net>
#
# This file may be distributed under the terms of the GNU GPLv3 license.
import math, logging, importlib
import mcu, chelper, kinematics.extruder

# Common suffixes: _d is distance (in mm), _v is velocity (in
#   mm/second), _v2 is velocity squared (mm^2/s^2), _t is time (in
#   seconds), _r is ratio (scalar between 0.0 and 1.0)

# Class to track each move request
class Move:
    def __init__(self, toolhead, start_pos, end_pos, speed):
        self.toolhead = toolhead
        self.start_pos = tuple(start_pos)
        self.end_pos = tuple(end_pos)
        self.accel = toolhead.max_accel
        self.junction_deviation = toolhead.junction_deviation
        self.timing_callbacks = []
        velocity = min(speed, toolhead.max_velocity)
        self.is_kinematic_move = True
        self.axes_d = axes_d = [end_pos[i] - start_pos[i] for i in (0, 1, 2, 3)]
        self.move_d = move_d = math.sqrt(sum([d*d for d in axes_d[:3]]))
        if move_d < .000000001:
            # Extrude only move
            self.end_pos = (start_pos[0], start_pos[1], start_pos[2],
                            end_pos[3])
            axes_d[0] = axes_d[1] = axes_d[2] = 0.
            self.move_d = move_d = abs(axes_d[3])
            inv_move_d = 0.
            if move_d:
                inv_move_d = 1. / move_d
            self.accel = 99999999.9
            velocity = speed
            self.is_kinematic_move = False
        else:
            inv_move_d = 1. / move_d
        self.axes_r = [d * inv_move_d for d in axes_d]
        self.min_move_t = move_d / velocity
        # Junction speeds are tracked in velocity squared.  The
        # delta_v2 is the maximum amount of this squared-velocity that
        # can change in this move.
        self.max_start_v2 = 0.
        self.max_cruise_v2 = velocity**2
        self.delta_v2 = 2.0 * move_d * self.accel
        self.max_smoothed_v2 = 0.
        self.smooth_delta_v2 = 2.0 * move_d * toolhead.max_accel_to_decel
    def limit_speed(self, speed, accel):
        speed2 = speed**2
        if speed2 < self.max_cruise_v2:
            self.max_cruise_v2 = speed2
            self.min_move_t = self.move_d / speed
        self.accel = min(self.accel, accel)
        self.delta_v2 = 2.0 * self.move_d * self.accel
        self.smooth_delta_v2 = min(self.smooth_delta_v2, self.delta_v2)
    def move_error(self, msg="Move out of range"):
        ep = self.end_pos
        m = "%s: %.3f %.3f %.3f [%.3f]" % (msg, ep[0], ep[1], ep[2], ep[3])
        return self.toolhead.printer.command_error(m)
    def calc_junction(self, prev_move):
        if not self.is_kinematic_move or not prev_move.is_kinematic_move:
            return
        # Allow extruder to calculate its maximum junction
        extruder_v2 = self.toolhead.extruder.calc_junction(prev_move, self)
        # Find max velocity using "approximated centripetal velocity"
        axes_r = self.axes_r
        prev_axes_r = prev_move.axes_r
        junction_cos_theta = -(axes_r[0] * prev_axes_r[0]
                               + axes_r[1] * prev_axes_r[1]
                               + axes_r[2] * prev_axes_r[2])
        if junction_cos_theta > 0.999999:
            return
        junction_cos_theta = max(junction_cos_theta, -0.999999)
        sin_theta_d2 = math.sqrt(0.5*(1.0-junction_cos_theta))
        R_jd = sin_theta_d2 / (1. - sin_theta_d2)
        # Approximated circle must contact moves no further away than mid-move
        tan_theta_d2 = sin_theta_d2 / math.sqrt(0.5*(1.0+junction_cos_theta))
        move_centripetal_v2 = .5 * self.move_d * tan_theta_d2 * self.accel
        prev_move_centripetal_v2 = (.5 * prev_move.move_d * tan_theta_d2
                                    * prev_move.accel)
        # Apply limits
        self.max_start_v2 = min(
            R_jd * self.junction_deviation * self.accel,
            R_jd * prev_move.junction_deviation * prev_move.accel,
            move_centripetal_v2, prev_move_centripetal_v2,
            extruder_v2, self.max_cruise_v2, prev_move.max_cruise_v2,
            prev_move.max_start_v2 + prev_move.delta_v2)
        self.max_smoothed_v2 = min(
            self.max_start_v2
            , prev_move.max_smoothed_v2 + prev_move.smooth_delta_v2)
    def set_junction(self, start_v2, cruise_v2, end_v2):
        # Determine accel, cruise, and decel portions of the move distance
        half_inv_accel = .5 / self.accel
        accel_d = (cruise_v2 - start_v2) * half_inv_accel
        decel_d = (cruise_v2 - end_v2) * half_inv_accel
        cruise_d = self.move_d - accel_d - decel_d
        # Determine move velocities
        self.start_v = start_v = math.sqrt(start_v2)
        self.cruise_v = cruise_v = math.sqrt(cruise_v2)
        self.end_v = end_v = math.sqrt(end_v2)
        # Determine time spent in each portion of move (time is the
        # distance divided by average velocity)
        self.accel_t = accel_d / ((start_v + cruise_v) * 0.5)
        self.cruise_t = cruise_d / cruise_v
        self.decel_t = decel_d / ((end_v + cruise_v) * 0.5)

LOOKAHEAD_FLUSH_TIME = 0.250

# Class to track a list of pending move requests and to facilitate
# "look-ahead" across moves to reduce acceleration between moves.
class MoveQueue:
    def __init__(self, toolhead):
        self.toolhead = toolhead
        self.queue = []
        self.junction_flush = LOOKAHEAD_FLUSH_TIME
    def reset(self):
        del self.queue[:]
        self.junction_flush = LOOKAHEAD_FLUSH_TIME
    def set_flush_time(self, flush_time):
        self.junction_flush = flush_time
    def get_last(self):
        if self.queue:
            return self.queue[-1]
        return None
    def flush(self, lazy=False):
        self.junction_flush = LOOKAHEAD_FLUSH_TIME
        update_flush_count = lazy
        queue = self.queue
        flush_count = len(queue)
        # Traverse queue from last to first move and determine maximum
        # junction speed assuming the robot comes to a complete stop
        # after the last move.
        delayed = []
        next_end_v2 = next_smoothed_v2 = peak_cruise_v2 = 0.
        for i in range(flush_count-1, -1, -1):
            move = queue[i]
            reachable_start_v2 = next_end_v2 + move.delta_v2
            start_v2 = min(move.max_start_v2, reachable_start_v2)
            reachable_smoothed_v2 = next_smoothed_v2 + move.smooth_delta_v2
            smoothed_v2 = min(move.max_smoothed_v2, reachable_smoothed_v2)
            if smoothed_v2 < reachable_smoothed_v2:
                # It's possible for this move to accelerate
                if (smoothed_v2 + move.smooth_delta_v2 > next_smoothed_v2
                    or delayed):
                    # This move can decelerate or this is a full accel
                    # move after a full decel move
                    if update_flush_count and peak_cruise_v2:
                        flush_count = i
                        update_flush_count = False
                    peak_cruise_v2 = min(move.max_cruise_v2, (
                        smoothed_v2 + reachable_smoothed_v2) * .5)
                    if delayed:
                        # Propagate peak_cruise_v2 to any delayed moves
                        if not update_flush_count and i < flush_count:
                            mc_v2 = peak_cruise_v2
                            for m, ms_v2, me_v2 in reversed(delayed):
                                mc_v2 = min(mc_v2, ms_v2)
                                m.set_junction(min(ms_v2, mc_v2), mc_v2
                                               , min(me_v2, mc_v2))
                        del delayed[:]
                if not update_flush_count and i < flush_count:
                    cruise_v2 = min((start_v2 + reachable_start_v2) * .5
                                    , move.max_cruise_v2, peak_cruise_v2)
                    move.set_junction(min(start_v2, cruise_v2), cruise_v2
                                      , min(next_end_v2, cruise_v2))
            else:
                # Delay calculating this move until peak_cruise_v2 is known
                delayed.append((move, start_v2, next_end_v2))
            next_end_v2 = start_v2
            next_smoothed_v2 = smoothed_v2
        if update_flush_count or not flush_count:
            return
        # Generate step times for all moves ready to be flushed
        self.toolhead._process_moves(queue[:flush_count])
        # Remove processed moves from the queue
        del queue[:flush_count]
    def add_move(self, move):
        self.queue.append(move)
        if len(self.queue) == 1:
            return
        move.calc_junction(self.queue[-2])
        self.junction_flush -= move.min_move_t
        if self.junction_flush <= 0.:
            # Enough moves have been queued to reach the target flush time.
            self.flush(lazy=True)

MIN_KIN_TIME = 0.100
MOVE_BATCH_TIME = 0.500
SDS_CHECK_TIME = 0.001 # step+dir+step filter in stepcompress.c

DRIP_SEGMENT_TIME = 0.050
DRIP_TIME = 0.100
class DripModeEndSignal(Exception):
    pass

# Main code to track events (and their timing) on the printer toolhead
class ToolHead:
    def __init__(self, config):
        self.printer = config.get_printer()
        self.reactor = self.printer.get_reactor()
        self.all_mcus = [
            m for n, m in self.printer.lookup_objects(module='mcu')]
        self.mcu = self.all_mcus[0]
        self.can_pause = True
        if self.mcu.is_fileoutput():
            self.can_pause = False
        self.move_queue = MoveQueue(self)
        self.commanded_pos = [0., 0., 0., 0.]
        self.printer.register_event_handler("klippy:shutdown",
                                            self._handle_shutdown)
        # Velocity and acceleration control
        self.max_velocity = config.getfloat('max_velocity', above=0.)
        self.max_accel = config.getfloat('max_accel', above=0.)
        self.requested_accel_to_decel = config.getfloat(
            'max_accel_to_decel', self.max_accel * 0.5, above=0.)
        self.max_accel_to_decel = self.requested_accel_to_decel
        self.square_corner_velocity = config.getfloat(
            'square_corner_velocity', 5., minval=0.)
        self.junction_deviation = 0.
        self._calc_junction_deviation()
        # Print time tracking
        self.buffer_time_low = config.getfloat(
            'buffer_time_low', 1.000, above=0.)
        self.buffer_time_high = config.getfloat(
            'buffer_time_high', 2.000, above=self.buffer_time_low)
        self.buffer_time_start = config.getfloat(
            'buffer_time_start', 0.250, above=0.)
        self.move_flush_time = config.getfloat(
            'move_flush_time', 0.050, above=0.)
        self.print_time = 0.
        self.special_queuing_state = "Flushed"
        self.need_check_stall = -1.
        self.flush_timer = self.reactor.register_timer(self._flush_handler)
        self.move_queue.set_flush_time(self.buffer_time_high)
        self.idle_flush_print_time = 0.
        self.print_stall = 0
        self.drip_completion = None
        # Kinematic step generation scan window time tracking
        self.kin_flush_delay = SDS_CHECK_TIME
        self.kin_flush_times = []
        self.last_kin_flush_time = self.last_kin_move_time = 0.
        # Setup iterative solver
        ffi_main, ffi_lib = chelper.get_ffi()
        self.trapq = ffi_main.gc(ffi_lib.trapq_alloc(), ffi_lib.trapq_free)
        self.trapq_append = ffi_lib.trapq_append
        self.trapq_finalize_moves = ffi_lib.trapq_finalize_moves
        self.step_generators = []
        # Create kinematics class
        gcode = self.printer.lookup_object('gcode')
        self.Coord = gcode.Coord
        self.extruder = kinematics.extruder.DummyExtruder(self.printer)
        kin_name = config.get('kinematics')
        try:
            mod = importlib.import_module('kinematics.' + kin_name)
            self.kin = mod.load_kinematics(self, config)
        except config.error as e:
            raise
        except self.printer.lookup_object('pins').error as e:
            raise
        except:
            msg = "Error loading kinematics '%s'" % (kin_name,)
            logging.exception(msg)
            raise config.error(msg)
        # Register commands
        gcode.register_command('G4', self.cmd_G4)
        gcode.register_command('M400', self.cmd_M400)
        gcode.register_command('SET_VELOCITY_LIMIT',
                               self.cmd_SET_VELOCITY_LIMIT,
                               desc=self.cmd_SET_VELOCITY_LIMIT_help)
        gcode.register_command('M204', self.cmd_M204)
        # Load some default modules
        modules = ["gcode_move", "homing", "idle_timeout", "statistics",
                   "manual_probe", "tuning_tower"]
        for module_name in modules:
            self.printer.load_object(config, module_name)
    # Print time tracking
    def _update_move_time(self, next_print_time):
        batch_time = MOVE_BATCH_TIME
        kin_flush_delay = self.kin_flush_delay
        lkft = self.last_kin_flush_time
        while 1:
            self.print_time = min(self.print_time + batch_time, next_print_time)
            sg_flush_time = max(lkft, self.print_time - kin_flush_delay)
            for sg in self.step_generators:
                sg(sg_flush_time)
            free_time = max(lkft, sg_flush_time - kin_flush_delay)
            self.trapq_finalize_moves(self.trapq, free_time)
            self.extruder.update_move_time(free_time)
            mcu_flush_time = max(lkft, sg_flush_time - self.move_flush_time)
            for m in self.all_mcus:
                m.flush_moves(mcu_flush_time)
            if self.print_time >= next_print_time:
                break
    def _calc_print_time(self):
        curtime = self.reactor.monotonic()
        est_print_time = self.mcu.estimated_print_time(curtime)
        kin_time = max(est_print_time + MIN_KIN_TIME, self.last_kin_flush_time)
        kin_time += self.kin_flush_delay
        min_print_time = max(est_print_time + self.buffer_time_start, kin_time)
        if min_print_time > self.print_time:
            self.print_time = min_print_time
            self.printer.send_event("toolhead:sync_print_time",
                                    curtime, est_print_time, self.print_time)
    def _process_moves(self, moves):
        # Resync print_time if necessary
        if self.special_queuing_state:
            if self.special_queuing_state != "Drip":
                # Transition from "Flushed"/"Priming" state to main state
                self.special_queuing_state = ""
                self.need_check_stall = -1.
                self.reactor.update_timer(self.flush_timer, self.reactor.NOW)
            self._calc_print_time()
        # Queue moves into trapezoid motion queue (trapq)
        next_move_time = self.print_time
        for move in moves:
            if move.is_kinematic_move:
                self.trapq_append(
                    self.trapq, next_move_time,
                    move.accel_t, move.cruise_t, move.decel_t,
                    move.start_pos[0], move.start_pos[1], move.start_pos[2],
                    move.axes_r[0], move.axes_r[1], move.axes_r[2],
                    move.start_v, move.cruise_v, move.accel)
            if move.axes_d[3]:
                self.extruder.move(next_move_time, move)
            next_move_time = (next_move_time + move.accel_t
                              + move.cruise_t + move.decel_t)
            for cb in move.timing_callbacks:
                cb(next_move_time)
        # Generate steps for moves
        if self.special_queuing_state:
            self._update_drip_move_time(next_move_time)
        self._update_move_time(next_move_time)
        self.last_kin_move_time = next_move_time
    def flush_step_generation(self):
        # Transition from "Flushed"/"Priming"/main state to "Flushed" state
        self.move_queue.flush()
        self.special_queuing_state = "Flushed"
        self.need_check_stall = -1.
        self.reactor.update_timer(self.flush_timer, self.reactor.NEVER)
        self.move_queue.set_flush_time(self.buffer_time_high)
        self.idle_flush_print_time = 0.
        flush_time = self.last_kin_move_time + self.kin_flush_delay
        flush_time = max(flush_time, self.print_time - self.kin_flush_delay)
        self.last_kin_flush_time = max(self.last_kin_flush_time, flush_time)
        self._update_move_time(max(self.print_time, self.last_kin_flush_time))
    def _flush_lookahead(self):
        if self.special_queuing_state:
            return self.flush_step_generation()
        self.move_queue.flush()
    def get_last_move_time(self):
        self._flush_lookahead()
        if self.special_queuing_state:
            self._calc_print_time()
        return self.print_time
    def _check_stall(self):
        eventtime = self.reactor.monotonic()
        if self.special_queuing_state:
            if self.idle_flush_print_time:
                # Was in "Flushed" state and got there from idle input
                est_print_time = self.mcu.estimated_print_time(eventtime)
                if est_print_time < self.idle_flush_print_time:
                    self.print_stall += 1
                self.idle_flush_print_time = 0.
            # Transition from "Flushed"/"Priming" state to "Priming" state
            self.special_queuing_state = "Priming"
            self.need_check_stall = -1.
            self.reactor.update_timer(self.flush_timer, eventtime + 0.100)
        # Check if there are lots of queued moves and stall if so
        while 1:
            est_print_time = self.mcu.estimated_print_time(eventtime)
            buffer_time = self.print_time - est_print_time
            stall_time = buffer_time - self.buffer_time_high
            if stall_time <= 0.:
                break
            if not self.can_pause:
                self.need_check_stall = self.reactor.NEVER
                return
            eventtime = self.reactor.pause(eventtime + min(1., stall_time))
        if not self.special_queuing_state:
            # In main state - defer stall checking until needed
            self.need_check_stall = (est_print_time + self.buffer_time_high
                                     + 0.100)
    def _flush_handler(self, eventtime):
        try:
            print_time = self.print_time
            buffer_time = print_time - self.mcu.estimated_print_time(eventtime)
            if buffer_time > self.buffer_time_low:
                # Running normally - reschedule check
                return eventtime + buffer_time - self.buffer_time_low
            # Under ran low buffer mark - flush lookahead queue
            self.flush_step_generation()
            if print_time != self.print_time:
                self.idle_flush_print_time = self.print_time
        except:
            logging.exception("Exception in flush_handler")
            self.printer.invoke_shutdown("Exception in flush_handler")
        return self.reactor.NEVER
    # Movement commands
    def get_position(self):
        return list(self.commanded_pos)
    def set_position(self, newpos, homing_axes=()):
        self.flush_step_generation()
        ffi_main, ffi_lib = chelper.get_ffi()
        ffi_lib.trapq_set_position(self.trapq, self.print_time,
                                   newpos[0], newpos[1], newpos[2])
        self.commanded_pos[:] = newpos
        self.kin.set_position(newpos, homing_axes)
        self.printer.send_event("toolhead:set_position")
    def move(self, newpos, speed):
        move = Move(self, self.commanded_pos, newpos, speed)
        if not move.move_d:
            return
        if move.is_kinematic_move:
            self.kin.check_move(move)
        if move.axes_d[3]:
            self.extruder.check_move(move)
        self.commanded_pos[:] = move.end_pos
        self.move_queue.add_move(move)
        if self.print_time > self.need_check_stall:
            self._check_stall()
    def manual_move(self, coord, speed):
        curpos = list(self.commanded_pos)
        for i in range(len(coord)):
            if coord[i] is not None:
                curpos[i] = coord[i]
        self.move(curpos, speed)
        self.printer.send_event("toolhead:manual_move")
    def dwell(self, delay):
        next_print_time = self.get_last_move_time() + max(0., delay)
        self._update_move_time(next_print_time)
        self._check_stall()
    def wait_moves(self):
        self._flush_lookahead()
        eventtime = self.reactor.monotonic()
        while (not self.special_queuing_state
               or self.print_time >= self.mcu.estimated_print_time(eventtime)):
            if not self.can_pause:
                break
            eventtime = self.reactor.pause(eventtime + 0.100)
    def set_extruder(self, extruder, extrude_pos):
        self.extruder = extruder
        self.commanded_pos[3] = extrude_pos
    def get_extruder(self):
        return self.extruder
    # Homing "drip move" handling
    def _update_drip_move_time(self, next_print_time):
        flush_delay = DRIP_TIME + self.move_flush_time + self.kin_flush_delay
        while self.print_time < next_print_time:
            if self.drip_completion.test():
                raise DripModeEndSignal()
            curtime = self.reactor.monotonic()
            est_print_time = self.mcu.estimated_print_time(curtime)
            wait_time = self.print_time - est_print_time - flush_delay
            if wait_time > 0. and self.can_pause:
                # Pause before sending more steps
                self.drip_completion.wait(curtime + wait_time)
                continue
            npt = min(self.print_time + DRIP_SEGMENT_TIME, next_print_time)
            self._update_move_time(npt)
    def drip_move(self, newpos, speed, drip_completion):
        self.dwell(self.kin_flush_delay)
        # Transition from "Flushed"/"Priming"/main state to "Drip" state
        self.move_queue.flush()
        self.special_queuing_state = "Drip"
        self.need_check_stall = self.reactor.NEVER
        self.reactor.update_timer(self.flush_timer, self.reactor.NEVER)
        self.move_queue.set_flush_time(self.buffer_time_high)
        self.idle_flush_print_time = 0.
        self.drip_completion = drip_completion
        # Submit move
        try:
            self.move(newpos, speed)
        except self.printer.command_error as e:
            self.flush_step_generation()
            raise
        # Transmit move in "drip" mode
        try:
            self.move_queue.flush()
        except DripModeEndSignal as e:
            self.move_queue.reset()
            self.trapq_finalize_moves(self.trapq, self.reactor.NEVER)
        # Exit "Drip" state
        self.flush_step_generation()
    # Misc commands
    def stats(self, eventtime):
        for m in self.all_mcus:
            m.check_active(self.print_time, eventtime)
        buffer_time = self.print_time - self.mcu.estimated_print_time(eventtime)
        is_active = buffer_time > -60. or not self.special_queuing_state
        if self.special_queuing_state == "Drip":
            buffer_time = 0.
        return is_active, "print_time=%.3f buffer_time=%.3f print_stall=%d" % (
            self.print_time, max(buffer_time, 0.), self.print_stall)
    def check_busy(self, eventtime):
        est_print_time = self.mcu.estimated_print_time(eventtime)
        lookahead_empty = not self.move_queue.queue
        return self.print_time, est_print_time, lookahead_empty
    def get_status(self, eventtime):
        print_time = self.print_time
        estimated_print_time = self.mcu.estimated_print_time(eventtime)
        res = dict(self.kin.get_status(eventtime))
        res.update({ 'print_time': print_time,
                     'stalls': self.print_stall,
                     'estimated_print_time': estimated_print_time,
                     'extruder': self.extruder.get_name(),
                     'position': self.Coord(*self.commanded_pos),
                     'max_velocity': self.max_velocity,
                     'max_accel': self.max_accel,
                     'max_accel_to_decel': self.requested_accel_to_decel,
                     'square_corner_velocity': self.square_corner_velocity})
        return res
    def _handle_shutdown(self):
        self.can_pause = False
        self.move_queue.reset()
    def get_kinematics(self):
        return self.kin
    def get_trapq(self):
        return self.trapq
    def register_step_generator(self, handler):
        self.step_generators.append(handler)
    def note_step_generation_scan_time(self, delay, old_delay=0.):
        self.flush_step_generation()
        cur_delay = self.kin_flush_delay
        if old_delay:
            self.kin_flush_times.pop(self.kin_flush_times.index(old_delay))
        if delay:
            self.kin_flush_times.append(delay)
        new_delay = max(self.kin_flush_times + [SDS_CHECK_TIME])
        self.kin_flush_delay = new_delay
    def register_lookahead_callback(self, callback):
        last_move = self.move_queue.get_last()
        if last_move is None:
            callback(self.get_last_move_time())
            return
        last_move.timing_callbacks.append(callback)
    def note_kinematic_activity(self, kin_time):
        self.last_kin_move_time = max(self.last_kin_move_time, kin_time)
    def get_max_velocity(self):
        return self.max_velocity, self.max_accel
    def _calc_junction_deviation(self):
        scv2 = self.square_corner_velocity**2
        self.junction_deviation = scv2 * (math.sqrt(2.) - 1.) / self.max_accel
        self.max_accel_to_decel = min(self.requested_accel_to_decel,
                                      self.max_accel)
    def cmd_G4(self, gcmd):
        # Dwell
        delay = gcmd.get_float('P', 0., minval=0.) / 1000.
        self.dwell(delay)
    def cmd_M400(self, gcmd):
        # Wait for current moves to finish
        self.wait_moves()
    cmd_SET_VELOCITY_LIMIT_help = "Set printer velocity limits"
    def cmd_SET_VELOCITY_LIMIT(self, gcmd):
        max_velocity = gcmd.get_float('VELOCITY', None, above=0.)
        max_accel = gcmd.get_float('ACCEL', None, above=0.)
        square_corner_velocity = gcmd.get_float(
            'SQUARE_CORNER_VELOCITY', None, minval=0.)
        requested_accel_to_decel = gcmd.get_float(
            'ACCEL_TO_DECEL', None, above=0.)
        if max_velocity is not None:
            self.max_velocity = max_velocity
        if max_accel is not None:
            self.max_accel = max_accel
        if square_corner_velocity is not None:
            self.square_corner_velocity = square_corner_velocity
        if requested_accel_to_decel is not None:
            self.requested_accel_to_decel = requested_accel_to_decel
        self._calc_junction_deviation()
        msg = ("max_velocity: %.6f\n"
               "max_accel: %.6f\n"
               "max_accel_to_decel: %.6f\n"
               "square_corner_velocity: %.6f" % (
                   self.max_velocity, self.max_accel,
                   self.requested_accel_to_decel,
                   self.square_corner_velocity))
        self.printer.set_rollover_info("toolhead", "toolhead: %s" % (msg,))
        if (max_velocity is None and
            max_accel is None and
            square_corner_velocity is None and
            requested_accel_to_decel is None):
            gcmd.respond_info(msg, log=False)
    def cmd_M204(self, gcmd):
        # Use S for accel
        accel = gcmd.get_float('S', None, above=0.)
        if accel is None:
            # Use minimum of P and T for accel
            p = gcmd.get_float('P', None, above=0.)
            t = gcmd.get_float('T', None, above=0.)
            if p is None or t is None:
                gcmd.respond_info('Invalid M204 command "%s"'
                                  % (gcmd.get_commandline(),))
                return
            accel = min(p, t)
        self.max_accel = accel
        self._calc_junction_deviation()

def add_printer_objects(config):
    config.get_printer().add_object('toolhead', ToolHead(config))
    kinematics.extruder.add_printer_objects(config)