Welcome to mirror list, hosted at ThFree Co, Russian Federation.

BinaryEmitter.cpp « Core « lib « bolt - github.com/llvm/llvm-project.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: c81dcc31f33ba073cd703f81b11a182f5f81539b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
//===- bolt/Core/BinaryEmitter.cpp - Emit code and data -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the collection of functions and classes used for
// emission of code and data into object/binary file.
//
//===----------------------------------------------------------------------===//

#include "bolt/Core/BinaryEmitter.h"
#include "bolt/Core/BinaryContext.h"
#include "bolt/Core/BinaryFunction.h"
#include "bolt/Core/DebugData.h"
#include "bolt/Core/FunctionLayout.h"
#include "bolt/Utils/CommandLineOpts.h"
#include "bolt/Utils/Utils.h"
#include "llvm/DebugInfo/DWARF/DWARFCompileUnit.h"
#include "llvm/MC/MCSection.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/LEB128.h"
#include "llvm/Support/SMLoc.h"

#define DEBUG_TYPE "bolt"

using namespace llvm;
using namespace bolt;

namespace opts {

extern cl::opt<JumpTableSupportLevel> JumpTables;
extern cl::opt<bool> PreserveBlocksAlignment;

cl::opt<bool> AlignBlocks("align-blocks", cl::desc("align basic blocks"),
                          cl::cat(BoltOptCategory));

cl::opt<MacroFusionType>
AlignMacroOpFusion("align-macro-fusion",
  cl::desc("fix instruction alignment for macro-fusion (x86 relocation mode)"),
  cl::init(MFT_HOT),
  cl::values(clEnumValN(MFT_NONE, "none",
               "do not insert alignment no-ops for macro-fusion"),
             clEnumValN(MFT_HOT, "hot",
               "only insert alignment no-ops on hot execution paths (default)"),
             clEnumValN(MFT_ALL, "all",
               "always align instructions to allow macro-fusion")),
  cl::ZeroOrMore,
  cl::cat(BoltRelocCategory));

static cl::list<std::string>
BreakFunctionNames("break-funcs",
  cl::CommaSeparated,
  cl::desc("list of functions to core dump on (debugging)"),
  cl::value_desc("func1,func2,func3,..."),
  cl::Hidden,
  cl::cat(BoltCategory));

static cl::list<std::string>
FunctionPadSpec("pad-funcs",
  cl::CommaSeparated,
  cl::desc("list of functions to pad with amount of bytes"),
  cl::value_desc("func1:pad1,func2:pad2,func3:pad3,..."),
  cl::Hidden,
  cl::cat(BoltCategory));

static cl::opt<bool> MarkFuncs(
    "mark-funcs",
    cl::desc("mark function boundaries with break instruction to make "
             "sure we accidentally don't cross them"),
    cl::ReallyHidden, cl::cat(BoltCategory));

static cl::opt<bool> PrintJumpTables("print-jump-tables",
                                     cl::desc("print jump tables"), cl::Hidden,
                                     cl::cat(BoltCategory));

static cl::opt<bool>
X86AlignBranchBoundaryHotOnly("x86-align-branch-boundary-hot-only",
  cl::desc("only apply branch boundary alignment in hot code"),
  cl::init(true),
  cl::cat(BoltOptCategory));

size_t padFunction(const BinaryFunction &Function) {
  static std::map<std::string, size_t> FunctionPadding;

  if (FunctionPadding.empty() && !FunctionPadSpec.empty()) {
    for (std::string &Spec : FunctionPadSpec) {
      size_t N = Spec.find(':');
      if (N == std::string::npos)
        continue;
      std::string Name = Spec.substr(0, N);
      size_t Padding = std::stoull(Spec.substr(N + 1));
      FunctionPadding[Name] = Padding;
    }
  }

  for (auto &FPI : FunctionPadding) {
    std::string Name = FPI.first;
    size_t Padding = FPI.second;
    if (Function.hasNameRegex(Name))
      return Padding;
  }

  return 0;
}

} // namespace opts

namespace {
using JumpTable = bolt::JumpTable;

class BinaryEmitter {
private:
  BinaryEmitter(const BinaryEmitter &) = delete;
  BinaryEmitter &operator=(const BinaryEmitter &) = delete;

  MCStreamer &Streamer;
  BinaryContext &BC;

public:
  BinaryEmitter(MCStreamer &Streamer, BinaryContext &BC)
      : Streamer(Streamer), BC(BC) {}

  /// Emit all code and data.
  void emitAll(StringRef OrgSecPrefix);

  /// Emit function code. The caller is responsible for emitting function
  /// symbol(s) and setting the section to emit the code to.
  void emitFunctionBody(BinaryFunction &BF, FunctionFragment &FF,
                        bool EmitCodeOnly = false);

private:
  /// Emit function code.
  void emitFunctions();

  /// Emit a single function.
  bool emitFunction(BinaryFunction &BF, FunctionFragment &FF);

  /// Helper for emitFunctionBody to write data inside a function
  /// (used for AArch64)
  void emitConstantIslands(BinaryFunction &BF, bool EmitColdPart,
                           BinaryFunction *OnBehalfOf = nullptr);

  /// Emit jump tables for the function.
  void emitJumpTables(const BinaryFunction &BF);

  /// Emit jump table data. Callee supplies sections for the data.
  void emitJumpTable(const JumpTable &JT, MCSection *HotSection,
                     MCSection *ColdSection);

  void emitCFIInstruction(const MCCFIInstruction &Inst) const;

  /// Emit exception handling ranges for the function.
  void emitLSDA(BinaryFunction &BF, const FunctionFragment &FF);

  /// Emit line number information corresponding to \p NewLoc. \p PrevLoc
  /// provides a context for de-duplication of line number info.
  /// \p FirstInstr indicates if \p NewLoc represents the first instruction
  /// in a sequence, such as a function fragment.
  ///
  /// Return new current location which is either \p NewLoc or \p PrevLoc.
  SMLoc emitLineInfo(const BinaryFunction &BF, SMLoc NewLoc, SMLoc PrevLoc,
                     bool FirstInstr);

  /// Use \p FunctionEndSymbol to mark the end of the line info sequence.
  /// Note that it does not automatically result in the insertion of the EOS
  /// marker in the line table program, but provides one to the DWARF generator
  /// when it needs it.
  void emitLineInfoEnd(const BinaryFunction &BF, MCSymbol *FunctionEndSymbol);

  /// Emit debug line info for unprocessed functions from CUs that include
  /// emitted functions.
  void emitDebugLineInfoForOriginalFunctions();

  /// Emit debug line for CUs that were not modified.
  void emitDebugLineInfoForUnprocessedCUs();

  /// Emit data sections that have code references in them.
  void emitDataSections(StringRef OrgSecPrefix);
};

} // anonymous namespace

void BinaryEmitter::emitAll(StringRef OrgSecPrefix) {
  Streamer.initSections(false, *BC.STI);

  if (opts::UpdateDebugSections && BC.isELF()) {
    // Force the emission of debug line info into allocatable section to ensure
    // RuntimeDyld will process it without ProcessAllSections flag.
    //
    // NB: on MachO all sections are required for execution, hence no need
    //     to change flags/attributes.
    MCSectionELF *ELFDwarfLineSection =
        static_cast<MCSectionELF *>(BC.MOFI->getDwarfLineSection());
    ELFDwarfLineSection->setFlags(ELF::SHF_ALLOC);
  }

  if (RuntimeLibrary *RtLibrary = BC.getRuntimeLibrary())
    RtLibrary->emitBinary(BC, Streamer);

  BC.getTextSection()->setAlignment(Align(opts::AlignText));

  emitFunctions();

  if (opts::UpdateDebugSections) {
    emitDebugLineInfoForOriginalFunctions();
    DwarfLineTable::emit(BC, Streamer);
  }

  emitDataSections(OrgSecPrefix);
}

void BinaryEmitter::emitFunctions() {
  auto emit = [&](const std::vector<BinaryFunction *> &Functions) {
    const bool HasProfile = BC.NumProfiledFuncs > 0;
    const bool OriginalAllowAutoPadding = Streamer.getAllowAutoPadding();
    for (BinaryFunction *Function : Functions) {
      if (!BC.shouldEmit(*Function))
        continue;

      LLVM_DEBUG(dbgs() << "BOLT: generating code for function \"" << *Function
                        << "\" : " << Function->getFunctionNumber() << '\n');

      // Was any part of the function emitted.
      bool Emitted = false;

      // Turn off Intel JCC Erratum mitigation for cold code if requested
      if (HasProfile && opts::X86AlignBranchBoundaryHotOnly &&
          !Function->hasValidProfile())
        Streamer.setAllowAutoPadding(false);

      FunctionLayout &Layout = Function->getLayout();
      Emitted |= emitFunction(*Function, Layout.getMainFragment());

      if (Function->isSplit()) {
        if (opts::X86AlignBranchBoundaryHotOnly)
          Streamer.setAllowAutoPadding(false);

        assert((Layout.fragment_size() == 1 || Function->isSimple()) &&
               "Only simple functions can have fragments");
        for (FunctionFragment &FF : Layout.getSplitFragments()) {
          // Skip empty fragments so no symbols and sections for empty fragments
          // are generated
          if (FF.empty() && !Function->hasConstantIsland())
            continue;
          Emitted |= emitFunction(*Function, FF);
        }
      }

      Streamer.setAllowAutoPadding(OriginalAllowAutoPadding);

      if (Emitted)
        Function->setEmitted(/*KeepCFG=*/opts::PrintCacheMetrics);
    }
  };

  // Mark the start of hot text.
  if (opts::HotText) {
    Streamer.switchSection(BC.getTextSection());
    Streamer.emitLabel(BC.getHotTextStartSymbol());
  }

  // Emit functions in sorted order.
  std::vector<BinaryFunction *> SortedFunctions = BC.getSortedFunctions();
  emit(SortedFunctions);

  // Emit functions added by BOLT.
  emit(BC.getInjectedBinaryFunctions());

  // Mark the end of hot text.
  if (opts::HotText) {
    Streamer.switchSection(BC.getTextSection());
    Streamer.emitLabel(BC.getHotTextEndSymbol());
  }
}

bool BinaryEmitter::emitFunction(BinaryFunction &Function,
                                 FunctionFragment &FF) {
  if (Function.size() == 0 && !Function.hasIslandsInfo())
    return false;

  if (Function.getState() == BinaryFunction::State::Empty)
    return false;

  // Avoid emitting function without instructions when overwriting the original
  // function in-place. Otherwise, emit the empty function to define the symbol.
  if (!BC.HasRelocations && !Function.hasNonPseudoInstructions())
    return false;

  MCSection *Section =
      BC.getCodeSection(Function.getCodeSectionName(FF.getFragmentNum()));
  Streamer.switchSection(Section);
  Section->setHasInstructions(true);
  BC.Ctx->addGenDwarfSection(Section);

  if (BC.HasRelocations) {
    // Set section alignment to at least maximum possible object alignment.
    // We need this to support LongJmp and other passes that calculates
    // tentative layout.
    if (Section->getAlignment() < opts::AlignFunctions)
      Section->setAlignment(Align(opts::AlignFunctions));

    Streamer.emitCodeAlignment(BinaryFunction::MinAlign, &*BC.STI);
    uint16_t MaxAlignBytes = FF.isSplitFragment()
                                 ? Function.getMaxColdAlignmentBytes()
                                 : Function.getMaxAlignmentBytes();
    if (MaxAlignBytes > 0)
      Streamer.emitCodeAlignment(Function.getAlignment(), &*BC.STI,
                                 MaxAlignBytes);
  } else {
    Streamer.emitCodeAlignment(Function.getAlignment(), &*BC.STI);
  }

  MCContext &Context = Streamer.getContext();
  const MCAsmInfo *MAI = Context.getAsmInfo();

  MCSymbol *const StartSymbol = Function.getSymbol(FF.getFragmentNum());

  // Emit all symbols associated with the main function entry.
  if (FF.isMainFragment()) {
    for (MCSymbol *Symbol : Function.getSymbols()) {
      Streamer.emitSymbolAttribute(Symbol, MCSA_ELF_TypeFunction);
      Streamer.emitLabel(Symbol);
    }
  } else {
    Streamer.emitSymbolAttribute(StartSymbol, MCSA_ELF_TypeFunction);
    Streamer.emitLabel(StartSymbol);
  }

  // Emit CFI start
  if (Function.hasCFI()) {
    Streamer.emitCFIStartProc(/*IsSimple=*/false);
    if (Function.getPersonalityFunction() != nullptr)
      Streamer.emitCFIPersonality(Function.getPersonalityFunction(),
                                  Function.getPersonalityEncoding());
    MCSymbol *LSDASymbol = Function.getLSDASymbol(FF.getFragmentNum());
    if (LSDASymbol)
      Streamer.emitCFILsda(LSDASymbol, BC.LSDAEncoding);
    else
      Streamer.emitCFILsda(0, dwarf::DW_EH_PE_omit);
    // Emit CFI instructions relative to the CIE
    for (const MCCFIInstruction &CFIInstr : Function.cie()) {
      // Only write CIE CFI insns that LLVM will not already emit
      const std::vector<MCCFIInstruction> &FrameInstrs =
          MAI->getInitialFrameState();
      if (!llvm::is_contained(FrameInstrs, CFIInstr))
        emitCFIInstruction(CFIInstr);
    }
  }

  assert((Function.empty() || !(*Function.begin()).isCold()) &&
         "first basic block should never be cold");

  // Emit UD2 at the beginning if requested by user.
  if (!opts::BreakFunctionNames.empty()) {
    for (std::string &Name : opts::BreakFunctionNames) {
      if (Function.hasNameRegex(Name)) {
        Streamer.emitIntValue(0x0B0F, 2); // UD2: 0F 0B
        break;
      }
    }
  }

  // Emit code.
  emitFunctionBody(Function, FF, /*EmitCodeOnly=*/false);

  // Emit padding if requested.
  if (size_t Padding = opts::padFunction(Function)) {
    LLVM_DEBUG(dbgs() << "BOLT-DEBUG: padding function " << Function << " with "
                      << Padding << " bytes\n");
    Streamer.emitFill(Padding, MAI->getTextAlignFillValue());
  }

  if (opts::MarkFuncs)
    Streamer.emitIntValue(BC.MIB->getTrapFillValue(), 1);

  // Emit CFI end
  if (Function.hasCFI())
    Streamer.emitCFIEndProc();

  MCSymbol *EndSymbol = Function.getFunctionEndLabel(FF.getFragmentNum());
  Streamer.emitLabel(EndSymbol);

  if (MAI->hasDotTypeDotSizeDirective()) {
    const MCExpr *SizeExpr = MCBinaryExpr::createSub(
        MCSymbolRefExpr::create(EndSymbol, Context),
        MCSymbolRefExpr::create(StartSymbol, Context), Context);
    Streamer.emitELFSize(StartSymbol, SizeExpr);
  }

  if (opts::UpdateDebugSections && Function.getDWARFUnit())
    emitLineInfoEnd(Function, EndSymbol);

  // Exception handling info for the function.
  emitLSDA(Function, FF);

  if (FF.isMainFragment() && opts::JumpTables > JTS_NONE)
    emitJumpTables(Function);

  return true;
}

void BinaryEmitter::emitFunctionBody(BinaryFunction &BF, FunctionFragment &FF,
                                     bool EmitCodeOnly) {
  if (!EmitCodeOnly && FF.isSplitFragment() && BF.hasConstantIsland()) {
    assert(BF.getLayout().isHotColdSplit() &&
           "Constant island support only with hot/cold split");
    BF.duplicateConstantIslands();
  }

  if (!FF.empty() && FF.front()->isLandingPad()) {
    assert(!FF.front()->isEntryPoint() &&
           "Landing pad cannot be entry point of function");
    // If the first block of the fragment is a landing pad, it's offset from the
    // start of the area that the corresponding LSDA describes is zero. In this
    // case, the call site entries in that LSDA have 0 as offset to the landing
    // pad, which the runtime interprets as "no handler". To prevent this,
    // insert some padding.
    Streamer.emitIntValue(BC.MIB->getTrapFillValue(), 1);
  }

  // Track the first emitted instruction with debug info.
  bool FirstInstr = true;
  for (BinaryBasicBlock *const BB : FF) {
    if ((opts::AlignBlocks || opts::PreserveBlocksAlignment) &&
        BB->getAlignment() > 1)
      Streamer.emitCodeAlignment(BB->getAlignment(), &*BC.STI,
                                 BB->getAlignmentMaxBytes());
    Streamer.emitLabel(BB->getLabel());
    if (!EmitCodeOnly) {
      if (MCSymbol *EntrySymbol = BF.getSecondaryEntryPointSymbol(*BB))
        Streamer.emitLabel(EntrySymbol);
    }

    // Check if special alignment for macro-fusion is needed.
    bool MayNeedMacroFusionAlignment =
        (opts::AlignMacroOpFusion == MFT_ALL) ||
        (opts::AlignMacroOpFusion == MFT_HOT && BB->getKnownExecutionCount());
    BinaryBasicBlock::const_iterator MacroFusionPair;
    if (MayNeedMacroFusionAlignment) {
      MacroFusionPair = BB->getMacroOpFusionPair();
      if (MacroFusionPair == BB->end())
        MayNeedMacroFusionAlignment = false;
    }

    SMLoc LastLocSeen;
    // Remember if the last instruction emitted was a prefix.
    bool LastIsPrefix = false;
    for (auto I = BB->begin(), E = BB->end(); I != E; ++I) {
      MCInst &Instr = *I;

      if (EmitCodeOnly && BC.MIB->isPseudo(Instr))
        continue;

      // Handle pseudo instructions.
      if (BC.MIB->isEHLabel(Instr)) {
        const MCSymbol *Label = BC.MIB->getTargetSymbol(Instr);
        assert(Instr.getNumOperands() >= 1 && Label &&
               "bad EH_LABEL instruction");
        Streamer.emitLabel(const_cast<MCSymbol *>(Label));
        continue;
      }
      if (BC.MIB->isCFI(Instr)) {
        emitCFIInstruction(*BF.getCFIFor(Instr));
        continue;
      }

      // Handle macro-fusion alignment. If we emitted a prefix as
      // the last instruction, we should've already emitted the associated
      // alignment hint, so don't emit it twice.
      if (MayNeedMacroFusionAlignment && !LastIsPrefix &&
          I == MacroFusionPair) {
        // This assumes the second instruction in the macro-op pair will get
        // assigned to its own MCRelaxableFragment. Since all JCC instructions
        // are relaxable, we should be safe.
      }

      if (!EmitCodeOnly && opts::UpdateDebugSections && BF.getDWARFUnit()) {
        LastLocSeen = emitLineInfo(BF, Instr.getLoc(), LastLocSeen, FirstInstr);
        FirstInstr = false;
      }

      // Prepare to tag this location with a label if we need to keep track of
      // the location of calls/returns for BOLT address translation maps
      if (!EmitCodeOnly && BF.requiresAddressTranslation() &&
          BC.MIB->getOffset(Instr)) {
        const uint32_t Offset = *BC.MIB->getOffset(Instr);
        MCSymbol *LocSym = BC.Ctx->createTempSymbol();
        Streamer.emitLabel(LocSym);
        BB->getLocSyms().emplace_back(Offset, LocSym);
      }

      Streamer.emitInstruction(Instr, *BC.STI);
      LastIsPrefix = BC.MIB->isPrefix(Instr);
    }
  }

  if (!EmitCodeOnly)
    emitConstantIslands(BF, FF.isSplitFragment());
}

void BinaryEmitter::emitConstantIslands(BinaryFunction &BF, bool EmitColdPart,
                                        BinaryFunction *OnBehalfOf) {
  if (!BF.hasIslandsInfo())
    return;

  BinaryFunction::IslandInfo &Islands = BF.getIslandInfo();
  if (Islands.DataOffsets.empty() && Islands.Dependency.empty())
    return;

  // AArch64 requires CI to be aligned to 8 bytes due to access instructions
  // restrictions. E.g. the ldr with imm, where imm must be aligned to 8 bytes.
  const uint16_t Alignment = OnBehalfOf
                                 ? OnBehalfOf->getConstantIslandAlignment()
                                 : BF.getConstantIslandAlignment();
  Streamer.emitCodeAlignment(Alignment, &*BC.STI);

  if (!OnBehalfOf) {
    if (!EmitColdPart)
      Streamer.emitLabel(BF.getFunctionConstantIslandLabel());
    else
      Streamer.emitLabel(BF.getFunctionColdConstantIslandLabel());
  }

  assert((!OnBehalfOf || Islands.Proxies[OnBehalfOf].size() > 0) &&
         "spurious OnBehalfOf constant island emission");

  assert(!BF.isInjected() &&
         "injected functions should not have constant islands");
  // Raw contents of the function.
  StringRef SectionContents = BF.getOriginSection()->getContents();

  // Raw contents of the function.
  StringRef FunctionContents = SectionContents.substr(
      BF.getAddress() - BF.getOriginSection()->getAddress(), BF.getMaxSize());

  if (opts::Verbosity && !OnBehalfOf)
    outs() << "BOLT-INFO: emitting constant island for function " << BF << "\n";

  // We split the island into smaller blocks and output labels between them.
  auto IS = Islands.Offsets.begin();
  for (auto DataIter = Islands.DataOffsets.begin();
       DataIter != Islands.DataOffsets.end(); ++DataIter) {
    uint64_t FunctionOffset = *DataIter;
    uint64_t EndOffset = 0ULL;

    // Determine size of this data chunk
    auto NextData = std::next(DataIter);
    auto CodeIter = Islands.CodeOffsets.lower_bound(*DataIter);
    if (CodeIter == Islands.CodeOffsets.end() &&
        NextData == Islands.DataOffsets.end())
      EndOffset = BF.getMaxSize();
    else if (CodeIter == Islands.CodeOffsets.end())
      EndOffset = *NextData;
    else if (NextData == Islands.DataOffsets.end())
      EndOffset = *CodeIter;
    else
      EndOffset = (*CodeIter > *NextData) ? *NextData : *CodeIter;

    if (FunctionOffset == EndOffset)
      continue; // Size is zero, nothing to emit

    auto emitCI = [&](uint64_t &FunctionOffset, uint64_t EndOffset) {
      if (FunctionOffset >= EndOffset)
        return;

      for (auto It = Islands.Relocations.lower_bound(FunctionOffset);
           It != Islands.Relocations.end(); ++It) {
        if (It->first >= EndOffset)
          break;

        const Relocation &Relocation = It->second;
        if (FunctionOffset < Relocation.Offset) {
          Streamer.emitBytes(
              FunctionContents.slice(FunctionOffset, Relocation.Offset));
          FunctionOffset = Relocation.Offset;
        }

        LLVM_DEBUG(
            dbgs() << "BOLT-DEBUG: emitting constant island relocation"
                   << " for " << BF << " at offset 0x"
                   << Twine::utohexstr(Relocation.Offset) << " with size "
                   << Relocation::getSizeForType(Relocation.Type) << '\n');

        FunctionOffset += Relocation.emit(&Streamer);
      }

      assert(FunctionOffset <= EndOffset && "overflow error");
      if (FunctionOffset < EndOffset) {
        Streamer.emitBytes(FunctionContents.slice(FunctionOffset, EndOffset));
        FunctionOffset = EndOffset;
      }
    };

    // Emit labels, relocs and data
    while (IS != Islands.Offsets.end() && IS->first < EndOffset) {
      auto NextLabelOffset =
          IS == Islands.Offsets.end() ? EndOffset : IS->first;
      auto NextStop = std::min(NextLabelOffset, EndOffset);
      assert(NextStop <= EndOffset && "internal overflow error");
      emitCI(FunctionOffset, NextStop);
      if (IS != Islands.Offsets.end() && FunctionOffset == IS->first) {
        // This is a slightly complex code to decide which label to emit. We
        // have 4 cases to handle: regular symbol, cold symbol, regular or cold
        // symbol being emitted on behalf of an external function.
        if (!OnBehalfOf) {
          if (!EmitColdPart) {
            LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitted label "
                              << IS->second->getName() << " at offset 0x"
                              << Twine::utohexstr(IS->first) << '\n');
            if (IS->second->isUndefined())
              Streamer.emitLabel(IS->second);
            else
              assert(BF.hasName(std::string(IS->second->getName())));
          } else if (Islands.ColdSymbols.count(IS->second) != 0) {
            LLVM_DEBUG(dbgs()
                       << "BOLT-DEBUG: emitted label "
                       << Islands.ColdSymbols[IS->second]->getName() << '\n');
            if (Islands.ColdSymbols[IS->second]->isUndefined())
              Streamer.emitLabel(Islands.ColdSymbols[IS->second]);
          }
        } else {
          if (!EmitColdPart) {
            if (MCSymbol *Sym = Islands.Proxies[OnBehalfOf][IS->second]) {
              LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitted label "
                                << Sym->getName() << '\n');
              Streamer.emitLabel(Sym);
            }
          } else if (MCSymbol *Sym =
                         Islands.ColdProxies[OnBehalfOf][IS->second]) {
            LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitted label " << Sym->getName()
                              << '\n');
            Streamer.emitLabel(Sym);
          }
        }
        ++IS;
      }
    }
    assert(FunctionOffset <= EndOffset && "overflow error");
    emitCI(FunctionOffset, EndOffset);
  }
  assert(IS == Islands.Offsets.end() && "some symbols were not emitted!");

  if (OnBehalfOf)
    return;
  // Now emit constant islands from other functions that we may have used in
  // this function.
  for (BinaryFunction *ExternalFunc : Islands.Dependency)
    emitConstantIslands(*ExternalFunc, EmitColdPart, &BF);
}

SMLoc BinaryEmitter::emitLineInfo(const BinaryFunction &BF, SMLoc NewLoc,
                                  SMLoc PrevLoc, bool FirstInstr) {
  DWARFUnit *FunctionCU = BF.getDWARFUnit();
  const DWARFDebugLine::LineTable *FunctionLineTable = BF.getDWARFLineTable();
  assert(FunctionCU && "cannot emit line info for function without CU");

  DebugLineTableRowRef RowReference = DebugLineTableRowRef::fromSMLoc(NewLoc);

  // Check if no new line info needs to be emitted.
  if (RowReference == DebugLineTableRowRef::NULL_ROW ||
      NewLoc.getPointer() == PrevLoc.getPointer())
    return PrevLoc;

  unsigned CurrentFilenum = 0;
  const DWARFDebugLine::LineTable *CurrentLineTable = FunctionLineTable;

  // If the CU id from the current instruction location does not
  // match the CU id from the current function, it means that we
  // have come across some inlined code.  We must look up the CU
  // for the instruction's original function and get the line table
  // from that.
  const uint64_t FunctionUnitIndex = FunctionCU->getOffset();
  const uint32_t CurrentUnitIndex = RowReference.DwCompileUnitIndex;
  if (CurrentUnitIndex != FunctionUnitIndex) {
    CurrentLineTable = BC.DwCtx->getLineTableForUnit(
        BC.DwCtx->getCompileUnitForOffset(CurrentUnitIndex));
    // Add filename from the inlined function to the current CU.
    CurrentFilenum = BC.addDebugFilenameToUnit(
        FunctionUnitIndex, CurrentUnitIndex,
        CurrentLineTable->Rows[RowReference.RowIndex - 1].File);
  }

  const DWARFDebugLine::Row &CurrentRow =
      CurrentLineTable->Rows[RowReference.RowIndex - 1];
  if (!CurrentFilenum)
    CurrentFilenum = CurrentRow.File;

  unsigned Flags = (DWARF2_FLAG_IS_STMT * CurrentRow.IsStmt) |
                   (DWARF2_FLAG_BASIC_BLOCK * CurrentRow.BasicBlock) |
                   (DWARF2_FLAG_PROLOGUE_END * CurrentRow.PrologueEnd) |
                   (DWARF2_FLAG_EPILOGUE_BEGIN * CurrentRow.EpilogueBegin);

  // Always emit is_stmt at the beginning of function fragment.
  if (FirstInstr)
    Flags |= DWARF2_FLAG_IS_STMT;

  BC.Ctx->setCurrentDwarfLoc(CurrentFilenum, CurrentRow.Line, CurrentRow.Column,
                             Flags, CurrentRow.Isa, CurrentRow.Discriminator);
  const MCDwarfLoc &DwarfLoc = BC.Ctx->getCurrentDwarfLoc();
  BC.Ctx->clearDwarfLocSeen();

  MCSymbol *LineSym = BC.Ctx->createTempSymbol();
  Streamer.emitLabel(LineSym);

  BC.getDwarfLineTable(FunctionUnitIndex)
      .getMCLineSections()
      .addLineEntry(MCDwarfLineEntry(LineSym, DwarfLoc),
                    Streamer.getCurrentSectionOnly());

  return NewLoc;
}

void BinaryEmitter::emitLineInfoEnd(const BinaryFunction &BF,
                                    MCSymbol *FunctionEndLabel) {
  DWARFUnit *FunctionCU = BF.getDWARFUnit();
  assert(FunctionCU && "DWARF unit expected");
  BC.Ctx->setCurrentDwarfLoc(0, 0, 0, DWARF2_FLAG_END_SEQUENCE, 0, 0);
  const MCDwarfLoc &DwarfLoc = BC.Ctx->getCurrentDwarfLoc();
  BC.Ctx->clearDwarfLocSeen();
  BC.getDwarfLineTable(FunctionCU->getOffset())
      .getMCLineSections()
      .addLineEntry(MCDwarfLineEntry(FunctionEndLabel, DwarfLoc),
                    Streamer.getCurrentSectionOnly());
}

void BinaryEmitter::emitJumpTables(const BinaryFunction &BF) {
  MCSection *ReadOnlySection = BC.MOFI->getReadOnlySection();
  MCSection *ReadOnlyColdSection = BC.MOFI->getContext().getELFSection(
      ".rodata.cold", ELF::SHT_PROGBITS, ELF::SHF_ALLOC);

  if (!BF.hasJumpTables())
    return;

  if (opts::PrintJumpTables)
    outs() << "BOLT-INFO: jump tables for function " << BF << ":\n";

  for (auto &JTI : BF.jumpTables()) {
    JumpTable &JT = *JTI.second;
    if (opts::PrintJumpTables)
      JT.print(outs());
    if ((opts::JumpTables == JTS_BASIC || !BF.isSimple()) &&
        BC.HasRelocations) {
      JT.updateOriginal();
    } else {
      MCSection *HotSection, *ColdSection;
      if (opts::JumpTables == JTS_BASIC) {
        // In non-relocation mode we have to emit jump tables in local sections.
        // This way we only overwrite them when the corresponding function is
        // overwritten.
        std::string Name = ".local." + JT.Labels[0]->getName().str();
        std::replace(Name.begin(), Name.end(), '/', '.');
        BinarySection &Section =
            BC.registerOrUpdateSection(Name, ELF::SHT_PROGBITS, ELF::SHF_ALLOC);
        Section.setAnonymous(true);
        JT.setOutputSection(Section);
        HotSection = BC.getDataSection(Name);
        ColdSection = HotSection;
      } else {
        if (BF.isSimple()) {
          HotSection = ReadOnlySection;
          ColdSection = ReadOnlyColdSection;
        } else {
          HotSection = BF.hasProfile() ? ReadOnlySection : ReadOnlyColdSection;
          ColdSection = HotSection;
        }
      }
      emitJumpTable(JT, HotSection, ColdSection);
    }
  }
}

void BinaryEmitter::emitJumpTable(const JumpTable &JT, MCSection *HotSection,
                                  MCSection *ColdSection) {
  // Pre-process entries for aggressive splitting.
  // Each label represents a separate switch table and gets its own count
  // determining its destination.
  std::map<MCSymbol *, uint64_t> LabelCounts;
  if (opts::JumpTables > JTS_SPLIT && !JT.Counts.empty()) {
    MCSymbol *CurrentLabel = JT.Labels.at(0);
    uint64_t CurrentLabelCount = 0;
    for (unsigned Index = 0; Index < JT.Entries.size(); ++Index) {
      auto LI = JT.Labels.find(Index * JT.EntrySize);
      if (LI != JT.Labels.end()) {
        LabelCounts[CurrentLabel] = CurrentLabelCount;
        CurrentLabel = LI->second;
        CurrentLabelCount = 0;
      }
      CurrentLabelCount += JT.Counts[Index].Count;
    }
    LabelCounts[CurrentLabel] = CurrentLabelCount;
  } else {
    Streamer.switchSection(JT.Count > 0 ? HotSection : ColdSection);
    Streamer.emitValueToAlignment(JT.EntrySize);
  }
  MCSymbol *LastLabel = nullptr;
  uint64_t Offset = 0;
  for (MCSymbol *Entry : JT.Entries) {
    auto LI = JT.Labels.find(Offset);
    if (LI != JT.Labels.end()) {
      LLVM_DEBUG({
        dbgs() << "BOLT-DEBUG: emitting jump table " << LI->second->getName()
               << " (originally was at address 0x"
               << Twine::utohexstr(JT.getAddress() + Offset)
               << (Offset ? ") as part of larger jump table\n" : ")\n");
      });
      if (!LabelCounts.empty()) {
        LLVM_DEBUG(dbgs() << "BOLT-DEBUG: jump table count: "
                          << LabelCounts[LI->second] << '\n');
        if (LabelCounts[LI->second] > 0)
          Streamer.switchSection(HotSection);
        else
          Streamer.switchSection(ColdSection);
        Streamer.emitValueToAlignment(JT.EntrySize);
      }
      // Emit all labels registered at the address of this jump table
      // to sync with our global symbol table.  We may have two labels
      // registered at this address if one label was created via
      // getOrCreateGlobalSymbol() (e.g. LEA instructions referencing
      // this location) and another via getOrCreateJumpTable().  This
      // creates a race where the symbols created by these two
      // functions may or may not be the same, but they are both
      // registered in our symbol table at the same address. By
      // emitting them all here we make sure there is no ambiguity
      // that depends on the order that these symbols were created, so
      // whenever this address is referenced in the binary, it is
      // certain to point to the jump table identified at this
      // address.
      if (BinaryData *BD = BC.getBinaryDataByName(LI->second->getName())) {
        for (MCSymbol *S : BD->getSymbols())
          Streamer.emitLabel(S);
      } else {
        Streamer.emitLabel(LI->second);
      }
      LastLabel = LI->second;
    }
    if (JT.Type == JumpTable::JTT_NORMAL) {
      Streamer.emitSymbolValue(Entry, JT.OutputEntrySize);
    } else { // JTT_PIC
      const MCSymbolRefExpr *JTExpr =
          MCSymbolRefExpr::create(LastLabel, Streamer.getContext());
      const MCSymbolRefExpr *E =
          MCSymbolRefExpr::create(Entry, Streamer.getContext());
      const MCBinaryExpr *Value =
          MCBinaryExpr::createSub(E, JTExpr, Streamer.getContext());
      Streamer.emitValue(Value, JT.EntrySize);
    }
    Offset += JT.EntrySize;
  }
}

void BinaryEmitter::emitCFIInstruction(const MCCFIInstruction &Inst) const {
  switch (Inst.getOperation()) {
  default:
    llvm_unreachable("Unexpected instruction");
  case MCCFIInstruction::OpDefCfaOffset:
    Streamer.emitCFIDefCfaOffset(Inst.getOffset());
    break;
  case MCCFIInstruction::OpAdjustCfaOffset:
    Streamer.emitCFIAdjustCfaOffset(Inst.getOffset());
    break;
  case MCCFIInstruction::OpDefCfa:
    Streamer.emitCFIDefCfa(Inst.getRegister(), Inst.getOffset());
    break;
  case MCCFIInstruction::OpDefCfaRegister:
    Streamer.emitCFIDefCfaRegister(Inst.getRegister());
    break;
  case MCCFIInstruction::OpOffset:
    Streamer.emitCFIOffset(Inst.getRegister(), Inst.getOffset());
    break;
  case MCCFIInstruction::OpRegister:
    Streamer.emitCFIRegister(Inst.getRegister(), Inst.getRegister2());
    break;
  case MCCFIInstruction::OpWindowSave:
    Streamer.emitCFIWindowSave();
    break;
  case MCCFIInstruction::OpNegateRAState:
    Streamer.emitCFINegateRAState();
    break;
  case MCCFIInstruction::OpSameValue:
    Streamer.emitCFISameValue(Inst.getRegister());
    break;
  case MCCFIInstruction::OpGnuArgsSize:
    Streamer.emitCFIGnuArgsSize(Inst.getOffset());
    break;
  case MCCFIInstruction::OpEscape:
    Streamer.AddComment(Inst.getComment());
    Streamer.emitCFIEscape(Inst.getValues());
    break;
  case MCCFIInstruction::OpRestore:
    Streamer.emitCFIRestore(Inst.getRegister());
    break;
  case MCCFIInstruction::OpUndefined:
    Streamer.emitCFIUndefined(Inst.getRegister());
    break;
  }
}

// The code is based on EHStreamer::emitExceptionTable().
void BinaryEmitter::emitLSDA(BinaryFunction &BF, const FunctionFragment &FF) {
  const BinaryFunction::CallSitesRange Sites =
      BF.getCallSites(FF.getFragmentNum());
  if (Sites.empty())
    return;

  // Calculate callsite table size. Size of each callsite entry is:
  //
  //  sizeof(start) + sizeof(length) + sizeof(LP) + sizeof(uleb128(action))
  //
  // or
  //
  //  sizeof(dwarf::DW_EH_PE_data4) * 3 + sizeof(uleb128(action))
  uint64_t CallSiteTableLength = llvm::size(Sites) * 4 * 3;
  for (const auto &FragmentCallSite : Sites)
    CallSiteTableLength += getULEB128Size(FragmentCallSite.second.Action);

  Streamer.switchSection(BC.MOFI->getLSDASection());

  const unsigned TTypeEncoding = BF.getLSDATypeEncoding();
  const unsigned TTypeEncodingSize = BC.getDWARFEncodingSize(TTypeEncoding);
  const uint16_t TTypeAlignment = 4;

  // Type tables have to be aligned at 4 bytes.
  Streamer.emitValueToAlignment(TTypeAlignment);

  // Emit the LSDA label.
  MCSymbol *LSDASymbol = BF.getLSDASymbol(FF.getFragmentNum());
  assert(LSDASymbol && "no LSDA symbol set");
  Streamer.emitLabel(LSDASymbol);

  // Corresponding FDE start.
  const MCSymbol *StartSymbol = BF.getSymbol(FF.getFragmentNum());

  // Emit the LSDA header.

  // If LPStart is omitted, then the start of the FDE is used as a base for
  // landing pad displacements. Then if a cold fragment starts with
  // a landing pad, this means that the first landing pad offset will be 0.
  // As a result, the exception handling runtime will ignore this landing pad
  // because zero offset denotes the absence of a landing pad.
  // For this reason, when the binary has fixed starting address we emit LPStart
  // as 0 and output the absolute value of the landing pad in the table.
  //
  // If the base address can change, we cannot use absolute addresses for
  // landing pads (at least not without runtime relocations). Hence, we fall
  // back to emitting landing pads relative to the FDE start.
  // As we are emitting label differences, we have to guarantee both labels are
  // defined in the same section and hence cannot place the landing pad into a
  // cold fragment when the corresponding call site is in the hot fragment.
  // Because of this issue and the previously described issue of possible
  // zero-offset landing pad we have to place landing pads in the same section
  // as the corresponding invokes for shared objects.
  std::function<void(const MCSymbol *)> emitLandingPad;
  if (BC.HasFixedLoadAddress) {
    Streamer.emitIntValue(dwarf::DW_EH_PE_udata4, 1); // LPStart format
    Streamer.emitIntValue(0, 4);                      // LPStart
    emitLandingPad = [&](const MCSymbol *LPSymbol) {
      if (!LPSymbol)
        Streamer.emitIntValue(0, 4);
      else
        Streamer.emitSymbolValue(LPSymbol, 4);
    };
  } else {
    Streamer.emitIntValue(dwarf::DW_EH_PE_omit, 1); // LPStart format
    emitLandingPad = [&](const MCSymbol *LPSymbol) {
      if (!LPSymbol)
        Streamer.emitIntValue(0, 4);
      else
        Streamer.emitAbsoluteSymbolDiff(LPSymbol, StartSymbol, 4);
    };
  }

  Streamer.emitIntValue(TTypeEncoding, 1); // TType format

  // See the comment in EHStreamer::emitExceptionTable() on to use
  // uleb128 encoding (which can use variable number of bytes to encode the same
  // value) to ensure type info table is properly aligned at 4 bytes without
  // iteratively fixing sizes of the tables.
  unsigned CallSiteTableLengthSize = getULEB128Size(CallSiteTableLength);
  unsigned TTypeBaseOffset =
      sizeof(int8_t) +                 // Call site format
      CallSiteTableLengthSize +        // Call site table length size
      CallSiteTableLength +            // Call site table length
      BF.getLSDAActionTable().size() + // Actions table size
      BF.getLSDATypeTable().size() * TTypeEncodingSize; // Types table size
  unsigned TTypeBaseOffsetSize = getULEB128Size(TTypeBaseOffset);
  unsigned TotalSize = sizeof(int8_t) +      // LPStart format
                       sizeof(int8_t) +      // TType format
                       TTypeBaseOffsetSize + // TType base offset size
                       TTypeBaseOffset;      // TType base offset
  unsigned SizeAlign = (4 - TotalSize) & 3;

  if (TTypeEncoding != dwarf::DW_EH_PE_omit)
    // Account for any extra padding that will be added to the call site table
    // length.
    Streamer.emitULEB128IntValue(TTypeBaseOffset,
                                 /*PadTo=*/TTypeBaseOffsetSize + SizeAlign);

  // Emit the landing pad call site table. We use signed data4 since we can emit
  // a landing pad in a different part of the split function that could appear
  // earlier in the address space than LPStart.
  Streamer.emitIntValue(dwarf::DW_EH_PE_sdata4, 1);
  Streamer.emitULEB128IntValue(CallSiteTableLength);

  for (const auto &FragmentCallSite : Sites) {
    const BinaryFunction::CallSite &CallSite = FragmentCallSite.second;
    const MCSymbol *BeginLabel = CallSite.Start;
    const MCSymbol *EndLabel = CallSite.End;

    assert(BeginLabel && "start EH label expected");
    assert(EndLabel && "end EH label expected");

    // Start of the range is emitted relative to the start of current
    // function split part.
    Streamer.emitAbsoluteSymbolDiff(BeginLabel, StartSymbol, 4);
    Streamer.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4);
    emitLandingPad(CallSite.LP);
    Streamer.emitULEB128IntValue(CallSite.Action);
  }

  // Write out action, type, and type index tables at the end.
  //
  // For action and type index tables there's no need to change the original
  // table format unless we are doing function splitting, in which case we can
  // split and optimize the tables.
  //
  // For type table we (re-)encode the table using TTypeEncoding matching
  // the current assembler mode.
  for (uint8_t const &Byte : BF.getLSDAActionTable())
    Streamer.emitIntValue(Byte, 1);

  const BinaryFunction::LSDATypeTableTy &TypeTable =
      (TTypeEncoding & dwarf::DW_EH_PE_indirect) ? BF.getLSDATypeAddressTable()
                                                 : BF.getLSDATypeTable();
  assert(TypeTable.size() == BF.getLSDATypeTable().size() &&
         "indirect type table size mismatch");

  for (int Index = TypeTable.size() - 1; Index >= 0; --Index) {
    const uint64_t TypeAddress = TypeTable[Index];
    switch (TTypeEncoding & 0x70) {
    default:
      llvm_unreachable("unsupported TTypeEncoding");
    case dwarf::DW_EH_PE_absptr:
      Streamer.emitIntValue(TypeAddress, TTypeEncodingSize);
      break;
    case dwarf::DW_EH_PE_pcrel: {
      if (TypeAddress) {
        const MCSymbol *TypeSymbol =
            BC.getOrCreateGlobalSymbol(TypeAddress, "TI", 0, TTypeAlignment);
        MCSymbol *DotSymbol = BC.Ctx->createNamedTempSymbol();
        Streamer.emitLabel(DotSymbol);
        const MCBinaryExpr *SubDotExpr = MCBinaryExpr::createSub(
            MCSymbolRefExpr::create(TypeSymbol, *BC.Ctx),
            MCSymbolRefExpr::create(DotSymbol, *BC.Ctx), *BC.Ctx);
        Streamer.emitValue(SubDotExpr, TTypeEncodingSize);
      } else {
        Streamer.emitIntValue(0, TTypeEncodingSize);
      }
      break;
    }
    }
  }
  for (uint8_t const &Byte : BF.getLSDATypeIndexTable())
    Streamer.emitIntValue(Byte, 1);
}

void BinaryEmitter::emitDebugLineInfoForOriginalFunctions() {
  // If a function is in a CU containing at least one processed function, we
  // have to rewrite the whole line table for that CU. For unprocessed functions
  // we use data from the input line table.
  for (auto &It : BC.getBinaryFunctions()) {
    const BinaryFunction &Function = It.second;

    // If the function was emitted, its line info was emitted with it.
    if (Function.isEmitted())
      continue;

    const DWARFDebugLine::LineTable *LineTable = Function.getDWARFLineTable();
    if (!LineTable)
      continue; // nothing to update for this function

    const uint64_t Address = Function.getAddress();
    std::vector<uint32_t> Results;
    if (!LineTable->lookupAddressRange(
            {Address, object::SectionedAddress::UndefSection},
            Function.getSize(), Results))
      continue;

    if (Results.empty())
      continue;

    // The first row returned could be the last row matching the start address.
    // Find the first row with the same address that is not the end of the
    // sequence.
    uint64_t FirstRow = Results.front();
    while (FirstRow > 0) {
      const DWARFDebugLine::Row &PrevRow = LineTable->Rows[FirstRow - 1];
      if (PrevRow.Address.Address != Address || PrevRow.EndSequence)
        break;
      --FirstRow;
    }

    const uint64_t EndOfSequenceAddress =
        Function.getAddress() + Function.getMaxSize();
    BC.getDwarfLineTable(Function.getDWARFUnit()->getOffset())
        .addLineTableSequence(LineTable, FirstRow, Results.back(),
                              EndOfSequenceAddress);
  }

  // For units that are completely unprocessed, use original debug line contents
  // eliminating the need to regenerate line info program.
  emitDebugLineInfoForUnprocessedCUs();
}

void BinaryEmitter::emitDebugLineInfoForUnprocessedCUs() {
  // Sorted list of section offsets provides boundaries for section fragments,
  // where each fragment is the unit's contribution to debug line section.
  std::vector<uint64_t> StmtListOffsets;
  StmtListOffsets.reserve(BC.DwCtx->getNumCompileUnits());
  for (const std::unique_ptr<DWARFUnit> &CU : BC.DwCtx->compile_units()) {
    DWARFDie CUDie = CU->getUnitDIE();
    auto StmtList = dwarf::toSectionOffset(CUDie.find(dwarf::DW_AT_stmt_list));
    if (!StmtList)
      continue;

    StmtListOffsets.push_back(*StmtList);
  }
  llvm::sort(StmtListOffsets);

  // For each CU that was not processed, emit its line info as a binary blob.
  for (const std::unique_ptr<DWARFUnit> &CU : BC.DwCtx->compile_units()) {
    if (BC.ProcessedCUs.count(CU.get()))
      continue;

    DWARFDie CUDie = CU->getUnitDIE();
    auto StmtList = dwarf::toSectionOffset(CUDie.find(dwarf::DW_AT_stmt_list));
    if (!StmtList)
      continue;

    StringRef DebugLineContents = CU->getLineSection().Data;

    const uint64_t Begin = *StmtList;

    // Statement list ends where the next unit contribution begins, or at the
    // end of the section.
    auto It = llvm::upper_bound(StmtListOffsets, Begin);
    const uint64_t End =
        It == StmtListOffsets.end() ? DebugLineContents.size() : *It;

    BC.getDwarfLineTable(CU->getOffset())
        .addRawContents(DebugLineContents.slice(Begin, End));
  }
}

void BinaryEmitter::emitDataSections(StringRef OrgSecPrefix) {
  for (BinarySection &Section : BC.sections()) {
    if (!Section.hasRelocations())
      continue;

    StringRef Prefix = Section.hasSectionRef() ? OrgSecPrefix : "";
    Section.emitAsData(Streamer, Prefix + Section.getName());
    Section.clearRelocations();
  }
}

namespace llvm {
namespace bolt {

void emitBinaryContext(MCStreamer &Streamer, BinaryContext &BC,
                       StringRef OrgSecPrefix) {
  BinaryEmitter(Streamer, BC).emitAll(OrgSecPrefix);
}

void emitFunctionBody(MCStreamer &Streamer, BinaryFunction &BF,
                      FunctionFragment &FF, bool EmitCodeOnly) {
  BinaryEmitter(Streamer, BF.getBinaryContext())
      .emitFunctionBody(BF, FF, EmitCodeOnly);
}

} // namespace bolt
} // namespace llvm