Welcome to mirror list, hosted at ThFree Co, Russian Federation.

DebugData.cpp « Core « lib « bolt - github.com/llvm/llvm-project.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 2ebd2c03838dd51ac148d965822cc1be0857afd5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
//===- bolt/Core/DebugData.cpp - Debugging information handling -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements functions and classes for handling debug info.
//
//===----------------------------------------------------------------------===//

#include "bolt/Core/DebugData.h"
#include "bolt/Core/BinaryContext.h"
#include "bolt/Utils/Utils.h"
#include "llvm/DebugInfo/DWARF/DWARFCompileUnit.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugAbbrev.h"
#include "llvm/MC/MCAssembler.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCObjectStreamer.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/EndianStream.h"
#include "llvm/Support/LEB128.h"
#include "llvm/Support/SHA1.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <limits>
#include <unordered_map>

#define DEBUG_TYPE "bolt-debug-info"

namespace opts {
extern llvm::cl::opt<unsigned> Verbosity;
} // namespace opts

namespace llvm {
class MCSymbol;

namespace bolt {

/// Finds attributes FormValue and Offset.
///
/// \param DIE die to look up in.
/// \param Index the attribute index to extract.
/// \return an optional AttrInfo with DWARFFormValue and Offset.
Optional<AttrInfo>
findAttributeInfo(const DWARFDie DIE,
                  const DWARFAbbreviationDeclaration *AbbrevDecl,
                  uint32_t Index) {
  const DWARFUnit &U = *DIE.getDwarfUnit();
  uint64_t Offset =
      AbbrevDecl->getAttributeOffsetFromIndex(Index, DIE.getOffset(), U);
  Optional<DWARFFormValue> Value =
      AbbrevDecl->getAttributeValueFromOffset(Index, Offset, U);
  if (!Value)
    return None;
  // AttributeSpec
  const DWARFAbbreviationDeclaration::AttributeSpec *AttrVal =
      AbbrevDecl->attributes().begin() + Index;
  uint32_t ValSize = 0;
  Optional<int64_t> ValSizeOpt = AttrVal->getByteSize(U);
  if (ValSizeOpt) {
    ValSize = static_cast<uint32_t>(*ValSizeOpt);
  } else {
    DWARFDataExtractor DebugInfoData = U.getDebugInfoExtractor();
    uint64_t NewOffset = Offset;
    DWARFFormValue::skipValue(Value->getForm(), DebugInfoData, &NewOffset,
                              U.getFormParams());
    // This includes entire size of the entry, which might not be just the
    // encoding part. For example for DW_AT_loc it will include expression
    // location.
    ValSize = NewOffset - Offset;
  }

  return AttrInfo{*Value, Offset, ValSize};
}

const DebugLineTableRowRef DebugLineTableRowRef::NULL_ROW{0, 0};

namespace {

LLVM_ATTRIBUTE_UNUSED
static void printLE64(const std::string &S) {
  for (uint32_t I = 0, Size = S.size(); I < Size; ++I) {
    errs() << Twine::utohexstr(S[I]);
    errs() << Twine::utohexstr((int8_t)S[I]);
  }
  errs() << "\n";
}

// Writes address ranges to Writer as pairs of 64-bit (address, size).
// If RelativeRange is true, assumes the address range to be written must be of
// the form (begin address, range size), otherwise (begin address, end address).
// Terminates the list by writing a pair of two zeroes.
// Returns the number of written bytes.
uint64_t writeAddressRanges(raw_svector_ostream &Stream,
                            const DebugAddressRangesVector &AddressRanges,
                            const bool WriteRelativeRanges = false) {
  for (const DebugAddressRange &Range : AddressRanges) {
    support::endian::write(Stream, Range.LowPC, support::little);
    support::endian::write(
        Stream, WriteRelativeRanges ? Range.HighPC - Range.LowPC : Range.HighPC,
        support::little);
  }
  // Finish with 0 entries.
  support::endian::write(Stream, 0ULL, support::little);
  support::endian::write(Stream, 0ULL, support::little);
  return AddressRanges.size() * 16 + 16;
}

} // namespace

DebugRangesSectionWriter::DebugRangesSectionWriter() {
  RangesBuffer = std::make_unique<DebugBufferVector>();
  RangesStream = std::make_unique<raw_svector_ostream>(*RangesBuffer);

  // Add an empty range as the first entry;
  SectionOffset +=
      writeAddressRanges(*RangesStream.get(), DebugAddressRangesVector{});
}

uint64_t DebugRangesSectionWriter::addRanges(
    DebugAddressRangesVector &&Ranges,
    std::map<DebugAddressRangesVector, uint64_t> &CachedRanges) {
  if (Ranges.empty())
    return getEmptyRangesOffset();

  const auto RI = CachedRanges.find(Ranges);
  if (RI != CachedRanges.end())
    return RI->second;

  const uint64_t EntryOffset = addRanges(Ranges);
  CachedRanges.emplace(std::move(Ranges), EntryOffset);

  return EntryOffset;
}

uint64_t
DebugRangesSectionWriter::addRanges(const DebugAddressRangesVector &Ranges) {
  if (Ranges.empty())
    return getEmptyRangesOffset();

  // Reading the SectionOffset and updating it should be atomic to guarantee
  // unique and correct offsets in patches.
  std::lock_guard<std::mutex> Lock(WriterMutex);
  const uint32_t EntryOffset = SectionOffset;
  SectionOffset += writeAddressRanges(*RangesStream.get(), Ranges);

  return EntryOffset;
}

uint64_t DebugRangesSectionWriter::getSectionOffset() {
  std::lock_guard<std::mutex> Lock(WriterMutex);
  return SectionOffset;
}

void DebugARangesSectionWriter::addCURanges(uint64_t CUOffset,
                                            DebugAddressRangesVector &&Ranges) {
  std::lock_guard<std::mutex> Lock(CUAddressRangesMutex);
  CUAddressRanges.emplace(CUOffset, std::move(Ranges));
}

void DebugARangesSectionWriter::writeARangesSection(
    raw_svector_ostream &RangesStream, const CUOffsetMap &CUMap) const {
  // For reference on the format of the .debug_aranges section, see the DWARF4
  // specification, section 6.1.4 Lookup by Address
  // http://www.dwarfstd.org/doc/DWARF4.pdf
  for (const auto &CUOffsetAddressRangesPair : CUAddressRanges) {
    const uint64_t Offset = CUOffsetAddressRangesPair.first;
    const DebugAddressRangesVector &AddressRanges =
        CUOffsetAddressRangesPair.second;

    // Emit header.

    // Size of this set: 8 (size of the header) + 4 (padding after header)
    // + 2*sizeof(uint64_t) bytes for each of the ranges, plus an extra
    // pair of uint64_t's for the terminating, zero-length range.
    // Does not include size field itself.
    uint32_t Size = 8 + 4 + 2 * sizeof(uint64_t) * (AddressRanges.size() + 1);

    // Header field #1: set size.
    support::endian::write(RangesStream, Size, support::little);

    // Header field #2: version number, 2 as per the specification.
    support::endian::write(RangesStream, static_cast<uint16_t>(2),
                           support::little);

    assert(CUMap.count(Offset) && "Original CU offset is not found in CU Map");
    // Header field #3: debug info offset of the correspondent compile unit.
    support::endian::write(
        RangesStream, static_cast<uint32_t>(CUMap.find(Offset)->second.Offset),
        support::little);

    // Header field #4: address size.
    // 8 since we only write ELF64 binaries for now.
    RangesStream << char(8);

    // Header field #5: segment size of target architecture.
    RangesStream << char(0);

    // Padding before address table - 4 bytes in the 64-bit-pointer case.
    support::endian::write(RangesStream, static_cast<uint32_t>(0),
                           support::little);

    writeAddressRanges(RangesStream, AddressRanges, true);
  }
}

DebugAddrWriter::DebugAddrWriter(BinaryContext *Bc) { BC = Bc; }

void DebugAddrWriter::AddressForDWOCU::dump() {
  std::vector<IndexAddressPair> SortedMap(indexToAddressBegin(),
                                          indexToAdddessEnd());
  // Sorting address in increasing order of indices.
  std::sort(SortedMap.begin(), SortedMap.end(),
            [](const IndexAddressPair &A, const IndexAddressPair &B) {
              return A.first < B.first;
            });
  for (auto &Pair : SortedMap)
    dbgs() << Twine::utohexstr(Pair.second) << "\t" << Pair.first << "\n";
}
uint32_t DebugAddrWriter::getIndexFromAddress(uint64_t Address,
                                              uint64_t DWOId) {
  std::lock_guard<std::mutex> Lock(WriterMutex);
  if (!AddressMaps.count(DWOId))
    AddressMaps[DWOId] = AddressForDWOCU();

  AddressForDWOCU &Map = AddressMaps[DWOId];
  auto Entry = Map.find(Address);
  if (Entry == Map.end()) {
    auto Index = Map.getNextIndex();
    Entry = Map.insert(Address, Index).first;
  }
  return Entry->second;
}

// Case1) Address is not in map insert in to AddresToIndex and IndexToAddres
// Case2) Address is in the map but Index is higher or equal. Need to update
// IndexToAddrss. Case3) Address is in the map but Index is lower. Need to
// update AddressToIndex and IndexToAddress
void DebugAddrWriter::addIndexAddress(uint64_t Address, uint32_t Index,
                                      uint64_t DWOId) {
  std::lock_guard<std::mutex> Lock(WriterMutex);
  AddressForDWOCU &Map = AddressMaps[DWOId];
  auto Entry = Map.find(Address);
  if (Entry != Map.end()) {
    if (Entry->second > Index)
      Map.updateAddressToIndex(Address, Index);
    Map.updateIndexToAddrss(Address, Index);
  } else {
    Map.insert(Address, Index);
  }
}

AddressSectionBuffer DebugAddrWriter::finalize() {
  // Need to layout all sections within .debug_addr
  // Within each section sort Address by index.
  AddressSectionBuffer Buffer;
  raw_svector_ostream AddressStream(Buffer);
  for (std::unique_ptr<DWARFUnit> &CU : BC->DwCtx->compile_units()) {
    Optional<uint64_t> DWOId = CU->getDWOId();
    // Handling the case wehre debug information is a mix of Debug fission and
    // monolitic.
    if (!DWOId)
      continue;
    auto AM = AddressMaps.find(*DWOId);
    // Adding to map even if it did not contribute to .debug_addr.
    // The Skeleton CU will still have DW_AT_GNU_addr_base.
    DWOIdToOffsetMap[*DWOId] = Buffer.size();
    // If does not exist this CUs DWO section didn't contribute to .debug_addr.
    if (AM == AddressMaps.end())
      continue;
    std::vector<IndexAddressPair> SortedMap(AM->second.indexToAddressBegin(),
                                            AM->second.indexToAdddessEnd());
    // Sorting address in increasing order of indices.
    std::sort(SortedMap.begin(), SortedMap.end(),
              [](const IndexAddressPair &A, const IndexAddressPair &B) {
                return A.first < B.first;
              });

    uint8_t AddrSize = CU->getAddressByteSize();
    uint32_t Counter = 0;
    auto WriteAddress = [&](uint64_t Address) -> void {
      ++Counter;
      switch (AddrSize) {
      default:
        assert(false && "Address Size is invalid.");
        break;
      case 4:
        support::endian::write(AddressStream, static_cast<uint32_t>(Address),
                               support::little);
        break;
      case 8:
        support::endian::write(AddressStream, Address, support::little);
        break;
      }
    };

    for (const IndexAddressPair &Val : SortedMap) {
      while (Val.first > Counter)
        WriteAddress(0);
      WriteAddress(Val.second);
    }
  }

  return Buffer;
}

uint64_t DebugAddrWriter::getOffset(uint64_t DWOId) {
  auto Iter = DWOIdToOffsetMap.find(DWOId);
  assert(Iter != DWOIdToOffsetMap.end() &&
         "Offset in to.debug_addr was not found for DWO ID.");
  return Iter->second;
}

DebugLocWriter::DebugLocWriter(BinaryContext *BC) {
  LocBuffer = std::make_unique<DebugBufferVector>();
  LocStream = std::make_unique<raw_svector_ostream>(*LocBuffer);
}

void DebugLocWriter::addList(uint64_t AttrOffset,
                             DebugLocationsVector &&LocList) {
  if (LocList.empty()) {
    EmptyAttrLists.push_back(AttrOffset);
    return;
  }
  // Since there is a separate DebugLocWriter for each thread,
  // we don't need a lock to read the SectionOffset and update it.
  const uint32_t EntryOffset = SectionOffset;

  for (const DebugLocationEntry &Entry : LocList) {
    support::endian::write(*LocStream, static_cast<uint64_t>(Entry.LowPC),
                           support::little);
    support::endian::write(*LocStream, static_cast<uint64_t>(Entry.HighPC),
                           support::little);
    support::endian::write(*LocStream, static_cast<uint16_t>(Entry.Expr.size()),
                           support::little);
    *LocStream << StringRef(reinterpret_cast<const char *>(Entry.Expr.data()),
                            Entry.Expr.size());
    SectionOffset += 2 * 8 + 2 + Entry.Expr.size();
  }
  LocStream->write_zeros(16);
  SectionOffset += 16;
  LocListDebugInfoPatches.push_back({AttrOffset, EntryOffset});
}

void DebugLoclistWriter::addList(uint64_t AttrOffset,
                                 DebugLocationsVector &&LocList) {
  Patches.push_back({AttrOffset, std::move(LocList)});
}

std::unique_ptr<DebugBufferVector> DebugLocWriter::getBuffer() {
  return std::move(LocBuffer);
}

// DWARF 4: 2.6.2
void DebugLocWriter::finalize(uint64_t SectionOffset,
                              SimpleBinaryPatcher &DebugInfoPatcher) {
  for (const auto LocListDebugInfoPatchType : LocListDebugInfoPatches) {
    uint64_t Offset = SectionOffset + LocListDebugInfoPatchType.LocListOffset;
    DebugInfoPatcher.addLE32Patch(LocListDebugInfoPatchType.DebugInfoAttrOffset,
                                  Offset);
  }

  for (uint64_t DebugInfoAttrOffset : EmptyAttrLists)
    DebugInfoPatcher.addLE32Patch(DebugInfoAttrOffset,
                                  DebugLocWriter::EmptyListOffset);
}

void DebugLoclistWriter::finalize(uint64_t SectionOffset,
                                  SimpleBinaryPatcher &DebugInfoPatcher) {
  for (LocPatch &Patch : Patches) {
    if (Patch.LocList.empty()) {
      DebugInfoPatcher.addLE32Patch(Patch.AttrOffset,
                                    DebugLocWriter::EmptyListOffset);
      continue;
    }
    const uint32_t EntryOffset = LocBuffer->size();
    for (const DebugLocationEntry &Entry : Patch.LocList) {
      support::endian::write(*LocStream,
                             static_cast<uint8_t>(dwarf::DW_LLE_startx_length),
                             support::little);
      uint32_t Index = AddrWriter->getIndexFromAddress(Entry.LowPC, DWOId);
      encodeULEB128(Index, *LocStream);

      // TODO: Support DWARF5
      support::endian::write(*LocStream,
                             static_cast<uint32_t>(Entry.HighPC - Entry.LowPC),
                             support::little);
      support::endian::write(*LocStream,
                             static_cast<uint16_t>(Entry.Expr.size()),
                             support::little);
      *LocStream << StringRef(reinterpret_cast<const char *>(Entry.Expr.data()),
                              Entry.Expr.size());
    }
    support::endian::write(*LocStream,
                           static_cast<uint8_t>(dwarf::DW_LLE_end_of_list),
                           support::little);
    DebugInfoPatcher.addLE32Patch(Patch.AttrOffset, EntryOffset);
    clearList(Patch.LocList);
  }
  clearList(Patches);
}

DebugAddrWriter *DebugLoclistWriter::AddrWriter = nullptr;

void DebugInfoBinaryPatcher::addUnitBaseOffsetLabel(uint64_t Offset) {
  Offset -= DWPUnitOffset;
  std::lock_guard<std::mutex> Lock(WriterMutex);
  DebugPatches.emplace_back(new DWARFUnitOffsetBaseLabel(Offset));
}

void DebugInfoBinaryPatcher::addDestinationReferenceLabel(uint64_t Offset) {
  Offset -= DWPUnitOffset;
  std::lock_guard<std::mutex> Lock(WriterMutex);
  auto RetVal = DestinationLabels.insert(Offset);
  if (!RetVal.second)
    return;

  DebugPatches.emplace_back(new DestinationReferenceLabel(Offset));
}

static std::string encodeLE(size_t ByteSize, uint64_t NewValue) {
  std::string LE64(ByteSize, 0);
  for (size_t I = 0; I < ByteSize; ++I) {
    LE64[I] = NewValue & 0xff;
    NewValue >>= 8;
  }
  return LE64;
}

void DebugInfoBinaryPatcher::insertNewEntry(const DWARFDie &DIE,
                                            uint32_t Value) {
  std::string StrValue = encodeLE(4, Value);
  insertNewEntry(DIE, std::move(StrValue));
}

void DebugInfoBinaryPatcher::insertNewEntry(const DWARFDie &DIE,
                                            std::string &&Value) {
  const DWARFAbbreviationDeclaration *AbbrevDecl =
      DIE.getAbbreviationDeclarationPtr();

  // In case this DIE has no attributes.
  uint32_t Offset = DIE.getOffset() + 1;
  size_t NumOfAttributes = AbbrevDecl->getNumAttributes();
  if (NumOfAttributes) {
    Optional<AttrInfo> Val =
        findAttributeInfo(DIE, AbbrevDecl, NumOfAttributes - 1);
    assert(Val && "Invalid Value.");

    Offset = Val->Offset + Val->Size - DWPUnitOffset;
  }
  std::lock_guard<std::mutex> Lock(WriterMutex);
  DebugPatches.emplace_back(new NewDebugEntry(Offset, std::move(Value)));
}

void DebugInfoBinaryPatcher::addReferenceToPatch(uint64_t Offset,
                                                 uint32_t DestinationOffset,
                                                 uint32_t OldValueSize,
                                                 dwarf::Form Form) {
  Offset -= DWPUnitOffset;
  DestinationOffset -= DWPUnitOffset;
  std::lock_guard<std::mutex> Lock(WriterMutex);
  DebugPatches.emplace_back(
      new DebugPatchReference(Offset, OldValueSize, DestinationOffset, Form));
}

void DebugInfoBinaryPatcher::addUDataPatch(uint64_t Offset, uint64_t NewValue,
                                           uint32_t OldValueSize) {
  Offset -= DWPUnitOffset;
  std::lock_guard<std::mutex> Lock(WriterMutex);
  DebugPatches.emplace_back(
      new DebugPatchVariableSize(Offset, OldValueSize, NewValue));
}

void DebugInfoBinaryPatcher::addLE64Patch(uint64_t Offset, uint64_t NewValue) {
  Offset -= DWPUnitOffset;
  std::lock_guard<std::mutex> Lock(WriterMutex);
  DebugPatches.emplace_back(new DebugPatch64(Offset, NewValue));
}

void DebugInfoBinaryPatcher::addLE32Patch(uint64_t Offset, uint32_t NewValue,
                                          uint32_t OldValueSize) {
  Offset -= DWPUnitOffset;
  std::lock_guard<std::mutex> Lock(WriterMutex);
  if (OldValueSize == 4)
    DebugPatches.emplace_back(new DebugPatch32(Offset, NewValue));
  else if (OldValueSize == 8)
    DebugPatches.emplace_back(new DebugPatch64to32(Offset, NewValue));
  else
    DebugPatches.emplace_back(
        new DebugPatch32GenericSize(Offset, NewValue, OldValueSize));
}

void SimpleBinaryPatcher::addBinaryPatch(uint64_t Offset,
                                         std::string &&NewValue,
                                         uint32_t OldValueSize) {
  Patches.emplace_back(Offset, std::move(NewValue));
}

void SimpleBinaryPatcher::addBytePatch(uint64_t Offset, uint8_t Value) {
  auto Str = std::string(1, Value);
  Patches.emplace_back(Offset, std::move(Str));
}

void SimpleBinaryPatcher::addLEPatch(uint64_t Offset, uint64_t NewValue,
                                     size_t ByteSize) {
  Patches.emplace_back(Offset, encodeLE(ByteSize, NewValue));
}

void SimpleBinaryPatcher::addUDataPatch(uint64_t Offset, uint64_t Value,
                                        uint32_t OldValueSize) {
  std::string Buff;
  raw_string_ostream OS(Buff);
  encodeULEB128(Value, OS, OldValueSize);

  Patches.emplace_back(Offset, std::move(Buff));
}

void SimpleBinaryPatcher::addLE64Patch(uint64_t Offset, uint64_t NewValue) {
  addLEPatch(Offset, NewValue, 8);
}

void SimpleBinaryPatcher::addLE32Patch(uint64_t Offset, uint32_t NewValue,
                                       uint32_t OldValueSize) {
  addLEPatch(Offset, NewValue, 4);
}

std::string SimpleBinaryPatcher::patchBinary(StringRef BinaryContents) {
  std::string BinaryContentsStr = std::string(BinaryContents);
  for (const auto &Patch : Patches) {
    uint32_t Offset = Patch.first;
    const std::string &ByteSequence = Patch.second;
    assert(Offset + ByteSequence.size() <= BinaryContents.size() &&
           "Applied patch runs over binary size.");
    for (uint64_t I = 0, Size = ByteSequence.size(); I < Size; ++I) {
      BinaryContentsStr[Offset + I] = ByteSequence[I];
    }
  }
  return BinaryContentsStr;
}

CUOffsetMap DebugInfoBinaryPatcher::computeNewOffsets(DWARFContext &DWCtx,
                                                      bool IsDWOContext) {
  CUOffsetMap CUMap;
  std::sort(DebugPatches.begin(), DebugPatches.end(),
            [](const UniquePatchPtrType &V1, const UniquePatchPtrType &V2) {
              if (V1.get()->Offset == V2.get()->Offset) {
                if (V1->Kind == DebugPatchKind::NewDebugEntry &&
                    V2->Kind == DebugPatchKind::NewDebugEntry)
                  return reinterpret_cast<const NewDebugEntry *>(V1.get())
                             ->CurrentOrder <
                         reinterpret_cast<const NewDebugEntry *>(V2.get())
                             ->CurrentOrder;

                // This is a case where we are modifying first entry of next
                // DIE, and adding a new one.
                return V1->Kind == DebugPatchKind::NewDebugEntry;
              }
              return V1.get()->Offset < V2.get()->Offset;
            });

  DWARFUnitVector::compile_unit_range CompileUnits =
      IsDWOContext ? DWCtx.dwo_compile_units() : DWCtx.compile_units();

  for (const std::unique_ptr<DWARFUnit> &CU : CompileUnits)
    CUMap[CU->getOffset()] = {static_cast<uint32_t>(CU->getOffset()),
                              static_cast<uint32_t>(CU->getLength())};

  // Calculating changes in .debug_info size from Patches to build a map of old
  // to updated reference destination offsets.
  uint32_t PreviousOffset = 0;
  int32_t PreviousChangeInSize = 0;
  for (UniquePatchPtrType &PatchBase : DebugPatches) {
    Patch *P = PatchBase.get();
    switch (P->Kind) {
    default:
      continue;
    case DebugPatchKind::PatchValue64to32: {
      PreviousChangeInSize -= 4;
      break;
    }
    case DebugPatchKind::PatchValue32GenericSize: {
      DebugPatch32GenericSize *DPVS =
          reinterpret_cast<DebugPatch32GenericSize *>(P);
      PreviousChangeInSize += 4 - DPVS->OldValueSize;
      break;
    }
    case DebugPatchKind::PatchValueVariable: {
      DebugPatchVariableSize *DPV =
          reinterpret_cast<DebugPatchVariableSize *>(P);
      std::string Temp;
      raw_string_ostream OS(Temp);
      encodeULEB128(DPV->Value, OS);
      PreviousChangeInSize += Temp.size() - DPV->OldValueSize;
      break;
    }
    case DebugPatchKind::DestinationReferenceLabel: {
      DestinationReferenceLabel *DRL =
          reinterpret_cast<DestinationReferenceLabel *>(P);
      OldToNewOffset[DRL->Offset] =
          DRL->Offset + ChangeInSize + PreviousChangeInSize;
      break;
    }
    case DebugPatchKind::ReferencePatchValue: {
      // This doesn't look to be a common case, so will always encode as 4 bytes
      // to reduce algorithmic complexity.
      DebugPatchReference *RDP = reinterpret_cast<DebugPatchReference *>(P);
      if (RDP->PatchInfo.IndirectRelative) {
        PreviousChangeInSize += 4 - RDP->PatchInfo.OldValueSize;
        assert(RDP->PatchInfo.OldValueSize <= 4 &&
               "Variable encoding reference greater than 4 bytes.");
      }
      break;
    }
    case DebugPatchKind::DWARFUnitOffsetBaseLabel: {
      DWARFUnitOffsetBaseLabel *BaseLabel =
          reinterpret_cast<DWARFUnitOffsetBaseLabel *>(P);
      uint32_t CUOffset = BaseLabel->Offset;
      ChangeInSize += PreviousChangeInSize;
      uint32_t CUOffsetUpdate = CUOffset + ChangeInSize;
      CUMap[CUOffset].Offset = CUOffsetUpdate;
      CUMap[PreviousOffset].Length += PreviousChangeInSize;
      PreviousChangeInSize = 0;
      PreviousOffset = CUOffset;
      break;
    }
    case DebugPatchKind::NewDebugEntry: {
      NewDebugEntry *NDE = reinterpret_cast<NewDebugEntry *>(P);
      PreviousChangeInSize += NDE->Value.size();
      break;
    }
    }
  }
  CUMap[PreviousOffset].Length += PreviousChangeInSize;
  return CUMap;
}
uint32_t DebugInfoBinaryPatcher::NewDebugEntry::OrderCounter = 0;

std::string DebugInfoBinaryPatcher::patchBinary(StringRef BinaryContents) {
  std::string NewBinaryContents;
  NewBinaryContents.reserve(BinaryContents.size() + ChangeInSize);
  uint32_t StartOffset = 0;
  uint32_t DwarfUnitBaseOffset = 0;
  uint32_t OldValueSize = 0;
  uint32_t Offset = 0;
  std::string ByteSequence;
  std::vector<std::pair<uint32_t, uint32_t>> LengthPatches;
  // Wasting one entry to avoid checks for first.
  LengthPatches.push_back({0, 0});

  // Applying all the patches replacing current entry.
  // This might change the size of .debug_info section.
  for (const UniquePatchPtrType &PatchBase : DebugPatches) {
    Patch *P = PatchBase.get();
    switch (P->Kind) {
    default:
      continue;
    case DebugPatchKind::ReferencePatchValue: {
      DebugPatchReference *RDP = reinterpret_cast<DebugPatchReference *>(P);
      uint32_t DestinationOffset = RDP->DestinationOffset;
      assert(OldToNewOffset.count(DestinationOffset) &&
             "Destination Offset for reference not updated.");
      uint32_t UpdatedOffset = OldToNewOffset[DestinationOffset];
      Offset = RDP->Offset;
      OldValueSize = RDP->PatchInfo.OldValueSize;
      if (RDP->PatchInfo.DirectRelative) {
        UpdatedOffset -= DwarfUnitBaseOffset;
        ByteSequence = encodeLE(OldValueSize, UpdatedOffset);
        // In theory reference for DW_FORM_ref{1,2,4,8} can be right on the edge
        // and overflow if later debug information grows.
        if (ByteSequence.size() > OldValueSize)
          errs() << "BOLT-ERROR: Relative reference of size "
                 << Twine::utohexstr(OldValueSize)
                 << " overflows with the new encoding.\n";
      } else if (RDP->PatchInfo.DirectAbsolute) {
        ByteSequence = encodeLE(OldValueSize, UpdatedOffset);
      } else if (RDP->PatchInfo.IndirectRelative) {
        UpdatedOffset -= DwarfUnitBaseOffset;
        ByteSequence.clear();
        raw_string_ostream OS(ByteSequence);
        encodeULEB128(UpdatedOffset, OS, 4);
      } else {
        llvm_unreachable("Invalid Reference form.");
      }
      break;
    }
    case DebugPatchKind::PatchValue32: {
      DebugPatch32 *P32 = reinterpret_cast<DebugPatch32 *>(P);
      Offset = P32->Offset;
      OldValueSize = 4;
      ByteSequence = encodeLE(4, P32->Value);
      break;
    }
    case DebugPatchKind::PatchValue64to32: {
      DebugPatch64to32 *P64to32 = reinterpret_cast<DebugPatch64to32 *>(P);
      Offset = P64to32->Offset;
      OldValueSize = 8;
      ByteSequence = encodeLE(4, P64to32->Value);
      break;
    }
    case DebugPatchKind::PatchValue32GenericSize: {
      DebugPatch32GenericSize *DPVS =
          reinterpret_cast<DebugPatch32GenericSize *>(P);
      Offset = DPVS->Offset;
      OldValueSize = DPVS->OldValueSize;
      ByteSequence = encodeLE(4, DPVS->Value);
      break;
    }
    case DebugPatchKind::PatchValueVariable: {
      DebugPatchVariableSize *PV =
          reinterpret_cast<DebugPatchVariableSize *>(P);
      Offset = PV->Offset;
      OldValueSize = PV->OldValueSize;
      ByteSequence.clear();
      raw_string_ostream OS(ByteSequence);
      encodeULEB128(PV->Value, OS);
      break;
    }
    case DebugPatchKind::PatchValue64: {
      DebugPatch64 *P64 = reinterpret_cast<DebugPatch64 *>(P);
      Offset = P64->Offset;
      OldValueSize = 8;
      ByteSequence = encodeLE(8, P64->Value);
      break;
    }
    case DebugPatchKind::DWARFUnitOffsetBaseLabel: {
      DWARFUnitOffsetBaseLabel *BaseLabel =
          reinterpret_cast<DWARFUnitOffsetBaseLabel *>(P);
      Offset = BaseLabel->Offset;
      OldValueSize = 0;
      ByteSequence.clear();
      auto &Patch = LengthPatches.back();
      // Length to copy between last patch entry and next compile unit.
      uint32_t RemainingLength = Offset - StartOffset;
      uint32_t NewCUOffset = NewBinaryContents.size() + RemainingLength;
      DwarfUnitBaseOffset = NewCUOffset;
      // Length of previous CU = This CU Offset - sizeof(length) - last CU
      // Offset.
      Patch.second = NewCUOffset - 4 - Patch.first;
      LengthPatches.push_back({NewCUOffset, 0});
      break;
    }
    case DebugPatchKind::NewDebugEntry: {
      NewDebugEntry *NDE = reinterpret_cast<NewDebugEntry *>(P);
      Offset = NDE->Offset;
      OldValueSize = 0;
      ByteSequence = NDE->Value;
      break;
    }
    }

    assert((P->Kind == DebugPatchKind::NewDebugEntry ||
            Offset + ByteSequence.size() <= BinaryContents.size()) &&
           "Applied patch runs over binary size.");
    uint32_t Length = Offset - StartOffset;
    NewBinaryContents.append(BinaryContents.substr(StartOffset, Length).data(),
                             Length);
    NewBinaryContents.append(ByteSequence.data(), ByteSequence.size());
    StartOffset = Offset + OldValueSize;
  }
  uint32_t Length = BinaryContents.size() - StartOffset;
  NewBinaryContents.append(BinaryContents.substr(StartOffset, Length).data(),
                           Length);
  DebugPatches.clear();

  // Patching lengths of CUs
  auto &Patch = LengthPatches.back();
  Patch.second = NewBinaryContents.size() - 4 - Patch.first;
  for (uint32_t J = 1, Size = LengthPatches.size(); J < Size; ++J) {
    const auto &Patch = LengthPatches[J];
    ByteSequence = encodeLE(4, Patch.second);
    Offset = Patch.first;
    for (uint64_t I = 0, Size = ByteSequence.size(); I < Size; ++I)
      NewBinaryContents[Offset + I] = ByteSequence[I];
  }

  return NewBinaryContents;
}

void DebugStrWriter::create() {
  StrBuffer = std::make_unique<DebugStrBufferVector>();
  StrStream = std::make_unique<raw_svector_ostream>(*StrBuffer);
}

void DebugStrWriter::initialize() {
  auto StrSection = BC->DwCtx->getDWARFObj().getStrSection();
  (*StrStream) << StrSection;
}

uint32_t DebugStrWriter::addString(StringRef Str) {
  std::lock_guard<std::mutex> Lock(WriterMutex);
  if (StrBuffer->empty())
    initialize();
  auto Offset = StrBuffer->size();
  (*StrStream) << Str;
  StrStream->write_zeros(1);
  return Offset;
}

void DebugAbbrevWriter::addUnitAbbreviations(DWARFUnit &Unit) {
  const DWARFAbbreviationDeclarationSet *Abbrevs = Unit.getAbbreviations();
  if (!Abbrevs)
    return;

  const PatchesTy &UnitPatches = Patches[&Unit];
  const AbbrevEntryTy &AbbrevEntries = NewAbbrevEntries[&Unit];

  // We are duplicating abbrev sections, to handle the case where for one CU we
  // modify it, but for another we don't.
  auto UnitDataPtr = std::make_unique<AbbrevData>();
  AbbrevData &UnitData = *UnitDataPtr.get();
  UnitData.Buffer = std::make_unique<DebugBufferVector>();
  UnitData.Stream = std::make_unique<raw_svector_ostream>(*UnitData.Buffer);

  raw_svector_ostream &OS = *UnitData.Stream.get();

  // Returns true if AbbrevData is re-used, false otherwise.
  auto hashAndAddAbbrev = [&](StringRef AbbrevData) -> bool {
    llvm::SHA1 Hasher;
    Hasher.update(AbbrevData);
    std::array<uint8_t, 20> Hash = Hasher.final();
    StringRef Key((const char *)Hash.data(), Hash.size());
    auto Iter = AbbrevDataCache.find(Key);
    if (Iter != AbbrevDataCache.end()) {
      UnitsAbbrevData[&Unit] = Iter->second.get();
      return true;
    }
    AbbrevDataCache[Key] = std::move(UnitDataPtr);
    UnitsAbbrevData[&Unit] = &UnitData;
    return false;
  };
  // Take a fast path if there are no patches to apply. Simply copy the original
  // contents.
  if (UnitPatches.empty() && AbbrevEntries.empty()) {
    StringRef AbbrevSectionContents =
        Unit.isDWOUnit() ? Unit.getContext().getDWARFObj().getAbbrevDWOSection()
                         : Unit.getContext().getDWARFObj().getAbbrevSection();
    StringRef AbbrevContents;

    const DWARFUnitIndex &CUIndex = Unit.getContext().getCUIndex();
    if (!CUIndex.getRows().empty()) {
      // Handle DWP section contribution.
      const DWARFUnitIndex::Entry *DWOEntry =
          CUIndex.getFromHash(*Unit.getDWOId());
      if (!DWOEntry)
        return;

      const DWARFUnitIndex::Entry::SectionContribution *DWOContrubution =
          DWOEntry->getContribution(DWARFSectionKind::DW_SECT_ABBREV);
      AbbrevContents = AbbrevSectionContents.substr(DWOContrubution->Offset,
                                                    DWOContrubution->Length);
    } else if (!Unit.isDWOUnit()) {
      const uint64_t StartOffset = Unit.getAbbreviationsOffset();

      // We know where the unit's abbreviation set starts, but not where it ends
      // as such data is not readily available. Hence, we have to build a sorted
      // list of start addresses and find the next starting address to determine
      // the set boundaries.
      //
      // FIXME: if we had a full access to DWARFDebugAbbrev::AbbrDeclSets
      // we wouldn't have to build our own sorted list for the quick lookup.
      if (AbbrevSetOffsets.empty()) {
        for_each(
            *Unit.getContext().getDebugAbbrev(),
            [&](const std::pair<uint64_t, DWARFAbbreviationDeclarationSet> &P) {
              AbbrevSetOffsets.push_back(P.first);
            });
        sort(AbbrevSetOffsets);
      }
      auto It = upper_bound(AbbrevSetOffsets, StartOffset);
      const uint64_t EndOffset =
          It == AbbrevSetOffsets.end() ? AbbrevSectionContents.size() : *It;
      AbbrevContents = AbbrevSectionContents.slice(StartOffset, EndOffset);
    } else {
      // For DWO unit outside of DWP, we expect the entire section to hold
      // abbreviations for this unit only.
      AbbrevContents = AbbrevSectionContents;
    }

    if (!hashAndAddAbbrev(AbbrevContents)) {
      OS.reserveExtraSpace(AbbrevContents.size());
      OS << AbbrevContents;
    }
    return;
  }

  for (auto I = Abbrevs->begin(), E = Abbrevs->end(); I != E; ++I) {
    const DWARFAbbreviationDeclaration &Abbrev = *I;
    auto Patch = UnitPatches.find(&Abbrev);

    encodeULEB128(Abbrev.getCode(), OS);
    encodeULEB128(Abbrev.getTag(), OS);
    encodeULEB128(Abbrev.hasChildren(), OS);
    for (const DWARFAbbreviationDeclaration::AttributeSpec &AttrSpec :
         Abbrev.attributes()) {
      if (Patch != UnitPatches.end()) {
        bool Patched = false;
        // Patches added later take a precedence over earlier ones.
        for (auto I = Patch->second.rbegin(), E = Patch->second.rend(); I != E;
             ++I) {
          if (I->OldAttr != AttrSpec.Attr)
            continue;

          encodeULEB128(I->NewAttr, OS);
          encodeULEB128(I->NewAttrForm, OS);
          Patched = true;
          break;
        }
        if (Patched)
          continue;
      }

      encodeULEB128(AttrSpec.Attr, OS);
      encodeULEB128(AttrSpec.Form, OS);
      if (AttrSpec.isImplicitConst())
        encodeSLEB128(AttrSpec.getImplicitConstValue(), OS);
    }
    const auto Entries = AbbrevEntries.find(&Abbrev);
    // Adding new Abbrevs for inserted entries.
    if (Entries != AbbrevEntries.end()) {
      for (const AbbrevEntry &Entry : Entries->second) {
        encodeULEB128(Entry.Attr, OS);
        encodeULEB128(Entry.Form, OS);
      }
    }
    encodeULEB128(0, OS);
    encodeULEB128(0, OS);
  }
  encodeULEB128(0, OS);

  hashAndAddAbbrev(OS.str());
}

std::unique_ptr<DebugBufferVector> DebugAbbrevWriter::finalize() {
  // Used to create determinism for writing out abbrevs.
  std::vector<AbbrevData *> Abbrevs;
  if (DWOId) {
    // We expect abbrev_offset to always be zero for DWO units as there
    // should be one CU per DWO, and TUs should share the same abbreviation
    // set with the CU.
    // For DWP AbbreviationsOffset is an Abbrev contribution in the DWP file, so
    // can be none zero. Thus we are skipping the check for DWP.
    bool IsDWP = !Context.getCUIndex().getRows().empty();
    if (!IsDWP) {
      for (const std::unique_ptr<DWARFUnit> &Unit : Context.dwo_units()) {
        if (Unit->getAbbreviationsOffset() != 0) {
          errs() << "BOLT-ERROR: detected DWO unit with non-zero abbr_offset. "
                    "Unable to update debug info.\n";
          exit(1);
        }
      }
    }

    DWARFUnit *Unit = Context.getDWOCompileUnitForHash(*DWOId);
    // Issue abbreviations for the DWO CU only.
    addUnitAbbreviations(*Unit);
    AbbrevData *Abbrev = UnitsAbbrevData[Unit];
    Abbrevs.push_back(Abbrev);
  } else {
    Abbrevs.reserve(Context.getNumCompileUnits() + Context.getNumTypeUnits());
    std::unordered_set<AbbrevData *> ProcessedAbbrevs;
    // Add abbreviations from compile and type non-DWO units.
    for (const std::unique_ptr<DWARFUnit> &Unit : Context.normal_units()) {
      addUnitAbbreviations(*Unit);
      AbbrevData *Abbrev = UnitsAbbrevData[Unit.get()];
      if (!ProcessedAbbrevs.insert(Abbrev).second)
        continue;
      Abbrevs.push_back(Abbrev);
    }
  }

  DebugBufferVector ReturnBuffer;
  // Pre-calculate the total size of abbrev section.
  uint64_t Size = 0;
  for (const AbbrevData *UnitData : Abbrevs)
    Size += UnitData->Buffer->size();

  ReturnBuffer.reserve(Size);

  uint64_t Pos = 0;
  for (AbbrevData *UnitData : Abbrevs) {
    ReturnBuffer.append(*UnitData->Buffer);
    UnitData->Offset = Pos;
    Pos += UnitData->Buffer->size();

    UnitData->Buffer.reset();
    UnitData->Stream.reset();
  }

  return std::make_unique<DebugBufferVector>(ReturnBuffer);
}

static void emitDwarfSetLineAddrAbs(MCStreamer &OS,
                                    MCDwarfLineTableParams Params,
                                    int64_t LineDelta, uint64_t Address,
                                    int PointerSize) {
  // emit the sequence to set the address
  OS.emitIntValue(dwarf::DW_LNS_extended_op, 1);
  OS.emitULEB128IntValue(PointerSize + 1);
  OS.emitIntValue(dwarf::DW_LNE_set_address, 1);
  OS.emitIntValue(Address, PointerSize);

  // emit the sequence for the LineDelta (from 1) and a zero address delta.
  MCDwarfLineAddr::Emit(&OS, Params, LineDelta, 0);
}

static inline void emitBinaryDwarfLineTable(
    MCStreamer *MCOS, MCDwarfLineTableParams Params,
    const DWARFDebugLine::LineTable *Table,
    const std::vector<DwarfLineTable::RowSequence> &InputSequences) {
  if (InputSequences.empty())
    return;

  constexpr uint64_t InvalidAddress = UINT64_MAX;
  unsigned FileNum = 1;
  unsigned LastLine = 1;
  unsigned Column = 0;
  unsigned Flags = DWARF2_LINE_DEFAULT_IS_STMT ? DWARF2_FLAG_IS_STMT : 0;
  unsigned Isa = 0;
  unsigned Discriminator = 0;
  uint64_t LastAddress = InvalidAddress;
  uint64_t PrevEndOfSequence = InvalidAddress;
  const MCAsmInfo *AsmInfo = MCOS->getContext().getAsmInfo();

  auto emitEndOfSequence = [&](uint64_t Address) {
    MCDwarfLineAddr::Emit(MCOS, Params, INT64_MAX, Address - LastAddress);
    FileNum = 1;
    LastLine = 1;
    Column = 0;
    Flags = DWARF2_LINE_DEFAULT_IS_STMT ? DWARF2_FLAG_IS_STMT : 0;
    Isa = 0;
    Discriminator = 0;
    LastAddress = InvalidAddress;
  };

  for (const DwarfLineTable::RowSequence &Sequence : InputSequences) {
    const uint64_t SequenceStart =
        Table->Rows[Sequence.FirstIndex].Address.Address;

    // Check if we need to mark the end of the sequence.
    if (PrevEndOfSequence != InvalidAddress && LastAddress != InvalidAddress &&
        PrevEndOfSequence != SequenceStart) {
      emitEndOfSequence(PrevEndOfSequence);
    }

    for (uint32_t RowIndex = Sequence.FirstIndex;
         RowIndex <= Sequence.LastIndex; ++RowIndex) {
      const DWARFDebugLine::Row &Row = Table->Rows[RowIndex];
      int64_t LineDelta = static_cast<int64_t>(Row.Line) - LastLine;
      const uint64_t Address = Row.Address.Address;

      if (FileNum != Row.File) {
        FileNum = Row.File;
        MCOS->emitInt8(dwarf::DW_LNS_set_file);
        MCOS->emitULEB128IntValue(FileNum);
      }
      if (Column != Row.Column) {
        Column = Row.Column;
        MCOS->emitInt8(dwarf::DW_LNS_set_column);
        MCOS->emitULEB128IntValue(Column);
      }
      if (Discriminator != Row.Discriminator &&
          MCOS->getContext().getDwarfVersion() >= 4) {
        Discriminator = Row.Discriminator;
        unsigned Size = getULEB128Size(Discriminator);
        MCOS->emitInt8(dwarf::DW_LNS_extended_op);
        MCOS->emitULEB128IntValue(Size + 1);
        MCOS->emitInt8(dwarf::DW_LNE_set_discriminator);
        MCOS->emitULEB128IntValue(Discriminator);
      }
      if (Isa != Row.Isa) {
        Isa = Row.Isa;
        MCOS->emitInt8(dwarf::DW_LNS_set_isa);
        MCOS->emitULEB128IntValue(Isa);
      }
      if (Row.IsStmt != Flags) {
        Flags = Row.IsStmt;
        MCOS->emitInt8(dwarf::DW_LNS_negate_stmt);
      }
      if (Row.BasicBlock)
        MCOS->emitInt8(dwarf::DW_LNS_set_basic_block);
      if (Row.PrologueEnd)
        MCOS->emitInt8(dwarf::DW_LNS_set_prologue_end);
      if (Row.EpilogueBegin)
        MCOS->emitInt8(dwarf::DW_LNS_set_epilogue_begin);

      // The end of the sequence is not normal in the middle of the input
      // sequence, but could happen, e.g. for assembly code.
      if (Row.EndSequence) {
        emitEndOfSequence(Address);
      } else {
        if (LastAddress == InvalidAddress)
          emitDwarfSetLineAddrAbs(*MCOS, Params, LineDelta, Address,
                                  AsmInfo->getCodePointerSize());
        else
          MCDwarfLineAddr::Emit(MCOS, Params, LineDelta, Address - LastAddress);

        LastAddress = Address;
        LastLine = Row.Line;
      }

      Discriminator = 0;
    }
    PrevEndOfSequence = Sequence.EndAddress;
  }

  // Finish with the end of the sequence.
  if (LastAddress != InvalidAddress)
    emitEndOfSequence(PrevEndOfSequence);
}

// This function is similar to the one from MCDwarfLineTable, except it handles
// end-of-sequence entries differently by utilizing line entries with
// DWARF2_FLAG_END_SEQUENCE flag.
static inline void emitDwarfLineTable(
    MCStreamer *MCOS, MCSection *Section,
    const MCLineSection::MCDwarfLineEntryCollection &LineEntries) {
  unsigned FileNum = 1;
  unsigned LastLine = 1;
  unsigned Column = 0;
  unsigned Flags = DWARF2_LINE_DEFAULT_IS_STMT ? DWARF2_FLAG_IS_STMT : 0;
  unsigned Isa = 0;
  unsigned Discriminator = 0;
  MCSymbol *LastLabel = nullptr;
  const MCAsmInfo *AsmInfo = MCOS->getContext().getAsmInfo();

  // Loop through each MCDwarfLineEntry and encode the dwarf line number table.
  for (const MCDwarfLineEntry &LineEntry : LineEntries) {
    if (LineEntry.getFlags() & DWARF2_FLAG_END_SEQUENCE) {
      MCOS->emitDwarfAdvanceLineAddr(INT64_MAX, LastLabel, LineEntry.getLabel(),
                                     AsmInfo->getCodePointerSize());
      FileNum = 1;
      LastLine = 1;
      Column = 0;
      Flags = DWARF2_LINE_DEFAULT_IS_STMT ? DWARF2_FLAG_IS_STMT : 0;
      Isa = 0;
      Discriminator = 0;
      LastLabel = nullptr;
      continue;
    }

    int64_t LineDelta = static_cast<int64_t>(LineEntry.getLine()) - LastLine;

    if (FileNum != LineEntry.getFileNum()) {
      FileNum = LineEntry.getFileNum();
      MCOS->emitInt8(dwarf::DW_LNS_set_file);
      MCOS->emitULEB128IntValue(FileNum);
    }
    if (Column != LineEntry.getColumn()) {
      Column = LineEntry.getColumn();
      MCOS->emitInt8(dwarf::DW_LNS_set_column);
      MCOS->emitULEB128IntValue(Column);
    }
    if (Discriminator != LineEntry.getDiscriminator() &&
        MCOS->getContext().getDwarfVersion() >= 4) {
      Discriminator = LineEntry.getDiscriminator();
      unsigned Size = getULEB128Size(Discriminator);
      MCOS->emitInt8(dwarf::DW_LNS_extended_op);
      MCOS->emitULEB128IntValue(Size + 1);
      MCOS->emitInt8(dwarf::DW_LNE_set_discriminator);
      MCOS->emitULEB128IntValue(Discriminator);
    }
    if (Isa != LineEntry.getIsa()) {
      Isa = LineEntry.getIsa();
      MCOS->emitInt8(dwarf::DW_LNS_set_isa);
      MCOS->emitULEB128IntValue(Isa);
    }
    if ((LineEntry.getFlags() ^ Flags) & DWARF2_FLAG_IS_STMT) {
      Flags = LineEntry.getFlags();
      MCOS->emitInt8(dwarf::DW_LNS_negate_stmt);
    }
    if (LineEntry.getFlags() & DWARF2_FLAG_BASIC_BLOCK)
      MCOS->emitInt8(dwarf::DW_LNS_set_basic_block);
    if (LineEntry.getFlags() & DWARF2_FLAG_PROLOGUE_END)
      MCOS->emitInt8(dwarf::DW_LNS_set_prologue_end);
    if (LineEntry.getFlags() & DWARF2_FLAG_EPILOGUE_BEGIN)
      MCOS->emitInt8(dwarf::DW_LNS_set_epilogue_begin);

    MCSymbol *Label = LineEntry.getLabel();

    // At this point we want to emit/create the sequence to encode the delta
    // in line numbers and the increment of the address from the previous
    // Label and the current Label.
    MCOS->emitDwarfAdvanceLineAddr(LineDelta, LastLabel, Label,
                                   AsmInfo->getCodePointerSize());
    Discriminator = 0;
    LastLine = LineEntry.getLine();
    LastLabel = Label;
  }

  assert(LastLabel == nullptr && "end of sequence expected");
}

void DwarfLineTable::emitCU(MCStreamer *MCOS, MCDwarfLineTableParams Params,
                            Optional<MCDwarfLineStr> &LineStr,
                            BinaryContext &BC) const {
  if (!RawData.empty()) {
    assert(MCLineSections.getMCLineEntries().empty() &&
           InputSequences.empty() &&
           "cannot combine raw data with new line entries");
    MCOS->emitLabel(getLabel());
    MCOS->emitBytes(RawData);

    // Emit fake relocation for RuntimeDyld to always allocate the section.
    //
    // FIXME: remove this once RuntimeDyld stops skipping allocatable sections
    //        without relocations.
    MCOS->emitRelocDirective(
        *MCConstantExpr::create(0, *BC.Ctx), "BFD_RELOC_NONE",
        MCSymbolRefExpr::create(getLabel(), *BC.Ctx), SMLoc(), *BC.STI);

    return;
  }

  MCSymbol *LineEndSym = Header.Emit(MCOS, Params, LineStr).second;

  // Put out the line tables.
  for (const auto &LineSec : MCLineSections.getMCLineEntries())
    emitDwarfLineTable(MCOS, LineSec.first, LineSec.second);

  // Emit line tables for the original code.
  emitBinaryDwarfLineTable(MCOS, Params, InputTable, InputSequences);

  // This is the end of the section, so set the value of the symbol at the end
  // of this section (that was used in a previous expression).
  MCOS->emitLabel(LineEndSym);
}

void DwarfLineTable::emit(BinaryContext &BC, MCStreamer &Streamer) {
  MCAssembler &Assembler =
      static_cast<MCObjectStreamer *>(&Streamer)->getAssembler();

  MCDwarfLineTableParams Params = Assembler.getDWARFLinetableParams();

  auto &LineTables = BC.getDwarfLineTables();

  // Bail out early so we don't switch to the debug_line section needlessly and
  // in doing so create an unnecessary (if empty) section.
  if (LineTables.empty())
    return;

  // In a v5 non-split line table, put the strings in a separate section.
  Optional<MCDwarfLineStr> LineStr(None);
  if (BC.Ctx->getDwarfVersion() >= 5)
    LineStr = MCDwarfLineStr(*BC.Ctx);

  // Switch to the section where the table will be emitted into.
  Streamer.SwitchSection(BC.MOFI->getDwarfLineSection());

  // Handle the rest of the Compile Units.
  for (auto &CUIDTablePair : LineTables) {
    CUIDTablePair.second.emitCU(&Streamer, Params, LineStr, BC);
  }
}

} // namespace bolt
} // namespace llvm