Welcome to mirror list, hosted at ThFree Co, Russian Federation.

constant-expression-cxx2a.cpp « SemaCXX « test « clang - github.com/llvm/llvm-project.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 6ebec5dc7e306191e9094a51eb547d5300332fe0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
// RUN: %clang_cc1 -std=c++2a -verify %s -fcxx-exceptions -triple=x86_64-linux-gnu -Wno-mismatched-new-delete

#include "Inputs/std-compare.h"

namespace std {
  struct type_info;
  struct destroying_delete_t {
    explicit destroying_delete_t() = default;
  } inline constexpr destroying_delete{};
  struct nothrow_t {
    explicit nothrow_t() = default;
  } inline constexpr nothrow{};
  using size_t = decltype(sizeof(0));
  enum class align_val_t : size_t {};
};

[[nodiscard]] void *operator new(std::size_t, const std::nothrow_t&) noexcept;
[[nodiscard]] void *operator new(std::size_t, std::align_val_t, const std::nothrow_t&) noexcept;
[[nodiscard]] void *operator new[](std::size_t, const std::nothrow_t&) noexcept;
[[nodiscard]] void *operator new[](std::size_t, std::align_val_t, const std::nothrow_t&) noexcept;
[[nodiscard]] void *operator new[](std::size_t, std::align_val_t);
void operator delete(void*, const std::nothrow_t&) noexcept;
void operator delete(void*, std::align_val_t, const std::nothrow_t&) noexcept;
void operator delete[](void*, const std::nothrow_t&) noexcept;
void operator delete[](void*, std::align_val_t, const std::nothrow_t&) noexcept;

// Helper to print out values for debugging.
constexpr void not_defined();
template<typename T> constexpr void print(T) { not_defined(); }

namespace ThreeWayComparison {
  struct A {
    int n;
    constexpr friend int operator<=>(const A &a, const A &b) {
      return a.n < b.n ? -1 : a.n > b.n ? 1 : 0;
    }
  };
  static_assert(A{1} <=> A{2} < 0);
  static_assert(A{2} <=> A{1} > 0);
  static_assert(A{2} <=> A{2} == 0);

  static_assert(1 <=> 2 < 0);
  static_assert(2 <=> 1 > 0);
  static_assert(1 <=> 1 == 0);
  constexpr int k = (1 <=> 1, 0);
  // expected-warning@-1 {{three-way comparison result unused}}

  static_assert(std::strong_ordering::equal == 0);

  constexpr void f() {
    void(1 <=> 1);
  }

  struct MemPtr {
    void foo() {}
    void bar() {}
    int data;
    int data2;
    long data3;
  };

  struct MemPtr2 {
    void foo() {}
    void bar() {}
    int data;
    int data2;
    long data3;
  };
  using MemPtrT = void (MemPtr::*)();

  using FnPtrT = void (*)();

  void FnPtr1() {}
  void FnPtr2() {}

#define CHECK(...) ((__VA_ARGS__) ? void() : throw "error")
#define CHECK_TYPE(...) static_assert(__is_same(__VA_ARGS__));

constexpr bool test_constexpr_success = [] {
  {
    auto &EQ = std::strong_ordering::equal;
    auto &LESS = std::strong_ordering::less;
    auto &GREATER = std::strong_ordering::greater;
    using SO = std::strong_ordering;
    auto eq = (42 <=> 42);
    CHECK_TYPE(decltype(eq), SO);
    CHECK(eq.test_eq(EQ));

    auto less = (-1 <=> 0);
    CHECK_TYPE(decltype(less), SO);
    CHECK(less.test_eq(LESS));

    auto greater = (42l <=> 1u);
    CHECK_TYPE(decltype(greater), SO);
    CHECK(greater.test_eq(GREATER));
  }
  {
    using PO = std::partial_ordering;
    auto EQUIV = PO::equivalent;
    auto LESS = PO::less;
    auto GREATER = PO::greater;

    auto eq = (42.0 <=> 42.0);
    CHECK_TYPE(decltype(eq), PO);
    CHECK(eq.test_eq(EQUIV));

    auto less = (39.0 <=> 42.0);
    CHECK_TYPE(decltype(less), PO);
    CHECK(less.test_eq(LESS));

    auto greater = (-10.123 <=> -101.1);
    CHECK_TYPE(decltype(greater), PO);
    CHECK(greater.test_eq(GREATER));
  }

  return true;
}();

int dummy = 42;
int dummy2 = 101;
constexpr bool tc9 = (&dummy <=> &dummy2) != 0; // expected-error {{constant expression}} expected-note {{unspecified}}

template <class T, class R, class I>
constexpr T makeComplex(R r, I i) {
  T res{r, i};
  return res;
};
} // namespace ThreeWayComparison

constexpr bool for_range_init() {
  int k = 0;
  for (int arr[3] = {1, 2, 3}; int n : arr) k += n;
  return k == 6;
}
static_assert(for_range_init());

namespace Virtual {
  struct NonZeroOffset { int padding = 123; };

  constexpr void assert(bool b) { if (!b) throw 0; }

  // Ensure that we pick the right final overrider during construction.
  struct A {
    virtual constexpr char f() const { return 'A'; }
    char a = f();
    constexpr ~A() { assert(f() == 'A'); }
  };
  struct NoOverrideA : A {};
  struct B : NonZeroOffset, NoOverrideA {
    virtual constexpr char f() const { return 'B'; }
    char b = f();
    constexpr ~B() { assert(f() == 'B'); }
  };
  struct NoOverrideB : B {};
  struct C : NonZeroOffset, A {
    virtual constexpr char f() const { return 'C'; }
    A *pba;
    char c = ((A*)this)->f();
    char ba = pba->f();
    constexpr C(A *pba) : pba(pba) {}
    constexpr ~C() { assert(f() == 'C'); }
  };
  struct D : NonZeroOffset, NoOverrideB, C { // expected-warning {{inaccessible}}
    virtual constexpr char f() const { return 'D'; }
    char d = f();
    constexpr D() : C((B*)this) {}
    constexpr ~D() { assert(f() == 'D'); }
  };
  constexpr int n = (D(), 0);
  constexpr D d;
  static_assert(((B&)d).a == 'A');
  static_assert(((C&)d).a == 'A');
  static_assert(d.b == 'B');
  static_assert(d.c == 'C');
  // During the construction of C, the dynamic type of B's A is B.
  static_assert(d.ba == 'B');
  static_assert(d.d == 'D');
  static_assert(d.f() == 'D');
  constexpr const A &a = (B&)d;
  constexpr const B &b = d;
  static_assert(a.f() == 'D');
  static_assert(b.f() == 'D');

  // FIXME: It is unclear whether this should be permitted.
  D d_not_constexpr;
  static_assert(d_not_constexpr.f() == 'D'); // expected-error {{constant expression}} expected-note {{virtual function called on object 'd_not_constexpr' whose dynamic type is not constant}}

  // Check that we apply a proper adjustment for a covariant return type.
  struct Covariant1 {
    D d;
    virtual const A *f() const;
  };
  template<typename T>
  struct Covariant2 : Covariant1 {
    virtual const T *f() const;
  };
  template<typename T>
  struct Covariant3 : Covariant2<T> {
    constexpr virtual const D *f() const { return &this->d; }
  };

  constexpr Covariant3<B> cb;
  constexpr Covariant3<C> cc;

  constexpr const Covariant1 *cb1 = &cb;
  constexpr const Covariant2<B> *cb2 = &cb;
  static_assert(cb1->f()->a == 'A');
  static_assert(cb1->f() == (B*)&cb.d);
  static_assert(cb1->f()->f() == 'D');
  static_assert(cb2->f()->b == 'B');
  static_assert(cb2->f() == &cb.d);
  static_assert(cb2->f()->f() == 'D');

  constexpr const Covariant1 *cc1 = &cc;
  constexpr const Covariant2<C> *cc2 = &cc;
  static_assert(cc1->f()->a == 'A');
  static_assert(cc1->f() == (C*)&cc.d);
  static_assert(cc1->f()->f() == 'D');
  static_assert(cc2->f()->c == 'C');
  static_assert(cc2->f() == &cc.d);
  static_assert(cc2->f()->f() == 'D');

  static_assert(cb.f()->d == 'D');
  static_assert(cc.f()->d == 'D');

  struct Abstract {
    constexpr virtual void f() = 0; // expected-note {{declared here}}
    constexpr Abstract() { do_it(); } // expected-note {{in call to}}
    constexpr void do_it() { f(); } // expected-note {{pure virtual function 'Virtual::Abstract::f' called}}
  };
  struct PureVirtualCall : Abstract { void f(); }; // expected-note {{in call to 'Abstract}}
  constexpr PureVirtualCall pure_virtual_call; // expected-error {{constant expression}} expected-note {{in call to 'PureVirtualCall}}
}

namespace DynamicCast {
  struct A2 { virtual void a2(); };
  struct A : A2 { virtual void a(); };
  struct B : A {};
  struct C2 { virtual void c2(); };
  struct C : A, C2 { A *c = dynamic_cast<A*>(static_cast<C2*>(this)); };
  struct D { virtual void d(); };
  struct E { virtual void e(); };
  struct F : B, C, D, private E { void *f = dynamic_cast<void*>(static_cast<D*>(this)); };
  struct Padding { virtual void padding(); };
  struct G : Padding, F {};

  constexpr G g;

  // During construction of C, A is unambiguous subobject of dynamic type C.
  static_assert(g.c == (C*)&g);
  // ... but in the complete object, the same is not true, so the runtime fails.
  static_assert(dynamic_cast<const A*>(static_cast<const C2*>(&g)) == nullptr);

  // dynamic_cast<void*> produces a pointer to the object of the dynamic type.
  static_assert(g.f == (void*)(F*)&g);
  static_assert(dynamic_cast<const void*>(static_cast<const D*>(&g)) == &g);

  // expected-note@+1 {{reference dynamic_cast failed: 'A' is an ambiguous base class of dynamic type 'DynamicCast::G' of operand}}
  constexpr int d_a = (dynamic_cast<const A&>(static_cast<const D&>(g)), 0); // expected-error {{}}

  // Can navigate from A2 to its A...
  static_assert(&dynamic_cast<A&>((A2&)(B&)g) == &(A&)(B&)g);
  // ... and from B to its A ...
  static_assert(&dynamic_cast<A&>((B&)g) == &(A&)(B&)g);
  // ... but not from D.
  // expected-note@+1 {{reference dynamic_cast failed: 'A' is an ambiguous base class of dynamic type 'DynamicCast::G' of operand}}
  static_assert(&dynamic_cast<A&>((D&)g) == &(A&)(B&)g); // expected-error {{}}

  // Can cast from A2 to sibling class D.
  static_assert(&dynamic_cast<D&>((A2&)(B&)g) == &(D&)g);

  // Cannot cast from private base E to derived class F.
  // expected-note@+1 {{reference dynamic_cast failed: static type 'DynamicCast::E' of operand is a non-public base class of dynamic type 'DynamicCast::G'}}
  constexpr int e_f = (dynamic_cast<F&>((E&)g), 0); // expected-error {{}}

  // Cannot cast from B to private sibling E.
  // expected-note@+1 {{reference dynamic_cast failed: 'E' is a non-public base class of dynamic type 'DynamicCast::G' of operand}}
  constexpr int b_e = (dynamic_cast<E&>((B&)g), 0); // expected-error {{}}

  struct Unrelated { virtual void unrelated(); };
  // expected-note@+1 {{reference dynamic_cast failed: dynamic type 'DynamicCast::G' of operand does not have a base class of type 'Unrelated'}}
  constexpr int b_unrelated = (dynamic_cast<Unrelated&>((B&)g), 0); // expected-error {{}}
  // expected-note@+1 {{reference dynamic_cast failed: dynamic type 'DynamicCast::G' of operand does not have a base class of type 'Unrelated'}}
  constexpr int e_unrelated = (dynamic_cast<Unrelated&>((E&)g), 0); // expected-error {{}}
}

namespace TypeId {
  struct A {
    const std::type_info &ti = typeid(*this);
  };
  struct A2 : A {};
  static_assert(&A().ti == &typeid(A));
  static_assert(&typeid((A2())) == &typeid(A2));
  extern A2 extern_a2;
  static_assert(&typeid(extern_a2) == &typeid(A2));

  constexpr A2 a2;
  constexpr const A &a1 = a2;
  static_assert(&typeid(a1) == &typeid(A));

  struct B {
    virtual void f();
    const std::type_info &ti1 = typeid(*this);
  };
  struct B2 : B {
    const std::type_info &ti2 = typeid(*this);
  };
  static_assert(&B2().ti1 == &typeid(B));
  static_assert(&B2().ti2 == &typeid(B2));
  extern B2 extern_b2;
  // expected-note@+1 {{typeid applied to object 'extern_b2' whose dynamic type is not constant}}
  static_assert(&typeid(extern_b2) == &typeid(B2)); // expected-error {{constant expression}}

  constexpr B2 b2;
  constexpr const B &b1 = b2;
  static_assert(&typeid(b1) == &typeid(B2));

  constexpr bool side_effects() {
    // Not polymorphic nor a glvalue.
    bool OK = true;
    (void)typeid(OK = false, A2()); // expected-warning {{has no effect}}
    if (!OK) return false;

    // Not polymorphic.
    A2 a2;
    (void)typeid(OK = false, a2); // expected-warning {{has no effect}}
    if (!OK) return false;

    // Not a glvalue.
    (void)typeid(OK = false, B2()); // expected-warning {{has no effect}}
    if (!OK) return false;

    // Polymorphic glvalue: operand evaluated.
    OK = false;
    B2 b2;
    (void)typeid(OK = true, b2); // expected-warning {{will be evaluated}}
    return OK;
  }
  static_assert(side_effects());
}

namespace Union {
  struct Base {
    int y; // expected-note 2{{here}}
  };
  struct A : Base {
    int x;
    int arr[3];
    union { int p, q; };
  };
  union B {
    A a;
    int b;
  };
  constexpr int read_wrong_member() { // expected-error {{never produces a constant}}
    B b = {.b = 1};
    return b.a.x; // expected-note {{read of member 'a' of union with active member 'b'}}
  }
  constexpr int change_member() {
    B b = {.b = 1};
    b.a.x = 1;
    return b.a.x;
  }
  static_assert(change_member() == 1);
  constexpr int change_member_then_read_wrong_member() { // expected-error {{never produces a constant}}
    B b = {.b = 1};
    b.a.x = 1;
    return b.b; // expected-note {{read of member 'b' of union with active member 'a'}}
  }
  constexpr int read_wrong_member_indirect() { // expected-error {{never produces a constant}}
    B b = {.b = 1};
    int *p = &b.a.y;
    return *p; // expected-note {{read of member 'a' of union with active member 'b'}}
  }
  constexpr int read_uninitialized() {
    B b = {.b = 1};
    int *p = &b.a.y;
    b.a.x = 1;
    return *p; // expected-note {{read of uninitialized object}}
  }
  static_assert(read_uninitialized() == 0); // expected-error {{constant}} expected-note {{in call}}
  constexpr void write_wrong_member_indirect() { // expected-error {{never produces a constant}}
    B b = {.b = 1};
    int *p = &b.a.y;
    *p = 1; // expected-note {{assignment to member 'a' of union with active member 'b'}}
  }
  constexpr int write_uninitialized() {
    B b = {.b = 1};
    int *p = &b.a.y;
    b.a.x = 1;
    *p = 1;
    return *p;
  }
  static_assert(write_uninitialized() == 1);
  constexpr int change_member_indirectly() {
    B b = {.b = 1};
    b.a.arr[1] = 1;
    int &r = b.a.y;
    r = 123;

    b.b = 2;
    b.a.y = 3;
    b.a.arr[2] = 4;
    return b.a.arr[2];
  }
  static_assert(change_member_indirectly() == 4);
  constexpr B return_uninit() {
    B b = {.b = 1};
    b.a.x = 2;
    return b;
  }
  constexpr B uninit = return_uninit(); // expected-error {{constant expression}} expected-note {{subobject of type 'int' is not initialized}}
  static_assert(return_uninit().a.x == 2);
  constexpr A return_uninit_struct() {
    B b = {.b = 1};
    b.a.x = 2;
    return b.a; // expected-note {{in call to 'A(b.a)'}} expected-note {{subobject of type 'int' is not initialized}}
  }
  // Note that this is rejected even though return_uninit() is accepted, and
  // return_uninit() copies the same stuff wrapped in a union.
  //
  // Copying a B involves copying the object representation of the union, but
  // copying an A invokes a copy constructor that copies the object
  // elementwise, and reading from b.a.y is undefined.
  static_assert(return_uninit_struct().x == 2); // expected-error {{constant expression}} expected-note {{in call}}
  constexpr B return_init_all() {
    B b = {.b = 1};
    b.a.x = 2;
    b.a.y = 3;
    b.a.arr[0] = 4;
    b.a.arr[1] = 5;
    b.a.arr[2] = 6;
    return b;
  }
  static_assert(return_init_all().a.x == 2);
  static_assert(return_init_all().a.y == 3);
  static_assert(return_init_all().a.arr[0] == 4);
  static_assert(return_init_all().a.arr[1] == 5);
  static_assert(return_init_all().a.arr[2] == 6);
  static_assert(return_init_all().a.p == 7); // expected-error {{}} expected-note {{read of member 'p' of union with no active member}}
  static_assert(return_init_all().a.q == 8); // expected-error {{}} expected-note {{read of member 'q' of union with no active member}}
  constexpr B init_all = return_init_all();

  constexpr bool test_no_member_change =  []{
    union U { char dummy = {}; };
    U u1;
    U u2;
    u1 = u2;
    return true;
  }();

  struct S1 {
    int n;
  };
  struct S2 : S1 {};
  struct S3 : S2 {};
  void f() {
    S3 s;
    s.n = 0;
  }

  union ref_member_1 {
    int a;
    int b;
  };
  struct ref_member_2 {
    ref_member_1 &&r;
  };
  union ref_member_3 {
    ref_member_2 a, b;
  };
  constexpr int ref_member_test_1() {
    ref_member_3 r = {.a = {.r = {.a = 1}}};
    r.a.r.b = 2;
    return r.a.r.b;
  }
  static_assert(ref_member_test_1() == 2);
  constexpr int ref_member_test_2() { // expected-error {{never produces a constant}}
    ref_member_3 r = {.a = {.r = {.a = 1}}};
    // FIXME: This note isn't great. The 'read' here is reading the referent of the reference.
    r.b.r.b = 2; // expected-note {{read of member 'b' of union with active member 'a'}}
    return r.b.r.b;
  }

  namespace PR43762 {
    struct A { int x = 1; constexpr int f() { return 1; } };
    struct B : A { int y = 1; constexpr int g() { return 2; } };
    struct C {
      int x;
      constexpr virtual int f() = 0;
    };
    struct D : C {
      int y;
      constexpr virtual int f() override { return 3; }
    };

    union U {
      int n;
      B b;
      D d;
    };

    constexpr int test(int which) {
      U u{.n = 5};
      switch (which) {
      case 0:
        u.b.x = 10; // expected-note {{active member 'n'}}
        return u.b.f();
      case 1:
        u.b.y = 10; // expected-note {{active member 'n'}}
        return u.b.g();
      case 2:
        u.d.x = 10; // expected-note {{active member 'n'}}
        return u.d.f();
      case 3:
        u.d.y = 10; // expected-note {{active member 'n'}}
        return u.d.f();
      }
    }

    static_assert(test(0)); // expected-error {{}} expected-note {{in call}}
    static_assert(test(1)); // expected-error {{}} expected-note {{in call}}
    static_assert(test(2)); // expected-error {{}} expected-note {{in call}}
    static_assert(test(3)); // expected-error {{}} expected-note {{in call}}
  }
}

namespace TwosComplementShifts {
  using uint32 = __UINT32_TYPE__;
  using int32 = __INT32_TYPE__;
  static_assert(uint32(int32(0x1234) << 16) == 0x12340000);
  static_assert(uint32(int32(0x1234) << 19) == 0x91a00000);
  static_assert(uint32(int32(0x1234) << 20) == 0x23400000);
  static_assert(uint32(int32(0x1234) << 24) == 0x34000000);
  static_assert(uint32(int32(-1) << 31) == 0x80000000);

  static_assert(-1 >> 1 == -1);
  static_assert(-1 >> 31 == -1);
  static_assert(-2 >> 1 == -1);
  static_assert(-3 >> 1 == -2);
  static_assert(-4 >> 1 == -2);
}

namespace Uninit {
  constexpr int f(bool init) {
    int a;
    if (init)
      a = 1;
    return a; // expected-note {{read of uninitialized object}}
  }
  static_assert(f(true) == 1);
  static_assert(f(false) == 1); // expected-error {{constant expression}} expected-note {{in call}}

  struct X {
    int n; // expected-note {{declared here}}
    constexpr X(bool init) {
      if (init) n = 123;
    }
  };
  constinit X x1(true);
  constinit X x2(false); // expected-error {{constant initializer}} expected-note {{constinit}} expected-note {{subobject of type 'int' is not initialized}}

  struct Y {
    struct Z { int n; }; // expected-note {{here}}
    Z z1;
    Z z2;
    Z z3;
    // OK: the lifetime of z1 (and its members) start before the initializer of
    // z2 runs.
    constexpr Y() : z2{ (z1.n = 1, z1.n + 1) } { z3.n = 3; }
    // Not OK: z3 is not in its lifetime when the initializer of z2 runs.
    constexpr Y(int) : z2{
      (z3.n = 1, // expected-note {{assignment to object outside its lifetime}}
       z3.n + 1) // expected-warning {{uninitialized}}
    } { z1.n = 3; }
    constexpr Y(int, int) : z2{} {}
  };
  // FIXME: This is working around clang not implementing DR2026. With that
  // fixed, we should be able to test this without the injected copy.
  constexpr Y copy(Y y) { return y; } // expected-note {{in call to 'Y(y)'}} expected-note {{subobject of type 'int' is not initialized}}
  constexpr Y y1 = copy(Y());
  static_assert(y1.z1.n == 1 && y1.z2.n == 2 && y1.z3.n == 3);

  constexpr Y y2 = copy(Y(0)); // expected-error {{constant expression}} expected-note {{in call}}

  static_assert(Y(0,0).z2.n == 0);
  static_assert(Y(0,0).z1.n == 0); // expected-error {{constant expression}} expected-note {{read of uninitialized object}}
  static_assert(Y(0,0).z3.n == 0); // expected-error {{constant expression}} expected-note {{read of uninitialized object}}

  static_assert(copy(Y(0,0)).z2.n == 0); // expected-error {{constant expression}} expected-note {{in call}}

  constexpr unsigned char not_even_unsigned_char() {
    unsigned char c;
    return c; // expected-note {{read of uninitialized object}}
  }
  constexpr unsigned char x = not_even_unsigned_char(); // expected-error {{constant expression}} expected-note {{in call}}

  constexpr int switch_var(int n) {
    switch (n) {
    case 1:
      int a;
      a = n;
      return a;

    case 2:
      a = n;
      return a;
    }
  }
  constexpr int s1 = switch_var(1);
  constexpr int s2 = switch_var(2);
  static_assert(s1 == 1 && s2 == 2);

  constexpr bool switch_into_init_stmt() {
    switch (1) {
      if (int n; false) {
        for (int m; false;) {
        case 1:
          n = m = 1;
          return n == 1 && m == 1;
        }
      }
    }
  }
  static_assert(switch_into_init_stmt());
}

namespace dtor {
  void lifetime_extension() {
    struct X { constexpr ~X() {} };
    X &&a = X();
  }

  template<typename T> constexpr T &&ref(T &&t) { return (T&&)t; }

  struct Buf {
    char buf[64];
    int n = 0;
    constexpr void operator+=(char c) { buf[n++] = c; }
    constexpr bool operator==(const char *str) const {
      return str[n] == 0 && __builtin_memcmp(str, buf, n) == 0;
    }
    constexpr bool operator!=(const char *str) const { return !operator==(str); }
  };

  struct A {
    constexpr A(Buf &buf, char c) : buf(buf), c(c) { buf += c; }
    constexpr ~A() { buf += c; }
    constexpr operator bool() const { return true; }
    Buf &buf;
    char c;
  };

  constexpr bool dtor_calls_dtor() {
    union U {
      constexpr U(Buf &buf) : u(buf, 'u') { buf += 'U'; }
      constexpr ~U() { u.buf += 'U'; }
      A u, v;
    };

    struct B : A {
      A c, &&d, e;
      union {
        A f;
      };
      U u;
      constexpr B(Buf &buf)
          : A(buf, 'a'), c(buf, 'c'), d(ref(A(buf, 'd'))), e(A(buf, 'e')), f(buf, 'f'), u(buf) {
        buf += 'b';
      }
      constexpr ~B() {
        buf += 'b';
      }
    };

    Buf buf;
    {
      B b(buf);
      if (buf != "acddefuUb")
        return false;
    }
    if (buf != "acddefuUbbUeca")
      return false;
    return true;
  }
  static_assert(dtor_calls_dtor());

  constexpr void abnormal_termination(Buf &buf) {
    struct Indestructible {
      constexpr ~Indestructible(); // not defined
    };

    A a(buf, 'a');
    A(buf, 'b');
    int n = 0;
    for (A &&c = A(buf, 'c'); A d = A(buf, 'd'); A(buf, 'e')) {
      switch (A f(buf, 'f'); A g = A(buf, 'g')) { // expected-warning {{boolean}}
      case false: {
        A x(buf, 'x');
      }

      case true: {
        A h(buf, 'h');
        switch (n++) {
        case 0:
          break;
        case 1:
          continue;
        case 2:
          return;
        }
        break;
      }

      default:
        Indestructible indest;
      }

      A j = (A(buf, 'i'), A(buf, 'j'));
    }
  }

  constexpr bool check_abnormal_termination() {
    Buf buf = {};
    abnormal_termination(buf);
    return buf ==
      "abbc"
        "dfgh" /*break*/ "hgfijijeed"
        "dfgh" /*continue*/ "hgfeed"
        "dfgh" /*return*/ "hgfd"
      "ca";
  }
  static_assert(check_abnormal_termination());

  constexpr bool run_dtors_on_array_filler() {
    struct S {
      int times_destroyed = 0;
      constexpr ~S() { if (++times_destroyed != 1) throw "oops"; }
    };
    S s[3];
    return true;
  }
  static_assert(run_dtors_on_array_filler());

  // Ensure that we can handle temporary cleanups for array temporaries.
  struct ArrElem { constexpr ~ArrElem() {} };
  using Arr = ArrElem[3];
  static_assert(((void)Arr{}, true));
}

namespace dynamic_alloc {
  constexpr int *p = // expected-error {{constant}} expected-note {{pointer to heap-allocated object is not a constant expression}}
    new int; // expected-note {{heap allocation performed here}}

  constexpr int f(int n) {
    int *p = new int[n];
    for (int i = 0; i != n; ++i) {
      p[i] = i;
    }
    int k = 0;
    for (int i = 0; i != n; ++i) {
      k += p[i];
    }
    delete[] p;
    return k;
  }
  static_assert(f(123) == 123 * 122 / 2);

  constexpr bool nvdtor() { // expected-error {{never produces a constant expression}}
    struct S {
      constexpr ~S() {}
    };
    struct T : S {};
    delete (S*)new T; // expected-note {{delete of object with dynamic type 'T' through pointer to base class type 'S' with non-virtual destructor}}
    return true;
  }

  constexpr int vdtor_1() {
    int a;
    struct S {
      constexpr S(int *p) : p(p) {}
      constexpr virtual ~S() { *p = 1; }
      int *p;
    };
    struct T : S {
      // implicit destructor defined eagerly because it is constexpr and virtual
      using S::S;
    };
    delete (S*)new T(&a);
    return a;
  }
  static_assert(vdtor_1() == 1);

  constexpr int vdtor_2() {
    int a = 0;
    struct S { constexpr virtual ~S() {} };
    struct T : S {
      constexpr T(int *p) : p(p) {}
      constexpr ~T() { ++*p; }
      int *p;
    };
    S *p = new T{&a};
    delete p;
    return a;
  }
  static_assert(vdtor_2() == 1);

  constexpr int vdtor_3(int mode) {
    int a = 0;
    struct S { constexpr virtual ~S() {} };
    struct T : S {
      constexpr T(int *p) : p(p) {}
      constexpr ~T() { ++*p; }
      int *p;
    };
    S *p = new T[3]{&a, &a, &a}; // expected-note 2{{heap allocation}}
    switch (mode) {
    case 0:
      delete p; // expected-note {{non-array delete used to delete pointer to array object of type 'T[3]'}}
      break;
    case 1:
      // FIXME: This diagnosic isn't great; we should mention the cast to S*
      // somewhere in here.
      delete[] p; // expected-note {{delete of pointer to subobject '&{*new T[3]#0}[0]'}}
      break;
    case 2:
      delete (T*)p; // expected-note {{non-array delete used to delete pointer to array object of type 'T[3]'}}
      break;
    case 3:
      delete[] (T*)p;
      break;
    }
    return a;
  }
  static_assert(vdtor_3(0) == 3); // expected-error {{}} expected-note {{in call}}
  static_assert(vdtor_3(1) == 3); // expected-error {{}} expected-note {{in call}}
  static_assert(vdtor_3(2) == 3); // expected-error {{}} expected-note {{in call}}
  static_assert(vdtor_3(3) == 3);

  constexpr void delete_mismatch() { // expected-error {{never produces a constant expression}}
    delete[] // expected-note {{array delete used to delete pointer to non-array object of type 'int'}}
      new int; // expected-note {{allocation}}
  }

  template<typename T>
  constexpr T dynarray(int elems, int i) {
    T *p;
    if constexpr (sizeof(T) == 1)
      p = new T[elems]{"fox"}; // expected-note {{evaluated array bound 3 is too small to hold 4 explicitly initialized elements}}
    else
      p = new T[elems]{1, 2, 3}; // expected-note {{evaluated array bound 2 is too small to hold 3 explicitly initialized elements}}
    T n = p[i]; // expected-note 4{{past-the-end}}
    delete [] p;
    return n;
  }
  static_assert(dynarray<int>(4, 0) == 1);
  static_assert(dynarray<int>(4, 1) == 2);
  static_assert(dynarray<int>(4, 2) == 3);
  static_assert(dynarray<int>(4, 3) == 0);
  static_assert(dynarray<int>(4, 4) == 0); // expected-error {{constant expression}} expected-note {{in call}}
  static_assert(dynarray<int>(3, 2) == 3);
  static_assert(dynarray<int>(3, 3) == 0); // expected-error {{constant expression}} expected-note {{in call}}
  static_assert(dynarray<int>(2, 1) == 0); // expected-error {{constant expression}} expected-note {{in call}}
  static_assert(dynarray<char>(5, 0) == 'f');
  static_assert(dynarray<char>(5, 1) == 'o');
  static_assert(dynarray<char>(5, 2) == 'x');
  static_assert(dynarray<char>(5, 3) == 0); // (from string)
  static_assert(dynarray<char>(5, 4) == 0); // (from filler)
  static_assert(dynarray<char>(5, 5) == 0); // expected-error {{constant expression}} expected-note {{in call}}
  static_assert(dynarray<char>(4, 0) == 'f');
  static_assert(dynarray<char>(4, 1) == 'o');
  static_assert(dynarray<char>(4, 2) == 'x');
  static_assert(dynarray<char>(4, 3) == 0);
  static_assert(dynarray<char>(4, 4) == 0); // expected-error {{constant expression}} expected-note {{in call}}
  static_assert(dynarray<char>(3, 2) == 'x'); // expected-error {{constant expression}} expected-note {{in call}}

  constexpr bool run_dtors_on_array_filler() {
    struct S {
      int times_destroyed = 0;
      constexpr ~S() { if (++times_destroyed != 1) throw "oops"; }
    };
    delete[] new S[3];
    return true;
  }
  static_assert(run_dtors_on_array_filler());

  constexpr bool erroneous_array_bound(long long n) {
    delete[] new int[n]; // expected-note {{array bound -1 is negative}} expected-note {{array bound 4611686018427387904 is too large}}
    return true;
  }
  static_assert(erroneous_array_bound(3));
  static_assert(erroneous_array_bound(0));
  static_assert(erroneous_array_bound(-1)); // expected-error {{constant expression}} expected-note {{in call}}
  static_assert(erroneous_array_bound(1LL << 62)); // expected-error {{constant expression}} expected-note {{in call}}

  constexpr bool erroneous_array_bound_nothrow(long long n) {
    int *p = new (std::nothrow) int[n];
    bool result = p != 0;
    delete[] p;
    return result;
  }
  static_assert(erroneous_array_bound_nothrow(3));
  static_assert(erroneous_array_bound_nothrow(0));
  static_assert(!erroneous_array_bound_nothrow(-1));
  static_assert(!erroneous_array_bound_nothrow(1LL << 62));

  constexpr bool evaluate_nothrow_arg() {
    bool ok = false;
    delete new ((ok = true, std::nothrow)) int;
    return ok;
  }
  static_assert(evaluate_nothrow_arg());

  constexpr void double_delete() { // expected-error {{never produces a constant expression}}
    int *p = new int;
    delete p;
    delete p; // expected-note {{delete of pointer that has already been deleted}}
  }
  constexpr bool super_secret_double_delete() {
    struct A {
      constexpr ~A() { delete this; } // expected-note {{destruction of object that is already being destroyed}} expected-note {{in call}}
    };
    delete new A; // expected-note {{in call}}
    return true;
  }
  static_assert(super_secret_double_delete()); // expected-error {{constant expression}} expected-note {{in call}}

  constexpr void use_after_free() { // expected-error {{never produces a constant expression}}
    int *p = new int;
    delete p;
    *p = 1; // expected-note {{assignment to heap allocated object that has been deleted}}
  }
  constexpr void use_after_free_2() { // expected-error {{never produces a constant expression}}
    struct X { constexpr void f() {} };
    X *p = new X;
    delete p;
    p->f(); // expected-note {{member call on heap allocated object that has been deleted}}
  }

  template<typename T> struct X {
    std::size_t n;
    char *p;
    void dependent();
  };
  template<typename T> void X<T>::dependent() {
    char *p;
    // Ensure that we don't try to evaluate these for overflow and crash. These
    // are all value-dependent expressions.
    p = new char[n];
    p = new ((std::align_val_t)n) char[n];
    p = new char(n);
  }

  namespace PR47143 {
    constexpr char *f(int n) {
      return new char[n]();
    }
    const char *p = f(3);
    constexpr bool test() {
      char *p = f(3);
      bool result = !p[0] && !p[1] && !p[2];
      delete [] p;
      return result;
    }
    static_assert(test());
  }
}

struct placement_new_arg {};
void *operator new(std::size_t, placement_new_arg);
void operator delete(void*, placement_new_arg);

namespace placement_new_delete {
  struct ClassSpecificNew {
    void *operator new(std::size_t);
  };
  struct ClassSpecificDelete {
    void operator delete(void*);
  };
  struct DestroyingDelete {
    void operator delete(DestroyingDelete*, std::destroying_delete_t);
  };
  struct alignas(64) Overaligned {};

  constexpr bool ok() {
    delete new Overaligned;
    delete ::new ClassSpecificNew;
    ::delete new ClassSpecificDelete;
    ::delete new DestroyingDelete;
    return true;
  }
  static_assert(ok());

  constexpr bool bad(int which) {
    switch (which) {
    case 0:
      delete new (placement_new_arg{}) int; // expected-note {{call to placement 'operator new'}}
      break;

    case 1:
      delete new ClassSpecificNew; // expected-note {{call to class-specific 'operator new'}}
      break;

    case 2:
      delete new ClassSpecificDelete; // expected-note {{call to class-specific 'operator delete'}}
      break;

    case 3:
      delete new DestroyingDelete; // expected-note {{call to class-specific 'operator delete'}}
      break;

    case 4:
      // FIXME: This technically follows the standard's rules, but it seems
      // unreasonable to expect implementations to support this.
      delete new (std::align_val_t{64}) Overaligned; // expected-note {{placement new expression is not yet supported}}
      break;
    }

    return true;
  }
  static_assert(bad(0)); // expected-error {{constant expression}} expected-note {{in call}}
  static_assert(bad(1)); // expected-error {{constant expression}} expected-note {{in call}}
  static_assert(bad(2)); // expected-error {{constant expression}} expected-note {{in call}}
  static_assert(bad(3)); // expected-error {{constant expression}} expected-note {{in call}}
  static_assert(bad(4)); // expected-error {{constant expression}} expected-note {{in call}}
}

namespace delete_random_things {
  static_assert((delete new int, true));
  static_assert((delete (int*)0, true));
  int n; // expected-note {{declared here}}
  static_assert((delete &n, true)); // expected-error {{}} expected-note {{delete of pointer '&n' that does not point to a heap-allocated object}}
  struct A { int n; };
  static_assert((delete &(new A)->n, true)); // expected-error {{}} expected-note {{delete of pointer to subobject '&{*new A#0}.n'}}
  static_assert((delete (new int + 1), true)); // expected-error {{}} expected-note {{delete of pointer '&{*new int#0} + 1' that does not point to complete object}}
  static_assert((delete[] (new int[3] + 1), true)); // expected-error {{}} expected-note {{delete of pointer to subobject '&{*new int[3]#0}[1]'}}
  static_assert((delete &(int&)(int&&)0, true)); // expected-error {{}} expected-note {{delete of pointer '&0' that does not point to a heap-allocated object}} expected-note {{temporary created here}}
}

namespace value_dependent_delete {
  template<typename T> void f(T *p) {
    int arr[(delete p, 0)];
  }
}

namespace memory_leaks {
  static_assert(*new bool(true)); // expected-error {{}} expected-note {{allocation performed here was not deallocated}}

  constexpr bool *f() { return new bool(true); } // expected-note {{allocation performed here was not deallocated}}
  static_assert(*f()); // expected-error {{}}

  struct UP {
    bool *p;
    constexpr ~UP() { delete p; }
    constexpr bool &operator*() { return *p; }
  };
  constexpr UP g() { return {new bool(true)}; }
  static_assert(*g()); // ok

  constexpr bool h(UP p) { return *p; }
  static_assert(h({new bool(true)})); // ok
}

constexpr void *operator new(std::size_t, void *p) { return p; }
namespace std {
  template<typename T> constexpr T *construct(T *p) { return new (p) T; }
  template<typename T> constexpr void destroy(T *p) { p->~T(); }
}

namespace dtor_call {
  struct A { int n; };
  constexpr void f() { // expected-error {{never produces a constant expression}}
    A a; // expected-note {{destroying object 'a' whose lifetime has already ended}}
    a.~A();
  }
  union U { A a; };
  constexpr void g() {
    U u;
    u.a.n = 3;
    u.a.~A();
    // There's now effectively no active union member, but we model it as if
    // 'a' is still the active union member (but its lifetime has ended).
    u.a.n = 4; // Start lifetime of 'a' again.
    u.a.~A();
  }
  static_assert((g(), true));

  constexpr bool pseudo(bool read, bool recreate) {
    using T = bool;
    bool b = false; // expected-note {{lifetime has already ended}}
    // This evaluates the store to 'b'...
    (b = true).~T();
    // ... and ends the lifetime of the object.
    return (read
            ? b // expected-note {{read of object outside its lifetime}}
            : true) +
           (recreate
            ? (std::construct(&b), true)
            : true);
  }
  static_assert(pseudo(false, false)); // expected-error {{constant expression}} expected-note {{in call}}
  static_assert(pseudo(true, false)); // expected-error {{constant expression}} expected-note {{in call}}
  static_assert(pseudo(false, true));

  constexpr void use_after_destroy() {
    A a;
    a.~A();
    A b = a; // expected-note {{in call}} expected-note {{read of object outside its lifetime}}
  }
  static_assert((use_after_destroy(), true)); // expected-error {{}} expected-note {{in call}}

  constexpr void double_destroy() {
    A a;
    a.~A();
    a.~A(); // expected-note {{destruction of object outside its lifetime}}
  }
  static_assert((double_destroy(), true)); // expected-error {{}} expected-note {{in call}}

  struct X { char *p; constexpr ~X() { *p++ = 'X'; } };
  struct Y : X { int y; virtual constexpr ~Y() { *p++ = 'Y'; } };
  struct Z : Y { int z; constexpr ~Z() override { *p++ = 'Z'; } };
  union VU {
    constexpr VU() : z() {}
    constexpr ~VU() {}
    Z z;
  };

  constexpr bool virt_dtor(int mode, const char *expected) {
    char buff[4] = {};
    VU vu;
    vu.z.p = buff;
    switch (mode) {
    case 0:
      vu.z.~Z();
      break;
    case 1:
      ((Y&)vu.z).~Y();
      break;
    case 2:
      ((X&)vu.z).~X();
      break;
    case 3:
      ((Y&)vu.z).Y::~Y();
      vu.z.z = 1; // ok, still have a Z (with no Y base class!)
      break;
    case 4:
      ((X&)vu.z).X::~X();
      vu.z.y = 1; // ok, still have a Z and a Y (with no X base class!)
      break;
    }
    return __builtin_strcmp(expected, buff) == 0;
  }
  static_assert(virt_dtor(0, "ZYX"));
  static_assert(virt_dtor(1, "ZYX"));
  static_assert(virt_dtor(2, "X"));
  static_assert(virt_dtor(3, "YX"));
  static_assert(virt_dtor(4, "X"));

  constexpr bool virt_delete(bool global) {
    struct A {
      virtual constexpr ~A() {}
    };
    struct B : A {
      void operator delete(void *);
      constexpr ~B() {}
    };

    A *p = new B;
    if (global)
      ::delete p;
    else
      delete p; // expected-note {{call to class-specific 'operator delete'}}
    return true;
  }
  static_assert(virt_delete(true));
  static_assert(virt_delete(false)); // expected-error {{}} expected-note {{in call}}

  constexpr void use_after_virt_destroy() {
    char buff[4] = {};
    VU vu;
    vu.z.p = buff;
    ((Y&)vu.z).~Y();
    ((Z&)vu.z).z = 1; // expected-note {{assignment to object outside its lifetime}}
  }
  static_assert((use_after_virt_destroy(), true)); // expected-error {{}} expected-note {{in call}}

  constexpr void destroy_after_lifetime() {
    A *p;
    {
      A a;
      p = &a;
    }
    p->~A(); // expected-note {{destruction of object outside its lifetime}}
  }
  static_assert((destroy_after_lifetime(), true)); // expected-error {{}} expected-note {{in call}}

  constexpr void destroy_after_lifetime2() {
    A *p = []{ A a; return &a; }(); // expected-warning {{}} expected-note {{declared here}}
    p->~A(); // expected-note {{destruction of variable whose lifetime has ended}}
  }
  static_assert((destroy_after_lifetime2(), true)); // expected-error {{}} expected-note {{in call}}

  constexpr void destroy_after_lifetime3() {
    A *p = []{ return &(A&)(A&&)A(); }(); // expected-warning {{}} expected-note {{temporary created here}}
    p->~A(); // expected-note {{destruction of temporary whose lifetime has ended}}
  }
  static_assert((destroy_after_lifetime3(), true)); // expected-error {{}} expected-note {{in call}}

  constexpr void destroy_after_lifetime4() { // expected-error {{never produces a constant expression}}
    A *p = new A;
    delete p;
    p->~A(); // expected-note {{destruction of heap allocated object that has been deleted}}
  }

  struct Extern { constexpr ~Extern() {} } extern e;
  constexpr void destroy_extern() { // expected-error {{never produces a constant expression}}
    e.~Extern(); // expected-note {{cannot modify an object that is visible outside}}
  }

  constexpr A &&a_ref = A(); // expected-note {{temporary created here}}
  constexpr void destroy_extern_2() { // expected-error {{never produces a constant expression}}
    a_ref.~A(); // expected-note {{destruction of temporary is not allowed in a constant expression outside the expression that created the temporary}}
  }

  struct S {
    constexpr S() { n = 1; }
    constexpr ~S() { n = 0; }
    int n;
  };
  constexpr void destroy_volatile() {
    volatile S s;
  }
  static_assert((destroy_volatile(), true)); // ok, not volatile during construction and destruction

  constexpr void destroy_null() { // expected-error {{never produces a constant expression}}
    ((A*)nullptr)->~A(); // expected-note {{destruction of dereferenced null pointer}}
  }

  constexpr void destroy_past_end() { // expected-error {{never produces a constant expression}}
    A a;
    (&a+1)->~A(); // expected-note {{destruction of dereferenced one-past-the-end pointer}}
  }

  constexpr void destroy_past_end_array() { // expected-error {{never produces a constant expression}}
    A a[2];
    a[2].~A(); // expected-note {{destruction of dereferenced one-past-the-end pointer}}
  }

  union As {
    A a, b;
  };

  constexpr void destroy_no_active() { // expected-error {{never produces a constant expression}}
    As as;
    as.b.~A(); // expected-note {{destruction of member 'b' of union with no active member}}
  }

  constexpr void destroy_inactive() { // expected-error {{never produces a constant expression}}
    As as;
    as.a.n = 1;
    as.b.~A(); // expected-note {{destruction of member 'b' of union with active member 'a'}}
  }

  constexpr void destroy_no_active_2() { // expected-error {{never produces a constant expression}}
    As as;
    as.a.n = 1;
    as.a.~A();
    // FIXME: This diagnostic is wrong; the union has no active member now.
    as.b.~A(); // expected-note {{destruction of member 'b' of union with active member 'a'}}
  }

  constexpr void destroy_pointer() {
    using T = int*;
    T p;
    // We used to think this was an -> member access because its left-hand side
    // is a pointer. Ensure we don't crash.
    p.~T();
    // Put a T back so we can destroy it again.
    std::construct(&p);
  }
  static_assert((destroy_pointer(), true));
}

namespace temp_dtor {
  void f();
  struct A {
    bool b;
    constexpr ~A() { if (b) f(); }
  };

  // We can't accept either of these unless we start actually registering the
  // destructors of the A temporaries to run on shutdown. It's unclear what the
  // intended standard behavior is so we reject this for now.
  constexpr A &&a = A{false}; // expected-error {{constant}} expected-note {{non-trivial destruction of lifetime-extended temporary}}
  void f() { a.b = true; }

  constexpr A &&b = A{true}; // expected-error {{constant}} expected-note {{non-trivial destruction of lifetime-extended temporary}}

  // FIXME: We could in prinicple accept this.
  constexpr const A &c = A{false}; // expected-error {{constant}} expected-note {{non-trivial destruction of lifetime-extended temporary}}
}

namespace value_dependent_init {
  struct A {
    constexpr ~A() {}
  };
  template<typename T> void f() {
    A a = T();
  }
}

namespace mutable_subobjects {
  struct A {
    int m;
    mutable int n; // expected-note 2{{here}}
    constexpr int f() const { return m; }
    constexpr int g() const { return n; } // expected-note {{mutable}}
  };

  constexpr A a = {1, 2};
  static_assert(a.f() == 1); // OK (PR44958)
  static_assert(a.g() == 2); // expected-error {{constant}} expected-note {{in call}}

  constexpr A b = a; // expected-error {{constant}} expected-note {{read of mutable member 'n'}} expected-note {{in call}}

  auto &ti1 = typeid(a);
  auto &ti2 = typeid(a.m);
  auto &ti3 = typeid(a.n);

  constexpr void destroy1() { // expected-error {{constexpr}}
    a.~A(); // expected-note {{cannot modify an object that is visible outside}}
  }
  using T = int;
  constexpr void destroy2() { // expected-error {{constexpr}}
    a.m.~T(); // expected-note {{cannot modify an object that is visible outside}}
  }
  constexpr void destroy3() { // expected-error {{constexpr}}
    a.n.~T(); // expected-note {{cannot modify an object that is visible outside}}
  }

  struct X {
    mutable int n = 0;
    virtual constexpr ~X() {}
  };
  struct Y : X {
  };
  constexpr Y y;
  constexpr const X *p = &y;
  constexpr const Y *q = dynamic_cast<const Y*>(p);

  // FIXME: It's unclear whether this should be accepted. The dynamic_cast is
  // undefined after 'z.y.~Y()`, for example. We essentially assume that all
  // objects that the evaluator can reach have unbounded lifetimes. (We make
  // the same assumption when evaluating member function calls.)
  struct Z {
    mutable Y y;
  };
  constexpr Z z;
  constexpr const X *pz = &z.y;
  constexpr const Y *qz = dynamic_cast<const Y*>(pz);
  auto &zti = typeid(z.y);
  static_assert(&zti == &typeid(Y));
}

namespace PR45133 {
  struct A { long x; };

  union U;
  constexpr A foo(U *up);

  union U {
    A a = foo(this); // expected-note {{in call to 'foo(&u)'}}
    int y;
  };

  constexpr A foo(U *up) {
    up->y = 11; // expected-note {{assignment would change active union member during the initialization of a different member}}
    return {42};
  }

  constinit U u = {}; // expected-error {{constant init}} expected-note {{constinit}}

  template<int> struct X {};

  union V {
    int a, b;
    constexpr V(X<0>) : a(a = 1) {} // ok
    constexpr V(X<1>) : a(b = 1) {} // expected-note {{assignment would change active union member during the initialization of a different member}}
    constexpr V(X<2>) : a() { b = 1; } // ok
    // This case (changing the active member then changing it back) is debatable,
    // but it seems appropriate to reject.
    constexpr V(X<3>) : a((b = 1, a = 1)) {} // expected-note {{assignment would change active union member during the initialization of a different member}}
  };
  constinit V v0 = X<0>();
  constinit V v1 = X<1>(); // expected-error {{constant init}} expected-note {{constinit}} expected-note {{in call}}
  constinit V v2 = X<2>();
  constinit V v3 = X<3>(); // expected-error {{constant init}} expected-note {{constinit}} expected-note {{in call}}
}

namespace PR45350 {
  int q;
  struct V { int n; int *p = &n; constexpr ~V() { *p = *p * 10 + n; }};
  constexpr int f(int n) {
    int k = 0;
    V *p = new V[n];
    for (int i = 0; i != n; ++i) {
      if (p[i].p != &p[i].n) return -1;
      p[i].n = i;
      p[i].p = &k;
    }
    delete[] p;
    return k;
  }
  // [expr.delete]p6:
  //   In the case of an array, the elements will be destroyed in order of
  //   decreasing address
  static_assert(f(6) == 543210);
}

namespace PR47805 {
  struct A {
    bool bad = true;
    constexpr ~A() { if (bad) throw; }
  };
  constexpr bool f(A a) { a.bad = false; return true; }
  constexpr bool b = f(A());

  struct B { B *p = this; };
  constexpr bool g(B b) { return &b == b.p; }
  static_assert(g({}));
}

constexpr bool destroy_at_test() {
  int n = 0;
  std::destroy(&n);
  std::construct(&n);
  return true;
}
static_assert(destroy_at_test());

namespace PR48582 {
  struct S {
    void *p = this;
    constexpr S() {}
    constexpr S(const S&) {}
  };
  constexpr bool b = [a = S(), b = S()] { return a.p == b.p; }();
  static_assert(!b);
}

namespace PR45879 {
  struct A { int n; };
  struct B { A a; };
  constexpr A a = (A() = B().a);

  union C {
    int n;
    A a;
  };

  constexpr bool f() {
    C c = {.n = 1};
    c.a = B{2}.a;
    return c.a.n == 2;
  }
  static_assert(f());

  // Only syntactic assignments change the active union member.
  constexpr bool g() { // expected-error {{never produces a constant expression}}
    C c = {.n = 1};
    c.a.operator=(B{2}.a); // expected-note 2{{member call on member 'a' of union with active member 'n' is not allowed in a constant expression}}
    return c.a.n == 2;
  }
  static_assert(g()); // expected-error {{constant expression}} expected-note {{in call}}
}