Welcome to mirror list, hosted at ThFree Co, Russian Federation.

LLVMOps.td « LLVMIR « Dialect « mlir « include « mlir - github.com/llvm/llvm-project.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: e5b0fc577a63dd30e675a1b052744b1f4879b166 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
//===-- LLVMOps.td - LLVM IR dialect op definition file ----*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This is the LLVM IR operation definition file.
//
//===----------------------------------------------------------------------===//

#ifndef LLVMIR_OPS
#define LLVMIR_OPS

include "mlir/Dialect/LLVMIR/LLVMOpBase.td"
include "mlir/Dialect/LLVMIR/LLVMOpsInterfaces.td"
include "mlir/IR/FunctionInterfaces.td"
include "mlir/IR/SymbolInterfaces.td"
include "mlir/Interfaces/ControlFlowInterfaces.td"
include "mlir/Interfaces/InferTypeOpInterface.td"
include "mlir/Interfaces/SideEffectInterfaces.td"

def FMFnnan     : I32BitEnumAttrCaseBit<"nnan", 0>;
def FMFninf     : I32BitEnumAttrCaseBit<"ninf", 1>;
def FMFnsz      : I32BitEnumAttrCaseBit<"nsz", 2>;
def FMFarcp     : I32BitEnumAttrCaseBit<"arcp", 3>;
def FMFcontract : I32BitEnumAttrCaseBit<"contract", 4>;
def FMFafn      : I32BitEnumAttrCaseBit<"afn", 5>;
def FMFreassoc  : I32BitEnumAttrCaseBit<"reassoc", 6>;
def FMFfast     : I32BitEnumAttrCaseBit<"fast", 7>;

def FastmathFlags : I32BitEnumAttr<
    "FastmathFlags",
    "LLVM fastmath flags",
    [FMFnnan, FMFninf, FMFnsz, FMFarcp, FMFcontract, FMFafn, FMFreassoc, FMFfast
    ]> {
  let cppNamespace = "::mlir::LLVM";
}

def LLVM_FMFAttr : DialectAttr<
    LLVM_Dialect,
    CPred<"$_self.isa<::mlir::LLVM::FMFAttr>()">,
    "LLVM fastmath flags"> {
  let storageType = "::mlir::LLVM::FMFAttr";
  let returnType = "::mlir::LLVM::FastmathFlags";
  let convertFromStorage = "$_self.getFlags()";
  let constBuilderCall =
          "::mlir::LLVM::FMFAttr::get($_builder.getContext(), $0)";
}

def LOptDisableUnroll : I32EnumAttrCase<"disable_unroll", 1>;
def LOptDisableLICM : I32EnumAttrCase<"disable_licm", 2>;
def LOptInterleaveCount : I32EnumAttrCase<"interleave_count", 3>;
def LOptDisablePipeline : I32EnumAttrCase<"disable_pipeline", 4>;
def LOptPipelineInitiationInterval : I32EnumAttrCase<"pipeline_initiation_interval", 5>;

def LoopOptionCase : I32EnumAttr<
    "LoopOptionCase",
    "LLVM loop option",
    [LOptDisableUnroll, LOptDisableLICM, LOptInterleaveCount,
     LOptDisablePipeline, LOptPipelineInitiationInterval
    ]> {
  let cppNamespace = "::mlir::LLVM";
}

class LLVM_Builder<string builder> {
  string llvmBuilder = builder;
}

def LLVM_OneResultOpBuilder :
  OpBuilder<(ins "Type":$resultType, "ValueRange":$operands,
    CArg<"ArrayRef<NamedAttribute>", "{}">:$attributes),
  [{
    if (resultType) $_state.addTypes(resultType);
    $_state.addOperands(operands);
    for (auto namedAttr : attributes)
      $_state.addAttribute(namedAttr.getName(), namedAttr.getValue());
  }]>;

def LLVM_ZeroResultOpBuilder :
  OpBuilder<(ins "ValueRange":$operands,
    CArg<"ArrayRef<NamedAttribute>", "{}">:$attributes),
  [{
    $_state.addOperands(operands);
    for (auto namedAttr : attributes)
      $_state.addAttribute(namedAttr.getName(), namedAttr.getValue());
  }]>;

// Compatibility builder that takes an instance of wrapped llvm::VoidType
// to indicate no result.
def LLVM_VoidResultTypeOpBuilder :
  OpBuilder<(ins "Type":$resultType, "ValueRange":$operands,
    CArg<"ArrayRef<NamedAttribute>", "{}">:$attributes),
  [{
    assert(isCompatibleType(resultType) && "result must be an LLVM type");
    assert(resultType.isa<LLVMVoidType>() &&
           "for zero-result operands, only 'void' is accepted as result type");
    build($_builder, $_state, operands, attributes);
  }]>;


// Opaque builder used for terminator operations that contain successors.
def LLVM_TerminatorPassthroughOpBuilder :
  OpBuilder<(ins "ValueRange":$operands, "SuccessorRange":$destinations,
    CArg<"ArrayRef<NamedAttribute>", "{}">:$attributes),
  [{
    $_state.addOperands(operands);
    $_state.addSuccessors(destinations);
    $_state.addAttributes(attributes);
  }]>;

// Base class for LLVM terminator operations.  All terminator operations have
// zero results and an optional list of successors.
class LLVM_TerminatorOp<string mnemonic, list<Trait> traits = []> :
    LLVM_Op<mnemonic, !listconcat(traits, [Terminator])>;

// Class for arithmetic binary operations.
class LLVM_ArithmeticOpBase<Type type, string mnemonic,
                            string builderFunc, list<Trait> traits = []> :
    LLVM_Op<mnemonic,
           !listconcat([NoSideEffect, SameOperandsAndResultType], traits)>,
    LLVM_Builder<"$res = builder." # builderFunc # "($lhs, $rhs);"> {
  dag commonArgs = (ins LLVM_ScalarOrVectorOf<type>:$lhs,
                    LLVM_ScalarOrVectorOf<type>:$rhs);
  let results = (outs LLVM_ScalarOrVectorOf<type>:$res);
  let builders = [LLVM_OneResultOpBuilder];
  let assemblyFormat = "$lhs `,` $rhs custom<LLVMOpAttrs>(attr-dict) `:` type($res)";
}
class LLVM_IntArithmeticOp<string mnemonic, string builderFunc,
                           list<Trait> traits = []> :
    LLVM_ArithmeticOpBase<AnyInteger, mnemonic, builderFunc, traits> {
  let arguments = commonArgs;
}
class LLVM_FloatArithmeticOp<string mnemonic, string builderFunc,
                             list<Trait> traits = []> :
    LLVM_ArithmeticOpBase<LLVM_AnyFloat, mnemonic, builderFunc,
    !listconcat([DeclareOpInterfaceMethods<FastmathFlagsInterface>], traits)> {
  dag fmfArg = (ins DefaultValuedAttr<LLVM_FMFAttr, "{}">:$fastmathFlags);
  let arguments = !con(commonArgs, fmfArg);
}

// Class for arithmetic unary operations.
class LLVM_UnaryFloatArithmeticOp<Type type, string mnemonic,
                             string builderFunc, list<Trait> traits = []> :
    LLVM_Op<mnemonic,
           !listconcat([NoSideEffect, SameOperandsAndResultType, DeclareOpInterfaceMethods<FastmathFlagsInterface>], traits)>,
    LLVM_Builder<"$res = builder." # builderFunc # "($operand);"> {
  let arguments = (ins type:$operand, DefaultValuedAttr<LLVM_FMFAttr, "{}">:$fastmathFlags);
  let results = (outs type:$res);
  let builders = [LLVM_OneResultOpBuilder];
  let assemblyFormat = "$operand custom<LLVMOpAttrs>(attr-dict) `:` type($res)";
}

// Integer binary operations.
def LLVM_AddOp : LLVM_IntArithmeticOp<"add", "CreateAdd", [Commutative]>;
def LLVM_SubOp : LLVM_IntArithmeticOp<"sub", "CreateSub">;
def LLVM_MulOp : LLVM_IntArithmeticOp<"mul", "CreateMul", [Commutative]>;
def LLVM_UDivOp : LLVM_IntArithmeticOp<"udiv", "CreateUDiv">;
def LLVM_SDivOp : LLVM_IntArithmeticOp<"sdiv", "CreateSDiv">;
def LLVM_URemOp : LLVM_IntArithmeticOp<"urem", "CreateURem">;
def LLVM_SRemOp : LLVM_IntArithmeticOp<"srem", "CreateSRem">;
def LLVM_AndOp : LLVM_IntArithmeticOp<"and", "CreateAnd">;
def LLVM_OrOp : LLVM_IntArithmeticOp<"or", "CreateOr">;
def LLVM_XOrOp : LLVM_IntArithmeticOp<"xor", "CreateXor">;
def LLVM_ShlOp : LLVM_IntArithmeticOp<"shl", "CreateShl">;
def LLVM_LShrOp : LLVM_IntArithmeticOp<"lshr", "CreateLShr">;
def LLVM_AShrOp : LLVM_IntArithmeticOp<"ashr", "CreateAShr">;

// Predicate for integer comparisons.
def ICmpPredicateEQ  : I64EnumAttrCase<"eq", 0>;
def ICmpPredicateNE  : I64EnumAttrCase<"ne", 1>;
def ICmpPredicateSLT : I64EnumAttrCase<"slt", 2>;
def ICmpPredicateSLE : I64EnumAttrCase<"sle", 3>;
def ICmpPredicateSGT : I64EnumAttrCase<"sgt", 4>;
def ICmpPredicateSGE : I64EnumAttrCase<"sge", 5>;
def ICmpPredicateULT : I64EnumAttrCase<"ult", 6>;
def ICmpPredicateULE : I64EnumAttrCase<"ule", 7>;
def ICmpPredicateUGT : I64EnumAttrCase<"ugt", 8>;
def ICmpPredicateUGE : I64EnumAttrCase<"uge", 9>;
def ICmpPredicate : I64EnumAttr<
    "ICmpPredicate",
    "llvm.icmp comparison predicate",
    [ICmpPredicateEQ, ICmpPredicateNE, ICmpPredicateSLT, ICmpPredicateSLE,
     ICmpPredicateSGT, ICmpPredicateSGE, ICmpPredicateULT, ICmpPredicateULE,
     ICmpPredicateUGT, ICmpPredicateUGE]> {
  let cppNamespace = "::mlir::LLVM";
}

// Other integer operations.
def LLVM_ICmpOp : LLVM_Op<"icmp", [NoSideEffect]> {
  let arguments = (ins ICmpPredicate:$predicate,
                   AnyTypeOf<[LLVM_ScalarOrVectorOf<AnyInteger>, LLVM_ScalarOrVectorOf<LLVM_AnyPointer>]>:$lhs,
                   AnyTypeOf<[LLVM_ScalarOrVectorOf<AnyInteger>, LLVM_ScalarOrVectorOf<LLVM_AnyPointer>]>:$rhs);
  let results = (outs LLVM_ScalarOrVectorOf<I1>:$res);
  let llvmBuilder = [{
    $res = builder.CreateICmp(getLLVMCmpPredicate($predicate), $lhs, $rhs);
  }];
  let builders = [
    OpBuilder<(ins "ICmpPredicate":$predicate, "Value":$lhs, "Value":$rhs),
    [{
      build($_builder, $_state, IntegerType::get(lhs.getType().getContext(), 1),
            predicate, lhs, rhs);
    }]>];
  let hasCustomAssemblyFormat = 1;
}

// Predicate for float comparisons
def FCmpPredicateFALSE  : I64EnumAttrCase<"_false", 0>;
def FCmpPredicateOEQ    : I64EnumAttrCase<"oeq", 1>;
def FCmpPredicateOGT    : I64EnumAttrCase<"ogt", 2>;
def FCmpPredicateOGE    : I64EnumAttrCase<"oge", 3>;
def FCmpPredicateOLT    : I64EnumAttrCase<"olt", 4>;
def FCmpPredicateOLE    : I64EnumAttrCase<"ole", 5>;
def FCmpPredicateONE    : I64EnumAttrCase<"one", 6>;
def FCmpPredicateORD    : I64EnumAttrCase<"ord", 7>;
def FCmpPredicateUEQ    : I64EnumAttrCase<"ueq", 8>;
def FCmpPredicateUGT    : I64EnumAttrCase<"ugt", 9>;
def FCmpPredicateUGE    : I64EnumAttrCase<"uge", 10>;
def FCmpPredicateULT    : I64EnumAttrCase<"ult", 11>;
def FCmpPredicateULE    : I64EnumAttrCase<"ule", 12>;
def FCmpPredicateUNE    : I64EnumAttrCase<"une", 13>;
def FCmpPredicateUNO    : I64EnumAttrCase<"uno", 14>;
def FCmpPredicateTRUE   : I64EnumAttrCase<"_true", 15>;

def FCmpPredicate : I64EnumAttr<
    "FCmpPredicate",
    "llvm.fcmp comparison predicate",
    [FCmpPredicateFALSE, FCmpPredicateOEQ, FCmpPredicateOGT, FCmpPredicateOGE,
     FCmpPredicateOLT, FCmpPredicateOLE, FCmpPredicateONE, FCmpPredicateORD,
     FCmpPredicateUEQ, FCmpPredicateUGT, FCmpPredicateUGE, FCmpPredicateULT,
     FCmpPredicateULE, FCmpPredicateUNE, FCmpPredicateUNO, FCmpPredicateTRUE
    ]> {
  let cppNamespace = "::mlir::LLVM";
}

// Other floating-point operations.
def LLVM_FCmpOp : LLVM_Op<"fcmp", [
    NoSideEffect, DeclareOpInterfaceMethods<FastmathFlagsInterface>]> {
  let arguments = (ins FCmpPredicate:$predicate,
                   LLVM_ScalarOrVectorOf<LLVM_AnyFloat>:$lhs,
                   LLVM_ScalarOrVectorOf<LLVM_AnyFloat>:$rhs,
                   DefaultValuedAttr<LLVM_FMFAttr, "{}">:$fastmathFlags);
  let results = (outs LLVM_ScalarOrVectorOf<I1>:$res);
  let llvmBuilder = [{
    $res = builder.CreateFCmp(getLLVMCmpPredicate($predicate), $lhs, $rhs);
  }];
  let hasCustomAssemblyFormat = 1;
}

// Floating point binary operations.
def LLVM_FAddOp : LLVM_FloatArithmeticOp<"fadd", "CreateFAdd">;
def LLVM_FSubOp : LLVM_FloatArithmeticOp<"fsub", "CreateFSub">;
def LLVM_FMulOp : LLVM_FloatArithmeticOp<"fmul", "CreateFMul">;
def LLVM_FDivOp : LLVM_FloatArithmeticOp<"fdiv", "CreateFDiv">;
def LLVM_FRemOp : LLVM_FloatArithmeticOp<"frem", "CreateFRem">;
def LLVM_FNegOp : LLVM_UnaryFloatArithmeticOp<
  LLVM_ScalarOrVectorOf<LLVM_AnyFloat>, "fneg", "CreateFNeg">;

// Common code definition that is used to verify and set the alignment attribute
// of LLVM ops that accept such an attribute.
class MemoryOpWithAlignmentBase {
  code setAlignmentCode = [{
    if ($alignment.hasValue()) {
      auto align = $alignment.getValue();
      if (align != 0)
        inst->setAlignment(llvm::Align(align));
    }
  }];
}

// Code definition that is used for nontemporal metadata creation.
class MemoryOpWithAlignmentAndAttributes : MemoryOpWithAlignmentBase {
  code setNonTemporalMetadataCode = [{
    if ($nontemporal) {
      llvm::Module *module = builder.GetInsertBlock()->getModule();
      llvm::MDNode *metadata = llvm::MDNode::get(
          inst->getContext(), llvm::ConstantAsMetadata::get(
              builder.getInt32(1)));
      inst->setMetadata(module->getMDKindID("nontemporal"), metadata);
    }
  }];

  code setAccessGroupsMetadataCode = [{
    moduleTranslation.setAccessGroupsMetadata(op, inst);
  }];

  code setAliasScopeMetadataCode = [{
    moduleTranslation.setAliasScopeMetadata(op, inst);
  }];
}

// Memory-related operations.
def LLVM_AllocaOp : LLVM_Op<"alloca">, MemoryOpWithAlignmentBase {
  let arguments = (ins AnyInteger:$arraySize,
                   OptionalAttr<I64Attr>:$alignment);
  let results = (outs Res<LLVM_AnyPointer, "", [MemAlloc<AutomaticAllocationScopeResource>]>:$res);
  string llvmBuilder = [{
    auto addrSpace = $_resultType->getPointerAddressSpace();
    auto *inst = builder.CreateAlloca(
        $_resultType->getPointerElementType(), addrSpace, $arraySize);
    }] # setAlignmentCode # [{
    $res = inst;
  }];
  let builders = [
    OpBuilder<(ins "Type":$resultType, "Value":$arraySize,
      "unsigned":$alignment),
    [{
      if (alignment == 0)
        return build($_builder, $_state, resultType, arraySize, IntegerAttr());
      build($_builder, $_state, resultType, arraySize,
        $_builder.getI64IntegerAttr(alignment));
  }]>];
  let hasCustomAssemblyFormat = 1;
}

def LLVM_GEPOp : LLVM_Op<"getelementptr", [NoSideEffect]> {
  let arguments = (ins LLVM_ScalarOrVectorOf<LLVM_AnyPointer>:$base,
                   Variadic<LLVM_ScalarOrVectorOf<AnyInteger>>:$indices,
                   I32ElementsAttr:$structIndices);
  let results = (outs LLVM_ScalarOrVectorOf<LLVM_AnyPointer>:$res);
  let skipDefaultBuilders = 1;
  let builders = [
    OpBuilder<(ins "Type":$resultType, "Value":$basePtr, "ValueRange":$indices,
               CArg<"ArrayRef<NamedAttribute>", "{}">:$attributes)>,
    OpBuilder<(ins "Type":$resultType, "Value":$basePtr, "ValueRange":$indices,
               "ArrayRef<int32_t>":$structIndices,
               CArg<"ArrayRef<NamedAttribute>", "{}">:$attributes)>,
  ];
  let llvmBuilder = [{
    SmallVector<llvm::Value *> indices;
    indices.reserve($structIndices.size());
    unsigned operandIdx = 0;
    for (int32_t structIndex : $structIndices.getValues<int32_t>()) {
      if (structIndex == GEPOp::kDynamicIndex)
        indices.push_back($indices[operandIdx++]);
      else
        indices.push_back(builder.getInt32(structIndex));
    }
    $res = builder.CreateGEP(
      $base->getType()->getPointerElementType(), $base, indices);
  }];
  let assemblyFormat = [{
    $base `[` custom<GEPIndices>($indices, $structIndices) `]` attr-dict
    `:` functional-type(operands, results)
  }];

  let extraClassDeclaration = [{
    constexpr static int kDynamicIndex = std::numeric_limits<int32_t>::min();
  }];
  let hasFolder = 1;
  let hasVerifier = 1;
}

def LLVM_LoadOp : LLVM_Op<"load">, MemoryOpWithAlignmentAndAttributes {
  let arguments = (ins Arg<LLVM_PointerTo<LLVM_LoadableType>, "", [MemRead]>:$addr,
                   OptionalAttr<SymbolRefArrayAttr>:$access_groups,
                   OptionalAttr<SymbolRefArrayAttr>:$alias_scopes,
                   OptionalAttr<SymbolRefArrayAttr>:$noalias_scopes,
                   OptionalAttr<I64Attr>:$alignment, UnitAttr:$volatile_,
                   UnitAttr:$nontemporal);
  let results = (outs LLVM_LoadableType:$res);
  string llvmBuilder = [{
    auto *inst = builder.CreateLoad(
      $addr->getType()->getPointerElementType(), $addr, $volatile_);
  }] # setAlignmentCode
     # setNonTemporalMetadataCode
     # setAccessGroupsMetadataCode
     # setAliasScopeMetadataCode
     # [{
    $res = inst;
  }];
  let builders = [
    OpBuilder<(ins "Value":$addr, CArg<"unsigned", "0">:$alignment,
      CArg<"bool", "false">:$isVolatile, CArg<"bool", "false">:$isNonTemporal),
    [{
      auto type = addr.getType().cast<LLVMPointerType>().getElementType();
      build($_builder, $_state, type, addr, alignment, isVolatile, isNonTemporal);
    }]>,
    OpBuilder<(ins "Type":$t, "Value":$addr,
      CArg<"unsigned", "0">:$alignment, CArg<"bool", "false">:$isVolatile,
      CArg<"bool", "false">:$isNonTemporal)>];
  let hasCustomAssemblyFormat = 1;
  let hasVerifier = 1;
}

def LLVM_StoreOp : LLVM_Op<"store">, MemoryOpWithAlignmentAndAttributes {
  let arguments = (ins LLVM_LoadableType:$value,
                   Arg<LLVM_PointerTo<LLVM_LoadableType>,"",[MemWrite]>:$addr,
                   OptionalAttr<SymbolRefArrayAttr>:$access_groups,
                   OptionalAttr<SymbolRefArrayAttr>:$alias_scopes,
                   OptionalAttr<SymbolRefArrayAttr>:$noalias_scopes,
                   OptionalAttr<I64Attr>:$alignment, UnitAttr:$volatile_,
                   UnitAttr:$nontemporal);
  string llvmBuilder = [{
    auto *inst = builder.CreateStore($value, $addr, $volatile_);
  }] # setAlignmentCode
     # setNonTemporalMetadataCode
     # setAccessGroupsMetadataCode
     # setAliasScopeMetadataCode;
  let builders = [
    OpBuilder<(ins "Value":$value, "Value":$addr,
      CArg<"unsigned", "0">:$alignment, CArg<"bool", "false">:$isVolatile,
      CArg<"bool", "false">:$isNonTemporal)>
    ];
  let hasCustomAssemblyFormat = 1;
  let hasVerifier = 1;
}

// Casts.
class LLVM_CastOp<string mnemonic, string builderFunc, Type type,
                  Type resultType, list<Trait> traits = []> :
    LLVM_Op<mnemonic, !listconcat([NoSideEffect], traits)>,
    LLVM_Builder<"$res = builder." # builderFunc # "($arg, $_resultType);"> {
  let arguments = (ins type:$arg);
  let results = (outs resultType:$res);
  let builders = [LLVM_OneResultOpBuilder];
  let assemblyFormat = "$arg attr-dict `:` type($arg) `to` type($res)";
}
def LLVM_BitcastOp : LLVM_CastOp<"bitcast", "CreateBitCast",
                                 LLVM_AnyNonAggregate, LLVM_AnyNonAggregate> {
  let hasFolder = 1;
}
def LLVM_AddrSpaceCastOp : LLVM_CastOp<"addrspacecast", "CreateAddrSpaceCast",
                                       LLVM_ScalarOrVectorOf<LLVM_AnyPointer>,
                                       LLVM_ScalarOrVectorOf<LLVM_AnyPointer>> {
  let hasFolder = 1;
}
def LLVM_IntToPtrOp : LLVM_CastOp<"inttoptr", "CreateIntToPtr",
                                  LLVM_ScalarOrVectorOf<AnyInteger>,
                                  LLVM_ScalarOrVectorOf<LLVM_AnyPointer>>;
def LLVM_PtrToIntOp : LLVM_CastOp<"ptrtoint", "CreatePtrToInt",
                                  LLVM_ScalarOrVectorOf<LLVM_AnyPointer>,
                                  LLVM_ScalarOrVectorOf<AnyInteger>>;
def LLVM_SExtOp : LLVM_CastOp<"sext", "CreateSExt",
                              LLVM_ScalarOrVectorOf<AnyInteger>,
                              LLVM_ScalarOrVectorOf<AnyInteger>>;
def LLVM_ZExtOp : LLVM_CastOp<"zext", "CreateZExt",
                              LLVM_ScalarOrVectorOf<AnyInteger>,
                              LLVM_ScalarOrVectorOf<AnyInteger>>;
def LLVM_TruncOp : LLVM_CastOp<"trunc", "CreateTrunc",
                               LLVM_ScalarOrVectorOf<AnyInteger>,
                               LLVM_ScalarOrVectorOf<AnyInteger>>;
def LLVM_SIToFPOp : LLVM_CastOp<"sitofp", "CreateSIToFP",
                                LLVM_ScalarOrVectorOf<AnyInteger>,
                                LLVM_ScalarOrVectorOf<LLVM_AnyFloat>>;
def LLVM_UIToFPOp : LLVM_CastOp<"uitofp", "CreateUIToFP",
                                LLVM_ScalarOrVectorOf<AnyInteger>,
                                LLVM_ScalarOrVectorOf<LLVM_AnyFloat>>;
def LLVM_FPToSIOp : LLVM_CastOp<"fptosi", "CreateFPToSI",
                                LLVM_ScalarOrVectorOf<LLVM_AnyFloat>,
                                LLVM_ScalarOrVectorOf<AnyInteger>>;
def LLVM_FPToUIOp : LLVM_CastOp<"fptoui", "CreateFPToUI",
                                LLVM_ScalarOrVectorOf<LLVM_AnyFloat>,
                                LLVM_ScalarOrVectorOf<AnyInteger>>;
def LLVM_FPExtOp : LLVM_CastOp<"fpext", "CreateFPExt",
                                LLVM_ScalarOrVectorOf<LLVM_AnyFloat>,
                                LLVM_ScalarOrVectorOf<LLVM_AnyFloat>>;
def LLVM_FPTruncOp : LLVM_CastOp<"fptrunc", "CreateFPTrunc",
                                 LLVM_ScalarOrVectorOf<LLVM_AnyFloat>,
                                 LLVM_ScalarOrVectorOf<LLVM_AnyFloat>>;

// Call-related operations.
def LLVM_InvokeOp : LLVM_Op<"invoke", [
                      AttrSizedOperandSegments,
                      DeclareOpInterfaceMethods<BranchOpInterface>,
                      Terminator]> {
  let arguments = (ins OptionalAttr<FlatSymbolRefAttr>:$callee,
                   Variadic<LLVM_Type>:$callee_operands,
                   Variadic<LLVM_Type>:$normalDestOperands,
                   Variadic<LLVM_Type>:$unwindDestOperands);
  let results = (outs Variadic<LLVM_Type>);
  let successors = (successor AnySuccessor:$normalDest,
                              AnySuccessor:$unwindDest);

  let builders = [
    OpBuilder<(ins "TypeRange":$tys, "FlatSymbolRefAttr":$callee,
      "ValueRange":$ops, "Block*":$normal, "ValueRange":$normalOps,
      "Block*":$unwind, "ValueRange":$unwindOps),
    [{
      $_state.addAttribute("callee", callee);
      build($_builder, $_state, tys, ops, normal, normalOps, unwind, unwindOps);
    }]>,
    OpBuilder<(ins "TypeRange":$tys, "ValueRange":$ops, "Block*":$normal,
      "ValueRange":$normalOps, "Block*":$unwind, "ValueRange":$unwindOps),
    [{
      build($_builder, $_state, tys, /*callee=*/FlatSymbolRefAttr(), ops, normalOps,
            unwindOps, normal, unwind);
    }]>];
  let hasCustomAssemblyFormat = 1;
  let hasVerifier = 1;
}

def LLVM_LandingpadOp : LLVM_Op<"landingpad"> {
  let arguments = (ins UnitAttr:$cleanup, Variadic<LLVM_Type>);
  let results = (outs LLVM_Type:$res);
  let builders = [LLVM_OneResultOpBuilder];
  let hasCustomAssemblyFormat = 1;
  let hasVerifier = 1;
}

def LLVM_CallOp : LLVM_Op<"call",
                          [DeclareOpInterfaceMethods<FastmathFlagsInterface>]> {
  let summary = "Call to an LLVM function.";
  let description = [{


    In LLVM IR, functions may return either 0 or 1 value. LLVM IR dialect
    implements this behavior by providing a variadic `call` operation for 0- and
    1-result functions. Even though MLIR supports multi-result functions, LLVM
    IR dialect disallows them.

    The `call` instruction supports both direct and indirect calls. Direct calls
    start with a function name (`@`-prefixed) and indirect calls start with an
    SSA value (`%`-prefixed). The direct callee, if present, is stored as a
    function attribute `callee`. The trailing type of the instruction is always
    the MLIR function type, which may be different from the indirect callee that
    has the wrapped LLVM IR function type.

    Examples:

    ```mlir
    // Direct call without arguments and with one result.
    %0 = llvm.call @foo() : () -> (f32)

    // Direct call with arguments and without a result.
    llvm.call @bar(%0) : (f32) -> ()

    // Indirect call with an argument and without a result.
    llvm.call %1(%0) : (f32) -> ()
    ```
  }];
  let arguments = (ins OptionalAttr<FlatSymbolRefAttr>:$callee,
                   Variadic<LLVM_Type>,
                   DefaultValuedAttr<LLVM_FMFAttr, "{}">:$fastmathFlags);
  let results = (outs Variadic<LLVM_Type>);
  let builders = [
    OpBuilder<(ins "LLVMFuncOp":$func, "ValueRange":$operands,
      CArg<"ArrayRef<NamedAttribute>", "{}">:$attributes), [{
      Type resultType = func.getFunctionType().getReturnType();
      if (!resultType.isa<LLVM::LLVMVoidType>())
        $_state.addTypes(resultType);
      $_state.addAttribute("callee", SymbolRefAttr::get(func));
      $_state.addAttributes(attributes);
      $_state.addOperands(operands);
    }]>,
    OpBuilder<(ins "TypeRange":$results, "StringAttr":$callee,
                   CArg<"ValueRange", "{}">:$operands), [{
      build($_builder, $_state, results, SymbolRefAttr::get(callee), operands);
    }]>,
    OpBuilder<(ins "TypeRange":$results, "StringRef":$callee,
                   CArg<"ValueRange", "{}">:$operands), [{
      build($_builder, $_state, results,
            StringAttr::get($_builder.getContext(), callee), operands);
    }]>];
  let hasCustomAssemblyFormat = 1;
  let hasVerifier = 1;
}
def LLVM_ExtractElementOp : LLVM_Op<"extractelement", [NoSideEffect]> {
  let arguments = (ins LLVM_AnyVector:$vector, AnyInteger:$position);
  let results = (outs LLVM_Type:$res);
  string llvmBuilder = [{
    $res = builder.CreateExtractElement($vector, $position);
  }];
  let builders = [
    OpBuilder<(ins "Value":$vector, "Value":$position,
      CArg<"ArrayRef<NamedAttribute>", "{}">:$attrs)>];
  let hasCustomAssemblyFormat = 1;
  let hasVerifier = 1;
}
def LLVM_ExtractValueOp : LLVM_Op<"extractvalue", [NoSideEffect]> {
  let arguments = (ins LLVM_AnyAggregate:$container, ArrayAttr:$position);
  let results = (outs LLVM_Type:$res);
  string llvmBuilder = [{
    $res = builder.CreateExtractValue($container, extractPosition($position));
  }];
  let builders = [LLVM_OneResultOpBuilder];
  let hasCustomAssemblyFormat = 1;
  let hasFolder = 1;
  let hasVerifier = 1;
}
def LLVM_InsertElementOp : LLVM_Op<"insertelement", [NoSideEffect]> {
  let arguments = (ins LLVM_AnyVector:$vector, LLVM_PrimitiveType:$value,
                   AnyInteger:$position);
  let results = (outs LLVM_AnyVector:$res);
  string llvmBuilder = [{
    $res = builder.CreateInsertElement($vector, $value, $position);
  }];
  let builders = [LLVM_OneResultOpBuilder];
  let hasCustomAssemblyFormat = 1;
  let hasVerifier = 1;
}
def LLVM_InsertValueOp : LLVM_Op<"insertvalue", [NoSideEffect]> {
  let arguments = (ins LLVM_AnyAggregate:$container, LLVM_PrimitiveType:$value,
                   ArrayAttr:$position);
  let results = (outs LLVM_AnyAggregate:$res);
  string llvmBuilder = [{
    $res = builder.CreateInsertValue($container, $value,
                                     extractPosition($position));
  }];
  let builders = [
    OpBuilder<(ins "Value":$container, "Value":$value, "ArrayAttr":$position),
    [{
      build($_builder, $_state, container.getType(), container, value, position);
    }]>];
  let hasCustomAssemblyFormat = 1;
  let hasVerifier = 1;
}
def LLVM_ShuffleVectorOp : LLVM_Op<"shufflevector", [NoSideEffect]> {
  let arguments = (ins LLVM_AnyVector:$v1, LLVM_AnyVector:$v2, ArrayAttr:$mask);
  let results = (outs LLVM_AnyVector:$res);
  string llvmBuilder = [{
      SmallVector<unsigned, 4> position = extractPosition($mask);
      SmallVector<int, 4> mask(position.begin(), position.end());
      $res = builder.CreateShuffleVector($v1, $v2, mask);
  }];
  let builders = [
    OpBuilder<(ins "Value":$v1, "Value":$v2, "ArrayAttr":$mask,
      CArg<"ArrayRef<NamedAttribute>", "{}">:$attrs)>];
  let hasCustomAssemblyFormat = 1;
  let hasVerifier = 1;
}

// Misc operations.
def LLVM_SelectOp
    : LLVM_Op<"select",
          [NoSideEffect, AllTypesMatch<["trueValue", "falseValue", "res"]>]>,
      LLVM_Builder<
          "$res = builder.CreateSelect($condition, $trueValue, $falseValue);"> {
  let arguments = (ins LLVM_ScalarOrVectorOf<I1>:$condition,
                   LLVM_Type:$trueValue, LLVM_Type:$falseValue);
  let results = (outs LLVM_Type:$res);
  let assemblyFormat = "operands attr-dict `:` type($condition) `,` type($res)";
}
def LLVM_FreezeOp : LLVM_Op<"freeze", [SameOperandsAndResultType]> {
  let arguments = (ins LLVM_Type:$val);
  let results = (outs LLVM_Type:$res);
  let builders = [LLVM_OneResultOpBuilder];
  let assemblyFormat = "$val attr-dict `:` type($val)";
  string llvmBuilder = "builder.CreateFreeze($val);";
}

// Terminators.
def LLVM_BrOp : LLVM_TerminatorOp<"br",
    [DeclareOpInterfaceMethods<BranchOpInterface>, NoSideEffect]> {
  let arguments = (ins Variadic<LLVM_Type>:$destOperands);
  let successors = (successor AnySuccessor:$dest);
  let assemblyFormat = [{
    $dest (`(` $destOperands^ `:` type($destOperands) `)`)? attr-dict
  }];
  let builders = [LLVM_TerminatorPassthroughOpBuilder];
}
def LLVM_CondBrOp : LLVM_TerminatorOp<"cond_br",
    [AttrSizedOperandSegments, DeclareOpInterfaceMethods<BranchOpInterface>,
     NoSideEffect]> {
  let arguments = (ins I1:$condition,
                   Variadic<LLVM_Type>:$trueDestOperands,
                   Variadic<LLVM_Type>:$falseDestOperands,
                   OptionalAttr<ElementsAttr>:$branch_weights);
  let successors = (successor AnySuccessor:$trueDest, AnySuccessor:$falseDest);
  let assemblyFormat = [{
    $condition ( `weights` `(` $branch_weights^ `)` )? `,`
    $trueDest (`(` $trueDestOperands^ `:` type($trueDestOperands) `)`)? `,`
    $falseDest (`(` $falseDestOperands^ `:` type($falseDestOperands) `)`)?
    attr-dict
  }];

  let builders = [
    OpBuilder<(ins "Value":$condition, "Block *":$trueDest,
      "ValueRange":$trueOperands, "Block *":$falseDest,
      "ValueRange":$falseOperands,
      CArg<"Optional<std::pair<uint32_t, uint32_t>>", "{}">:$weights),
    [{
        ElementsAttr weightsAttr;
        if (weights) {
          weightsAttr =
              $_builder.getI32VectorAttr({static_cast<int32_t>(weights->first),
                                       static_cast<int32_t>(weights->second)});
        }
        build($_builder, $_state, condition, trueOperands, falseOperands, weightsAttr,
              trueDest, falseDest);
  }]>,
  OpBuilder<(ins "Value":$condition, "Block *":$trueDest,
    "Block *":$falseDest, CArg<"ValueRange", "{}">:$falseOperands),
  [{
      build($_builder, $_state, condition, trueDest, ValueRange(), falseDest,
            falseOperands);
  }]>, LLVM_TerminatorPassthroughOpBuilder];
}
def LLVM_ReturnOp : LLVM_TerminatorOp<"return", [NoSideEffect]> {
  let arguments = (ins Variadic<LLVM_Type>:$args);
  string llvmBuilder = [{
    if ($_numOperands != 0)
      builder.CreateRet($args[0]);
    else
      builder.CreateRetVoid();
  }];

  let assemblyFormat = "attr-dict ($args^ `:` type($args))?";
  let hasVerifier = 1;
}
def LLVM_ResumeOp : LLVM_TerminatorOp<"resume", []> {
  let arguments = (ins LLVM_Type:$value);
  string llvmBuilder = [{ builder.CreateResume($value); }];
  let assemblyFormat = "$value attr-dict `:` type($value)";
  let hasVerifier = 1;
}
def LLVM_UnreachableOp : LLVM_TerminatorOp<"unreachable", []> {
  string llvmBuilder = [{ builder.CreateUnreachable(); }];
  let assemblyFormat = "attr-dict";
}

def LLVM_SwitchOp : LLVM_TerminatorOp<"switch",
    [AttrSizedOperandSegments, DeclareOpInterfaceMethods<BranchOpInterface>,
     NoSideEffect]> {
  let arguments = (ins
    AnyInteger:$value,
    Variadic<AnyType>:$defaultOperands,
    VariadicOfVariadic<AnyType, "case_operand_segments">:$caseOperands,
    OptionalAttr<ElementsAttr>:$case_values,
    ElementsAttr:$case_operand_segments,
    OptionalAttr<ElementsAttr>:$branch_weights
  );
  let successors = (successor
    AnySuccessor:$defaultDestination,
    VariadicSuccessor<AnySuccessor>:$caseDestinations
  );

  let assemblyFormat = [{
    $value `:` type($value) `,`
    $defaultDestination (`(` $defaultOperands^ `:` type($defaultOperands) `)`)?
    `[` `\n` custom<SwitchOpCases>(ref(type($value)), $case_values, $caseDestinations,
                                   $caseOperands, type($caseOperands)) `]`
    attr-dict
  }];
  let hasVerifier = 1;

  let builders = [
    OpBuilder<(ins "Value":$value,
      "Block *":$defaultDestination,
      "ValueRange":$defaultOperands,
      CArg<"ArrayRef<int32_t>", "{}">:$caseValues,
      CArg<"BlockRange", "{}">:$caseDestinations,
      CArg<"ArrayRef<ValueRange>", "{}">:$caseOperands,
      CArg<"ArrayRef<int32_t>", "{}">:$branchWeights)>,
    LLVM_TerminatorPassthroughOpBuilder
  ];

  let extraClassDeclaration = [{
    /// Return the operands for the case destination block at the given index.
    OperandRange getCaseOperands(unsigned index) {
      return getCaseOperands()[index];
    }

    /// Return a mutable range of operands for the case destination block at the
    /// given index.
    MutableOperandRange getCaseOperandsMutable(unsigned index) {
      return getCaseOperandsMutable()[index];
    }
  }];
}

////////////////////////////////////////////////////////////////////////////////
// Auxiliary operations (do not appear in LLVM IR but necessary for the dialect
// to work correctly).
////////////////////////////////////////////////////////////////////////////////

// Linkage attribute is used on functions and globals. The order follows that of
// https://llvm.org/docs/LangRef.html#linkage-types. The names are equivalent to
// visible names in the IR rather than to enum values names in llvm::GlobalValue
// since the latter is easier to change.
def LinkagePrivate
    : LLVM_EnumAttrCase<"Private", "private", "PrivateLinkage", 0>;
def LinkageInternal
    : LLVM_EnumAttrCase<"Internal", "internal", "InternalLinkage", 1>;
def LinkageAvailableExternally
    : LLVM_EnumAttrCase<"AvailableExternally", "available_externally",
                        "AvailableExternallyLinkage", 2>;
def LinkageLinkonce
    : LLVM_EnumAttrCase<"Linkonce", "linkonce", "LinkOnceAnyLinkage", 3>;
def LinkageWeak
    : LLVM_EnumAttrCase<"Weak", "weak", "WeakAnyLinkage", 4>;
def LinkageCommon
    : LLVM_EnumAttrCase<"Common", "common", "CommonLinkage", 5>;
def LinkageAppending
    : LLVM_EnumAttrCase<"Appending", "appending", "AppendingLinkage", 6>;
def LinkageExternWeak
   : LLVM_EnumAttrCase<"ExternWeak", "extern_weak", "ExternalWeakLinkage", 7>;
def LinkageLinkonceODR
    : LLVM_EnumAttrCase<"LinkonceODR", "linkonce_odr", "LinkOnceODRLinkage", 8>;
def LinkageWeakODR
    : LLVM_EnumAttrCase<"WeakODR", "weak_odr", "WeakODRLinkage", 9>;
def LinkageExternal
    : LLVM_EnumAttrCase<"External", "external", "ExternalLinkage", 10>;

def LinkageEnum : LLVM_EnumAttr<
    "Linkage",
    "::llvm::GlobalValue::LinkageTypes",
    "LLVM linkage types",
    [LinkagePrivate, LinkageInternal, LinkageAvailableExternally,
     LinkageLinkonce, LinkageWeak, LinkageCommon, LinkageAppending,
     LinkageExternWeak, LinkageLinkonceODR, LinkageWeakODR, LinkageExternal]> {
  let cppNamespace = "::mlir::LLVM::linkage";
}

def Linkage : DialectAttr<
    LLVM_Dialect,
    CPred<"$_self.isa<::mlir::LLVM::LinkageAttr>()">,
    "LLVM Linkage specification"> {
  let storageType = "::mlir::LLVM::LinkageAttr";
  let returnType = "::mlir::LLVM::Linkage";
  let convertFromStorage = "$_self.getLinkage()";
  let constBuilderCall =
          "::mlir::LLVM::LinkageAttr::get($_builder.getContext(), $0)";
}


def UnnamedAddrNone : LLVM_EnumAttrCase<"None", "", "None", 0>;
def UnnamedAddrLocal : LLVM_EnumAttrCase<"Local", "local_unnamed_addr", "Local", 1>;
def UnnamedAddrGlobal : LLVM_EnumAttrCase<"Global", "unnamed_addr", "Global", 2>;

def UnnamedAddr : LLVM_EnumAttr<
    "UnnamedAddr",
    "::llvm::GlobalValue::UnnamedAddr",
    "LLVM GlobalValue UnnamedAddr",
    [UnnamedAddrNone, UnnamedAddrLocal, UnnamedAddrGlobal]> {
  let cppNamespace = "::mlir::LLVM";
}

def LLVM_AddressOfOp : LLVM_Op<"mlir.addressof", [NoSideEffect]> {
  let arguments = (ins FlatSymbolRefAttr:$global_name);
  let results = (outs LLVM_Type:$res);

  let summary = "Creates a pointer pointing to a global or a function";

  let description = [{
    Creates an SSA value containing a pointer to a global variable or constant
    defined by `llvm.mlir.global`. The global value can be defined after its
    first referenced. If the global value is a constant, storing into it is not
    allowed.

    Examples:

    ```mlir
    func @foo() {
      // Get the address of a global variable.
      %0 = llvm.mlir.addressof @const : !llvm.ptr<i32>

      // Use it as a regular pointer.
      %1 = llvm.load %0 : !llvm.ptr<i32>

      // Get the address of a function.
      %2 = llvm.mlir.addressof @foo : !llvm.ptr<func<void ()>>

      // The function address can be used for indirect calls.
      llvm.call %2() : () -> ()
    }

    // Define the global.
    llvm.mlir.global @const(42 : i32) : i32
    ```
  }];

  let builders = [
    OpBuilder<(ins "GlobalOp":$global,
      CArg<"ArrayRef<NamedAttribute>", "{}">:$attrs),
    [{
      build($_builder, $_state,
            LLVM::LLVMPointerType::get(global.getType(), global.getAddrSpace()),
            global.getSymName());
      $_state.addAttributes(attrs);
    }]>,
    OpBuilder<(ins "LLVMFuncOp":$func,
      CArg<"ArrayRef<NamedAttribute>", "{}">:$attrs),
    [{
      build($_builder, $_state,
            LLVM::LLVMPointerType::get(func.getFunctionType()), func.getName());
      $_state.addAttributes(attrs);
    }]>
  ];

  let extraClassDeclaration = [{
    /// Return the llvm.mlir.global operation that defined the value referenced
    /// here.
    GlobalOp getGlobal();

    /// Return the llvm.func operation that is referenced here.
    LLVMFuncOp getFunction();
  }];

  let assemblyFormat = "$global_name attr-dict `:` type($res)";
  let hasVerifier = 1;
}

def LLVM_MetadataOp : LLVM_Op<"metadata", [
   NoRegionArguments, SymbolTable, Symbol
]> {
  let arguments = (ins
    SymbolNameAttr:$sym_name
  );
  let summary = "LLVM dialect metadata.";
  let description = [{
    llvm.metadata op defines one or more metadata nodes.

    Example:
      llvm.metadata @metadata {
        llvm.access_group @group1
        llvm.access_group @group2
        llvm.return
      }
  }];
  let regions = (region SizedRegion<1>:$body);
  let assemblyFormat = "$sym_name attr-dict-with-keyword $body";
}

def LLVM_AliasScopeDomainMetadataOp : LLVM_Op<"alias_scope_domain", [
  HasParent<"MetadataOp">, Symbol
]> {
  let arguments = (ins
    SymbolNameAttr:$sym_name,
    OptionalAttr<StrAttr>:$description
  );
  let summary = "LLVM dialect alias.scope domain metadata.";
  let description = [{
    Defines a domain that may be associated with an alias scope.

    See the following link for more details:
    https://llvm.org/docs/LangRef.html#noalias-and-alias-scope-metadata
  }];
  let assemblyFormat = "$sym_name attr-dict";
}

def LLVM_AliasScopeMetadataOp : LLVM_Op<"alias_scope", [
  HasParent<"MetadataOp">, Symbol
]> {
  let arguments = (ins
    SymbolNameAttr:$sym_name,
    FlatSymbolRefAttr:$domain,
    OptionalAttr<StrAttr>:$description
  );
  let summary = "LLVM dialect alias.scope metadata.";
  let description = [{
    Defines an alias scope that can be attached to a memory-accessing operation.
    Such scopes can be used in combination with `noalias` metadata to indicate
    that sets of memory-affecting operations in one scope do not alias with
    memory-affecting operations in another scope.

    Example:
      module {
        llvm.func @foo(%ptr1 : !llvm.ptr<i32>) {
            %c0 = llvm.mlir.constant(0 : i32) : i32
            %c4 = llvm.mlir.constant(4 : i32) : i32
            %1 = llvm.ptrtoint %ptr1 : !llvm.ptr<i32> to i32
            %2 = llvm.add %1, %c1 : i32
            %ptr2 = llvm.inttoptr %2 : i32 to !llvm.ptr<i32>
            llvm.store %c0, %ptr1 { alias_scopes = [@metadata::@scope1], llvm.noalias = [@metadata::@scope2] } : !llvm.ptr<i32>
            llvm.store %c4, %ptr2 { alias_scopes = [@metadata::@scope2], llvm.noalias = [@metadata::@scope1] } : !llvm.ptr<i32>
            llvm.return
        }

        llvm.metadata @metadata {
          llvm.alias_scope_domain @unused_domain
          llvm.alias_scope_domain @domain { description = "Optional domain description"}
          llvm.alias_scope @scope1 { domain = @domain }
          llvm.alias_scope @scope2 { domain = @domain, description = "Optional scope description" }
          llvm.return
        }
      }

    See the following link for more details:
    https://llvm.org/docs/LangRef.html#noalias-and-alias-scope-metadata
  }];
  let assemblyFormat = "$sym_name attr-dict";
}

def LLVM_AccessGroupMetadataOp : LLVM_Op<"access_group", [
  HasParent<"MetadataOp">, Symbol
]> {
  let arguments = (ins
    SymbolNameAttr:$sym_name
  );
  let summary = "LLVM dialect access group metadata.";
  let description = [{
    Defines an access group metadata that can be attached to any instruction
    that potentially accesses memory. The access group may be attached to a
    memory accessing instruction via the `llvm.access.group` metadata and
    a branch instruction in the loop latch block via the
    `llvm.loop.parallel_accesses` metadata.

    See the following link for more details:
    https://llvm.org/docs/LangRef.html#llvm-access-group-metadata
  }];
  let assemblyFormat = "$sym_name attr-dict";
}

def LLVM_GlobalOp : LLVM_Op<"mlir.global",
    [IsolatedFromAbove, SingleBlockImplicitTerminator<"ReturnOp">, Symbol]> {
  let arguments = (ins
    TypeAttr:$global_type,
    UnitAttr:$constant,
    StrAttr:$sym_name,
    Linkage:$linkage,
    UnitAttr:$dso_local,
    UnitAttr:$thread_local_,
    OptionalAttr<AnyAttr>:$value,
    OptionalAttr<I64Attr>:$alignment,
    DefaultValuedAttr<Confined<I32Attr, [IntNonNegative]>, "0">:$addr_space,
    OptionalAttr<UnnamedAddr>:$unnamed_addr,
    OptionalAttr<StrAttr>:$section
  );
  let summary = "LLVM dialect global.";
  let description = [{
    Since MLIR allows for arbitrary operations to be present at the top level,
    global variables are defined using the `llvm.mlir.global` operation. Both
    global constants and variables can be defined, and the value may also be
    initialized in both cases.

    There are two forms of initialization syntax. Simple constants that can be
    represented as MLIR attributes can be given in-line:

    ```mlir
    llvm.mlir.global @variable(32.0 : f32) : f32
    ```

    This initialization and type syntax is similar to `llvm.mlir.constant` and
    may use two types: one for MLIR attribute and another for the LLVM value.
    These types must be compatible.

    More complex constants that cannot be represented as MLIR attributes can be
    given in an initializer region:

    ```mlir
    // This global is initialized with the equivalent of:
    //   i32* getelementptr (i32* @g2, i32 2)
    llvm.mlir.global constant @int_gep() : !llvm.ptr<i32> {
      %0 = llvm.mlir.addressof @g2 : !llvm.ptr<i32>
      %1 = llvm.mlir.constant(2 : i32) : i32
      %2 = llvm.getelementptr %0[%1]
         : (!llvm.ptr<i32>, i32) -> !llvm.ptr<i32>
      // The initializer region must end with `llvm.return`.
      llvm.return %2 : !llvm.ptr<i32>
    }
    ```

    Only one of the initializer attribute or initializer region may be provided.

    `llvm.mlir.global` must appear at top-level of the enclosing module. It uses
    an @-identifier for its value, which will be uniqued by the module with
    respect to other @-identifiers in it.

    Examples:

    ```mlir
    // Global values use @-identifiers.
    llvm.mlir.global constant @cst(42 : i32) : i32

    // Non-constant values must also be initialized.
    llvm.mlir.global @variable(32.0 : f32) : f32

    // Strings are expected to be of wrapped LLVM i8 array type and do not
    // automatically include the trailing zero.
    llvm.mlir.global @string("abc") : !llvm.array<3 x i8>

    // For strings globals, the trailing type may be omitted.
    llvm.mlir.global constant @no_trailing_type("foo bar")

    // A complex initializer is constructed with an initializer region.
    llvm.mlir.global constant @int_gep() : !llvm.ptr<i32> {
      %0 = llvm.mlir.addressof @g2 : !llvm.ptr<i32>
      %1 = llvm.mlir.constant(2 : i32) : i32
      %2 = llvm.getelementptr %0[%1]
         : (!llvm.ptr<i32>, i32) -> !llvm.ptr<i32>
      llvm.return %2 : !llvm.ptr<i32>
    }
    ```

    Similarly to functions, globals have a linkage attribute. In the custom
    syntax, this attribute is placed between `llvm.mlir.global` and the optional
    `constant` keyword. If the attribute is omitted, `external` linkage is
    assumed by default.

    Examples:

    ```mlir
    // A constant with internal linkage will not participate in linking.
    llvm.mlir.global internal constant @cst(42 : i32) : i32

    // By default, "external" linkage is assumed and the global participates in
    // symbol resolution at link-time.
    llvm.mlir.global @glob(0 : f32) : f32

    // Alignment is optional
    llvm.mlir.global private constant @y(dense<1.0> : tensor<8xf32>) : !llvm.array<8 x f32>
    ```

    Like global variables in LLVM IR, globals can have an (optional)
    alignment attribute using keyword `alignment`. The integer value of the
    alignment must be a positive integer that is a power of 2.

    Examples:

    ```mlir
    // Alignment is optional
    llvm.mlir.global private constant @y(dense<1.0> : tensor<8xf32>) { alignment = 32 : i64 } : !llvm.array<8 x f32>
    ```

  }];
  let regions = (region AnyRegion:$initializer);

  let builders = [
    OpBuilder<(ins "Type":$type, "bool":$isConstant, "Linkage":$linkage,
      "StringRef":$name, "Attribute":$value,
      CArg<"uint64_t", "0">:$alignment,
      CArg<"unsigned", "0">:$addrSpace,
      CArg<"bool", "false">:$dsoLocal,
      CArg<"bool", "false">:$thread_local_,
      CArg<"ArrayRef<NamedAttribute>", "{}">:$attrs)>
  ];

  let extraClassDeclaration = [{
    /// Return the LLVM type of the global.
    Type getType() {
      return getGlobalType();
    }
    /// Return the initializer attribute if it exists, or a null attribute.
    Attribute getValueOrNull() {
      return getValue().getValueOr(Attribute());
    }
    /// Return the initializer region. This may be empty, but if it is not it
    /// terminates in an `llvm.return` op with the initializer value.
    Region &getInitializerRegion() {
      return getOperation()->getRegion(0);
    }
    /// Return the initializer block. If the initializer region is empty this
    /// is nullptr. If it is not nullptr, it terminates with an `llvm.return`
    /// op with the initializer value.
    Block *getInitializerBlock() {
      return getInitializerRegion().empty() ?
        nullptr : &getInitializerRegion().front();
    }
  }];

  let hasCustomAssemblyFormat = 1;
  let hasVerifier = 1;
  let hasRegionVerifier = 1;
}

def LLVM_GlobalCtorsOp : LLVM_Op<"mlir.global_ctors", [
                           DeclareOpInterfaceMethods<SymbolUserOpInterface>]> {
  let arguments = (ins FlatSymbolRefArrayAttr
                   : $ctors, I32ArrayAttr
                   : $priorities);
  let summary = "LLVM dialect global_ctors.";
  let description = [{
    Specifies a list of constructor functions and priorities. The functions
    referenced by this array will be called in ascending order of priority (i.e.
    lowest first) when the module is loaded. The order of functions with the
    same priority is not defined. This operation is translated to LLVM's
    global_ctors global variable. The initializer functions are run at load
    time. The `data` field present in LLVM's global_ctors variable is not
    modeled here.

    Examples:

    ```mlir
    llvm.mlir.global_ctors {@ctor}

    llvm.func @ctor() {
      ...
      llvm.return
    }
    ```

  }];
  let assemblyFormat = "attr-dict";
  let hasVerifier = 1;
}

def LLVM_GlobalDtorsOp : LLVM_Op<"mlir.global_dtors", [
                           DeclareOpInterfaceMethods<SymbolUserOpInterface>]> {
  let arguments = (ins
    FlatSymbolRefArrayAttr:$dtors,
    I32ArrayAttr:$priorities
  );
  let summary = "LLVM dialect global_dtors.";
  let description = [{
    Specifies a list of destructor functions and priorities. The functions
    referenced by this array will be called in descending order of priority (i.e.
    highest first) when the module is unloaded. The order of functions with the
    same priority is not defined. This operation is translated to LLVM's
    global_dtors global variable. The `data` field present in LLVM's
    global_dtors variable is not modeled here.

    Examples:

    ```mlir
    llvm.func @dtor() {
      llvm.return
    }
    llvm.mlir.global_dtors {@dtor}
    ```

  }];
  let assemblyFormat = "attr-dict";
  let hasVerifier = 1;
}

def LLVM_LLVMFuncOp : LLVM_Op<"func", [
    AutomaticAllocationScope, IsolatedFromAbove, FunctionOpInterface, Symbol
  ]> {
  let summary = "LLVM dialect function.";

  let description = [{
    MLIR functions are defined by an operation that is not built into the IR
    itself. The LLVM dialect provides an `llvm.func` operation to define
    functions compatible with LLVM IR. These functions have LLVM dialect
    function type but use MLIR syntax to express it. They are required to have
    exactly one result type. LLVM function operation is intended to capture
    additional properties of LLVM functions, such as linkage and calling
    convention, that may be modeled differently by the built-in MLIR function.

    ```mlir
    // The type of @bar is !llvm<"i64 (i64)">
    llvm.func @bar(%arg0: i64) -> i64 {
      llvm.return %arg0 : i64
    }

    // Type type of @foo is !llvm<"void (i64)">
    // !llvm.void type is omitted
    llvm.func @foo(%arg0: i64) {
      llvm.return
    }

    // A function with `internal` linkage.
    llvm.func internal @internal_func() {
      llvm.return
    }
    ```
  }];

  let arguments = (ins
    TypeAttrOf<LLVM_FunctionType>:$function_type,
    DefaultValuedAttr<Linkage, "Linkage::External">:$linkage,
    UnitAttr:$dso_local,
    OptionalAttr<FlatSymbolRefAttr>:$personality,
    OptionalAttr<StrAttr>:$garbageCollector,
    OptionalAttr<ArrayAttr>:$passthrough
  );

  let regions = (region AnyRegion:$body);

  let skipDefaultBuilders = 1;

  let builders = [
    OpBuilder<(ins "StringRef":$name, "Type":$type,
      CArg<"Linkage", "Linkage::External">:$linkage,
      CArg<"bool", "false">:$dsoLocal,
      CArg<"ArrayRef<NamedAttribute>", "{}">:$attrs,
      CArg<"ArrayRef<DictionaryAttr>", "{}">:$argAttrs)>
  ];

  let extraClassDeclaration = [{
    // Add an entry block to an empty function, and set up the block arguments
    // to match the signature of the function.
    Block *addEntryBlock();

    bool isVarArg() { return getFunctionType().isVarArg(); }

    /// Returns the argument types of this function.
    ArrayRef<Type> getArgumentTypes() { return getFunctionType().getParams(); }

    /// Returns the result types of this function.
    ArrayRef<Type> getResultTypes() { return getFunctionType().getReturnTypes(); }
  }];

  let hasCustomAssemblyFormat = 1;
  let hasVerifier = 1;
  let hasRegionVerifier = 1;
}

def LLVM_NullOp
    : LLVM_Op<"mlir.null", [NoSideEffect]>,
      LLVM_Builder<"$res = llvm::ConstantPointerNull::get("
                   "    cast<llvm::PointerType>($_resultType));"> {
  let summary = "Defines a value containing a null pointer to LLVM type.";
  let description = [{
    Unlike LLVM IR, MLIR does not have first-class null pointers. They must be
    explicitly created as SSA values using `llvm.mlir.null`. This operation has
    no operands or attributes, and returns a null value of a wrapped LLVM IR
    pointer type.

    Examples:

    ```mlir
    // Null pointer to i8.
    %0 = llvm.mlir.null : !llvm.ptr<i8>

    // Null pointer to a function with signature void().
    %1 = llvm.mlir.null : !llvm.ptr<func<void ()>>
    ```
  }];

  let results = (outs LLVM_AnyPointer:$res);
  let builders = [LLVM_OneResultOpBuilder];
  let assemblyFormat = "attr-dict `:` type($res)";
}

def LLVM_UndefOp : LLVM_Op<"mlir.undef", [NoSideEffect]>,
                   LLVM_Builder<"$res = llvm::UndefValue::get($_resultType);"> {
  let summary = "Creates an undefined value of LLVM dialect type.";
  let description = [{
    Unlike LLVM IR, MLIR does not have first-class undefined values. Such values
    must be created as SSA values using `llvm.mlir.undef`. This operation has no
    operands or attributes. It creates an undefined value of the specified LLVM
    IR dialect type wrapping an LLVM IR structure type.

    Example:

    ```mlir
    // Create a structure with a 32-bit integer followed by a float.
    %0 = llvm.mlir.undef : !llvm.struct<(i32, f32)>
    ```
  }];
  let results = (outs LLVM_Type:$res);
  let builders = [LLVM_OneResultOpBuilder];
  let assemblyFormat = "attr-dict `:` type($res)";
}

def LLVM_ConstantOp
    : LLVM_Op<"mlir.constant", [NoSideEffect, ConstantLike]>,
      LLVM_Builder<[{$res = getLLVMConstant($_resultType, $value, $_location,
                                            moduleTranslation);}]>
{
  let summary = "Defines a constant of LLVM type.";
  let description = [{
    Unlike LLVM IR, MLIR does not have first-class constant values. Therefore,
    all constants must be created as SSA values before being used in other
    operations. `llvm.mlir.constant` creates such values for scalars and
    vectors. It has a mandatory `value` attribute, which may be an integer,
    floating point attribute; dense or sparse attribute containing integers or
    floats. The type of the attribute is one of the corresponding MLIR builtin
    types. It may be omitted for `i64` and `f64` types that are implied. The
    operation produces a new SSA value of the specified LLVM IR dialect type.
    The type of that value _must_ correspond to the attribute type converted to
    LLVM IR.

    Examples:

    ```mlir
    // Integer constant, internal i32 is mandatory
    %0 = llvm.mlir.constant(42 : i32) : i32

    // It's okay to omit i64.
    %1 = llvm.mlir.constant(42) : i64

    // Floating point constant.
    %2 = llvm.mlir.constant(42.0 : f32) : f32

    // Splat dense vector constant.
    %3 = llvm.mlir.constant(dense<1.0> : vector<4xf32>) : vector<4xf32>
    ```
  }];

  let arguments = (ins AnyAttr:$value);
  let results = (outs LLVM_Type:$res);
  let builders = [LLVM_OneResultOpBuilder];
  let assemblyFormat = "`(` $value `)` attr-dict `:` type($res)";
  let hasFolder = 1;
  let hasVerifier = 1;
}

// Operations that correspond to LLVM intrinsics. With MLIR operation set being
// extendable, there is no reason to introduce a hard boundary between "core"
// operations and intrinsics. However, we systematically prefix them with
// "intr." to avoid potential name clashes.

class LLVM_UnaryIntrinsicOp<string func, list<Trait> traits = []> :
    LLVM_OneResultIntrOp<func, [], [0],
           !listconcat([NoSideEffect, SameOperandsAndResultType], traits)> {
  let arguments = (ins LLVM_Type:$in);
}

class LLVM_BinarySameArgsIntrinsicOp<string func, list<Trait> traits = []> :
    LLVM_OneResultIntrOp<func, [], [0],
           !listconcat([NoSideEffect, SameOperandsAndResultType], traits)> {
  let arguments = (ins LLVM_Type:$a, LLVM_Type:$b);
}

class LLVM_BinaryIntrinsicOp<string func, list<Trait> traits = []> :
    LLVM_OneResultIntrOp<func, [], [0,1],
           !listconcat([NoSideEffect], traits)> {
  let arguments = (ins LLVM_Type:$a, LLVM_Type:$b);
}

class LLVM_TernarySameArgsIntrinsicOp<string func, list<Trait> traits = []> :
    LLVM_OneResultIntrOp<func, [], [0],
           !listconcat([NoSideEffect, SameOperandsAndResultType], traits)> {
  let arguments = (ins LLVM_Type:$a, LLVM_Type:$b, LLVM_Type:$c);
}

class LLVM_CountZerosIntrinsicOp<string func, list<Trait> traits = []> :
    LLVM_OneResultIntrOp<func, [], [0],
           !listconcat([NoSideEffect], traits)> {
  let arguments = (ins LLVM_Type:$in, I<1>:$zero_undefined);
}

def LLVM_CopySignOp : LLVM_BinarySameArgsIntrinsicOp<"copysign">;
def LLVM_CosOp : LLVM_UnaryIntrinsicOp<"cos">;
def LLVM_ExpOp : LLVM_UnaryIntrinsicOp<"exp">;
def LLVM_Exp2Op : LLVM_UnaryIntrinsicOp<"exp2">;
def LLVM_FAbsOp : LLVM_UnaryIntrinsicOp<"fabs">;
def LLVM_FCeilOp : LLVM_UnaryIntrinsicOp<"ceil">;
def LLVM_FFloorOp : LLVM_UnaryIntrinsicOp<"floor">;
def LLVM_FMAOp : LLVM_TernarySameArgsIntrinsicOp<"fma">;
def LLVM_FMulAddOp : LLVM_TernarySameArgsIntrinsicOp<"fmuladd">;
def LLVM_Log10Op : LLVM_UnaryIntrinsicOp<"log10">;
def LLVM_Log2Op : LLVM_UnaryIntrinsicOp<"log2">;
def LLVM_LogOp : LLVM_UnaryIntrinsicOp<"log">;
def LLVM_Prefetch : LLVM_ZeroResultIntrOp<"prefetch", [0]> {
  let arguments = (ins LLVM_Type:$addr, LLVM_Type:$rw, LLVM_Type:$hint,
                   LLVM_Type:$cache);
}
def LLVM_SinOp : LLVM_UnaryIntrinsicOp<"sin">;
def LLVM_SqrtOp : LLVM_UnaryIntrinsicOp<"sqrt">;
def LLVM_PowOp : LLVM_BinarySameArgsIntrinsicOp<"pow">;
def LLVM_PowIOp : LLVM_BinaryIntrinsicOp<"powi">;
def LLVM_BitReverseOp : LLVM_UnaryIntrinsicOp<"bitreverse">;
def LLVM_CountLeadingZerosOp : LLVM_CountZerosIntrinsicOp<"ctlz">;
def LLVM_CountTrailingZerosOp : LLVM_CountZerosIntrinsicOp<"cttz">;
def LLVM_CtPopOp : LLVM_UnaryIntrinsicOp<"ctpop">;
def LLVM_MaxNumOp : LLVM_BinarySameArgsIntrinsicOp<"maxnum">;
def LLVM_MinNumOp : LLVM_BinarySameArgsIntrinsicOp<"minnum">;
def LLVM_MaximumOp : LLVM_BinarySameArgsIntrinsicOp<"maximum">;
def LLVM_MinimumOp : LLVM_BinarySameArgsIntrinsicOp<"minimum">;
def LLVM_SMaxOp : LLVM_BinarySameArgsIntrinsicOp<"smax">;
def LLVM_SMinOp : LLVM_BinarySameArgsIntrinsicOp<"smin">;
def LLVM_UMaxOp : LLVM_BinarySameArgsIntrinsicOp<"umax">;
def LLVM_UMinOp : LLVM_BinarySameArgsIntrinsicOp<"umin">;

def LLVM_MemcpyOp : LLVM_ZeroResultIntrOp<"memcpy", [0, 1, 2]> {
  let arguments = (ins Arg<LLVM_Type,"",[MemWrite]>:$dst, Arg<LLVM_Type,"",[MemRead]>:$src, LLVM_Type:$len,
                   LLVM_Type:$isVolatile);
}
def LLVM_MemcpyInlineOp : LLVM_ZeroResultIntrOp<"memcpy.inline", [0, 1, 2]> {
  let arguments = (ins Arg<LLVM_Type,"",[MemWrite]>:$dst, Arg<LLVM_Type,"",[MemRead]>:$src, LLVM_Type:$len,
                   LLVM_Type:$isVolatile);
}
def LLVM_MemmoveOp : LLVM_ZeroResultIntrOp<"memmove", [0, 1, 2]> {
  let arguments = (ins Arg<LLVM_Type,"",[MemWrite]>:$dst, Arg<LLVM_Type,"",[MemRead]>:$src, LLVM_Type:$len,
                   LLVM_Type:$isVolatile);
}

def LLVM_MemsetOp : LLVM_ZeroResultIntrOp<"memset", [0, 2]> {
  let arguments = (ins Arg<LLVM_Type,"",[MemWrite]>:$dst, LLVM_Type:$val, LLVM_Type:$len,
                   LLVM_Type:$isVolatile);
}

// Intrinsics with multiple returns.

def LLVM_SAddWithOverflowOp
    : LLVM_IntrOp<"sadd.with.overflow", [0], [], [], 2> {
  let arguments = (ins LLVM_Type, LLVM_Type);
}
def LLVM_UAddWithOverflowOp
    : LLVM_IntrOp<"uadd.with.overflow", [0], [], [], 2> {
  let arguments = (ins LLVM_Type, LLVM_Type);
}
def LLVM_SSubWithOverflowOp
    : LLVM_IntrOp<"ssub.with.overflow", [0], [], [], 2> {
  let arguments = (ins LLVM_Type, LLVM_Type);
}
def LLVM_USubWithOverflowOp
    : LLVM_IntrOp<"usub.with.overflow", [0], [], [], 2> {
  let arguments = (ins LLVM_Type, LLVM_Type);
}
def LLVM_SMulWithOverflowOp
    : LLVM_IntrOp<"smul.with.overflow", [0], [], [], 2> {
  let arguments = (ins LLVM_Type, LLVM_Type);
}
def LLVM_UMulWithOverflowOp
    : LLVM_IntrOp<"umul.with.overflow", [0], [], [], 2> {
  let arguments = (ins LLVM_Type, LLVM_Type);
}

//
// Coroutine intrinsics.
//

def LLVM_CoroIdOp : LLVM_IntrOp<"coro.id", [], [], [], 1> {
  let arguments = (ins I32:$align,
                       LLVM_i8Ptr:$promise,
                       LLVM_i8Ptr:$coroaddr,
                       LLVM_i8Ptr:$fnaddrs);
  let assemblyFormat = "$align `,` $promise `,` $coroaddr `,` $fnaddrs"
    " attr-dict `:` type($res)";
}

def LLVM_CoroBeginOp : LLVM_IntrOp<"coro.begin", [], [], [], 1> {
  let arguments = (ins LLVM_TokenType:$token,
                       LLVM_i8Ptr:$mem);
  let assemblyFormat = "$token `,` $mem attr-dict `:` type($res)";
}

def LLVM_CoroSizeOp : LLVM_IntrOp<"coro.size", [0], [], [], 1> {
  let assemblyFormat = "attr-dict `:` type($res)";
}

def LLVM_CoroAlignOp : LLVM_IntrOp<"coro.align", [0], [], [], 1> {
  let assemblyFormat = "attr-dict `:` type($res)";
}

def LLVM_CoroSaveOp : LLVM_IntrOp<"coro.save", [], [], [], 1> {
  let arguments = (ins LLVM_i8Ptr:$handle);
  let assemblyFormat = "$handle attr-dict `:` type($res)";
}

def LLVM_CoroSuspendOp : LLVM_IntrOp<"coro.suspend", [], [], [], 1> {
  let arguments = (ins LLVM_TokenType:$save,
                       I1:$final);
  let assemblyFormat = "$save `,` $final attr-dict `:` type($res)";
}

def LLVM_CoroEndOp : LLVM_IntrOp<"coro.end", [], [], [], 1> {
  let arguments = (ins LLVM_i8Ptr:$handle,
                       I1:$unwind);
  let assemblyFormat = "$handle `,` $unwind attr-dict `:` type($res)";
}

def LLVM_CoroFreeOp : LLVM_IntrOp<"coro.free", [], [], [], 1> {
  let arguments = (ins LLVM_TokenType:$id,
                       LLVM_i8Ptr:$handle);
  let assemblyFormat = "$id `,` $handle attr-dict `:` type($res)";
}

def LLVM_CoroResumeOp : LLVM_IntrOp<"coro.resume", [], [], [], 0> {
  let arguments = (ins LLVM_i8Ptr:$handle);
  let assemblyFormat = "$handle attr-dict";
}

//
// Exception handling intrinsics.
//

def LLVM_EhTypeidForOp : LLVM_OneResultIntrOp<"eh.typeid.for"> {
    let arguments = (ins LLVM_i8Ptr:$type_info);
    let assemblyFormat = "$type_info attr-dict `:` type($res)";
}

//
// Stack save/restore intrinsics.
//

def LLVM_StackSaveOp : LLVM_OneResultIntrOp<"stacksave"> {
  let assemblyFormat = "attr-dict `:` type($res)";
}

def LLVM_StackRestoreOp : LLVM_ZeroResultIntrOp<"stackrestore"> {
  let arguments = (ins LLVM_i8Ptr:$ptr);
  let assemblyFormat = "$ptr attr-dict";
}

//
// Vector Reductions.
//

def LLVM_vector_reduce_add : LLVM_VectorReduction<"add">;
def LLVM_vector_reduce_and : LLVM_VectorReduction<"and">;
def LLVM_vector_reduce_mul : LLVM_VectorReduction<"mul">;
def LLVM_vector_reduce_fmax : LLVM_VectorReduction<"fmax">;
def LLVM_vector_reduce_fmin : LLVM_VectorReduction<"fmin">;
def LLVM_vector_reduce_or : LLVM_VectorReduction<"or">;
def LLVM_vector_reduce_smax : LLVM_VectorReduction<"smax">;
def LLVM_vector_reduce_smin : LLVM_VectorReduction<"smin">;
def LLVM_vector_reduce_umax : LLVM_VectorReduction<"umax">;
def LLVM_vector_reduce_umin : LLVM_VectorReduction<"umin">;
def LLVM_vector_reduce_xor : LLVM_VectorReduction<"xor">;

def LLVM_vector_reduce_fadd : LLVM_VectorReductionAcc<"fadd">;
def LLVM_vector_reduce_fmul : LLVM_VectorReductionAcc<"fmul">;

//
// LLVM Matrix operations.
//

/// Create a column major, strided 2-D matrix load, as specified in the LLVM
/// MatrixBuilder.
/// data       - Start address of the matrix read
/// rows       - Number of rows in matrix (must be a constant)
/// isVolatile - True if the load operation is marked as volatile.
/// columns    - Number of columns in matrix (must be a constant)
/// stride     - Space between columns
def LLVM_MatrixColumnMajorLoadOp : LLVM_Op<"intr.matrix.column.major.load"> {
  let arguments = (ins LLVM_Type:$data, LLVM_Type:$stride, I1Attr:$isVolatile,
                   I32Attr:$rows, I32Attr:$columns);
  let results = (outs LLVM_Type:$res);
  let builders = [LLVM_OneResultOpBuilder];
  string llvmBuilder = [{
    llvm::MatrixBuilder mb(builder);
    const llvm::DataLayout &dl =
      builder.GetInsertBlock()->getModule()->getDataLayout();
    llvm::Type *ElemTy = $data->getType()->getPointerElementType();
    llvm::Align align = dl.getABITypeAlign(ElemTy);
    $res = mb.CreateColumnMajorLoad(
      ElemTy, $data, align, $stride, $isVolatile, $rows,
      $columns);
  }];
  let assemblyFormat = "$data `,` `<` `stride` `=` $stride `>` attr-dict"
    "`:` type($res) `from` type($data) `stride` type($stride)";
}

/// Create a column major, strided 2-D matrix store, as specified in the LLVM
/// MatrixBuilder.
/// matrix     - Matrix to store
/// ptr        - Pointer to write back to
/// isVolatile - True if the load operation is marked as volatile.
/// rows       - Number of rows in matrix (must be a constant)
/// columns    - Number of columns in matrix (must be a constant)
/// stride     - Space between columns
def LLVM_MatrixColumnMajorStoreOp : LLVM_Op<"intr.matrix.column.major.store"> {
  let arguments = (ins LLVM_Type:$matrix, LLVM_Type:$data, LLVM_Type:$stride,
                   I1Attr:$isVolatile, I32Attr:$rows, I32Attr:$columns);
  let builders = [LLVM_VoidResultTypeOpBuilder, LLVM_ZeroResultOpBuilder];
  string llvmBuilder = [{
    llvm::MatrixBuilder mb(builder);
    const llvm::DataLayout &dl =
      builder.GetInsertBlock()->getModule()->getDataLayout();
    llvm::Align align = dl.getABITypeAlign(
      $data->getType()->getPointerElementType());
    mb.CreateColumnMajorStore(
      $matrix, $data, align, $stride, $isVolatile,
      $rows, $columns);
  }];
  let assemblyFormat = "$matrix `,` $data `,` `<` `stride` `=` $stride `>` "
    "attr-dict`:` type($matrix) `to` type($data) `stride` type($stride)";
}

/// Create a llvm.matrix.multiply call, multiplying 2-D matrices LHS and RHS, as
/// specified in the LLVM MatrixBuilder.
def LLVM_MatrixMultiplyOp : LLVM_Op<"intr.matrix.multiply"> {
  let arguments = (ins LLVM_Type:$lhs, LLVM_Type:$rhs, I32Attr:$lhs_rows,
                   I32Attr:$lhs_columns, I32Attr:$rhs_columns);
  let results = (outs LLVM_Type:$res);
  let builders = [LLVM_OneResultOpBuilder];
  string llvmBuilder = [{
    llvm::MatrixBuilder mb(builder);
    $res = mb.CreateMatrixMultiply(
      $lhs, $rhs, $lhs_rows, $lhs_columns,
      $rhs_columns);
  }];
  let assemblyFormat = "$lhs `,` $rhs attr-dict "
    "`:` `(` type($lhs) `,` type($rhs) `)` `->` type($res)";
}

/// Create a llvm.matrix.transpose call, transposing a `rows` x `columns` 2-D
/// `matrix`, as specified in the LLVM MatrixBuilder.
def LLVM_MatrixTransposeOp : LLVM_Op<"intr.matrix.transpose"> {
  let arguments = (ins LLVM_Type:$matrix, I32Attr:$rows, I32Attr:$columns);
  let results = (outs LLVM_Type:$res);
  let builders = [LLVM_OneResultOpBuilder];
  string llvmBuilder = [{
    llvm::MatrixBuilder mb(builder);
    $res = mb.CreateMatrixTranspose(
      $matrix, $rows, $columns);
  }];
  let assemblyFormat = "$matrix attr-dict `:` type($matrix) `into` type($res)";
}

//
// LLVM masked operations.
//

/// Create a llvm.get.active.lane.mask to set a mask up to a given position.
def LLVM_GetActiveLaneMaskOp
    : LLVM_OneResultIntrOp<"get.active.lane.mask", [0], [0], [NoSideEffect]> {
  let arguments = (ins LLVM_Type:$base, LLVM_Type:$n);
  let assemblyFormat = "$base `,` $n attr-dict `:` "
    "type($base) `,` type($n) `to` type($res)";
}

/// Create a call to Masked Load intrinsic.
def LLVM_MaskedLoadOp : LLVM_Op<"intr.masked.load"> {
  let arguments = (ins LLVM_Type:$data, LLVM_Type:$mask,
                   Variadic<LLVM_Type>:$pass_thru, I32Attr:$alignment);
  let results = (outs LLVM_Type:$res);
  let builders = [LLVM_OneResultOpBuilder];
  string llvmBuilder = [{
    llvm::Type *Ty = $data->getType()->getPointerElementType();
    $res = $pass_thru.empty() ? builder.CreateMaskedLoad(
      Ty, $data, llvm::Align($alignment), $mask) :
      builder.CreateMaskedLoad(
        Ty, $data, llvm::Align($alignment), $mask, $pass_thru[0]);
  }];
  let assemblyFormat =
    "operands attr-dict `:` functional-type(operands, results)";
}

/// Create a call to Masked Store intrinsic.
def LLVM_MaskedStoreOp : LLVM_Op<"intr.masked.store"> {
  let arguments = (ins LLVM_Type:$value, LLVM_Type:$data, LLVM_Type:$mask,
                   I32Attr:$alignment);
  let builders = [LLVM_VoidResultTypeOpBuilder, LLVM_ZeroResultOpBuilder];
  string llvmBuilder = [{
    builder.CreateMaskedStore(
      $value, $data, llvm::Align($alignment), $mask);
  }];
  let assemblyFormat = "$value `,` $data `,` $mask attr-dict `:` "
    "type($value) `,` type($mask) `into` type($data)";
}

/// Create a call to Masked Gather intrinsic.
def LLVM_masked_gather : LLVM_Op<"intr.masked.gather"> {
  let arguments = (ins LLVM_Type:$ptrs, LLVM_Type:$mask,
                   Variadic<LLVM_Type>:$pass_thru, I32Attr:$alignment);
  let results = (outs LLVM_Type:$res);
  let builders = [LLVM_OneResultOpBuilder];
  string llvmBuilder = [{
    llvm::VectorType *PtrVecTy = cast<llvm::VectorType>($ptrs->getType());
    llvm::Type *Ty = llvm::VectorType::get(
      PtrVecTy->getElementType()->getPointerElementType(),
      PtrVecTy->getElementCount());
    $res = $pass_thru.empty() ? builder.CreateMaskedGather(
      Ty, $ptrs, llvm::Align($alignment), $mask) :
      builder.CreateMaskedGather(
        Ty, $ptrs, llvm::Align($alignment), $mask, $pass_thru[0]);
  }];
  let assemblyFormat =
    "operands attr-dict `:` functional-type(operands, results)";
}

/// Create a call to Masked Scatter intrinsic.
def LLVM_masked_scatter : LLVM_Op<"intr.masked.scatter"> {
  let arguments = (ins LLVM_Type:$value, LLVM_Type:$ptrs, LLVM_Type:$mask,
                   I32Attr:$alignment);
  let builders = [LLVM_VoidResultTypeOpBuilder, LLVM_ZeroResultOpBuilder];
  string llvmBuilder = [{
    builder.CreateMaskedScatter(
      $value, $ptrs, llvm::Align($alignment), $mask);
  }];
  let assemblyFormat = "$value `,` $ptrs `,` $mask attr-dict `:` "
    "type($value) `,` type($mask) `into` type($ptrs)";
}

/// Create a call to Masked Expand Load intrinsic.
def LLVM_masked_expandload : LLVM_IntrOp<"masked.expandload", [0], [], [], 1> {
  let arguments = (ins LLVM_Type, LLVM_Type, LLVM_Type);
}

/// Create a call to Masked Compress Store intrinsic.
def LLVM_masked_compressstore
    : LLVM_IntrOp<"masked.compressstore", [], [0], [], 0> {
  let arguments = (ins LLVM_Type, LLVM_Type, LLVM_Type);
}

/// Create a call to vscale intrinsic.
def LLVM_vscale : LLVM_IntrOp<"vscale", [0], [], [], 1>;

/// Create a call to stepvector intrinsic.
def LLVM_StepVectorOp
    : LLVM_IntrOp<"experimental.stepvector", [0], [], [NoSideEffect], 1> {
  let arguments = (ins);
  let results = (outs LLVM_Type:$res);
  let assemblyFormat = "attr-dict `:` type($res)";
}

// Atomic operations.
//

def AtomicBinOpXchg : I64EnumAttrCase<"xchg", 0>;
def AtomicBinOpAdd  : I64EnumAttrCase<"add", 1>;
def AtomicBinOpSub  : I64EnumAttrCase<"sub", 2>;
def AtomicBinOpAnd  : I64EnumAttrCase<"_and", 3>;
def AtomicBinOpNand : I64EnumAttrCase<"nand", 4>;
def AtomicBinOpOr   : I64EnumAttrCase<"_or", 5>;
def AtomicBinOpXor  : I64EnumAttrCase<"_xor", 6>;
def AtomicBinOpMax  : I64EnumAttrCase<"max", 7>;
def AtomicBinOpMin  : I64EnumAttrCase<"min", 8>;
def AtomicBinOpUMax : I64EnumAttrCase<"umax", 9>;
def AtomicBinOpUMin : I64EnumAttrCase<"umin", 10>;
def AtomicBinOpFAdd : I64EnumAttrCase<"fadd", 11>;
def AtomicBinOpFSub : I64EnumAttrCase<"fsub", 12>;
def AtomicBinOp : I64EnumAttr<
    "AtomicBinOp",
    "llvm.atomicrmw binary operations",
    [AtomicBinOpXchg, AtomicBinOpAdd, AtomicBinOpSub, AtomicBinOpAnd,
     AtomicBinOpNand, AtomicBinOpOr, AtomicBinOpXor, AtomicBinOpMax,
     AtomicBinOpMin, AtomicBinOpUMax, AtomicBinOpUMin, AtomicBinOpFAdd,
     AtomicBinOpFSub]> {
  let cppNamespace = "::mlir::LLVM";
}

def AtomicOrderingNotAtomic              : I64EnumAttrCase<"not_atomic", 0>;
def AtomicOrderingUnordered              : I64EnumAttrCase<"unordered", 1>;
def AtomicOrderingMonotonic              : I64EnumAttrCase<"monotonic", 2>;
def AtomicOrderingAcquire                : I64EnumAttrCase<"acquire", 4>;
def AtomicOrderingRelease                : I64EnumAttrCase<"release", 5>;
def AtomicOrderingAcquireRelease         : I64EnumAttrCase<"acq_rel", 6>;
def AtomicOrderingSequentiallyConsistent : I64EnumAttrCase<"seq_cst", 7>;
def AtomicOrdering : I64EnumAttr<
    "AtomicOrdering",
    "Atomic ordering for LLVM's memory model",
    [AtomicOrderingNotAtomic, AtomicOrderingUnordered, AtomicOrderingMonotonic,
     AtomicOrderingAcquire, AtomicOrderingRelease, AtomicOrderingAcquireRelease,
     AtomicOrderingSequentiallyConsistent]> {
  let cppNamespace = "::mlir::LLVM";
}

def LLVM_AtomicRMWType : AnyTypeOf<[LLVM_AnyFloat, AnyInteger]>;

// FIXME: Need to add alignment attribute to MLIR atomicrmw operation.
def LLVM_AtomicRMWOp : LLVM_Op<"atomicrmw"> {
  let arguments = (ins AtomicBinOp:$bin_op,
                   LLVM_PointerTo<LLVM_AtomicRMWType>:$ptr,
                   LLVM_AtomicRMWType:$val, AtomicOrdering:$ordering);
  let results = (outs LLVM_AtomicRMWType:$res);
  let llvmBuilder = [{
    $res = builder.CreateAtomicRMW(getLLVMAtomicBinOp($bin_op), $ptr, $val,
                                   llvm::MaybeAlign(),
                                   getLLVMAtomicOrdering($ordering));
  }];
  let hasCustomAssemblyFormat = 1;
  let hasVerifier = 1;
}

def LLVM_AtomicCmpXchgType : AnyTypeOf<[AnyInteger, LLVM_AnyPointer]>;
def LLVM_AtomicCmpXchgResultType : Type<And<[
  LLVM_AnyStruct.predicate,
  CPred<"$_self.cast<::mlir::LLVM::LLVMStructType>().getBody().size() == 2">,
  SubstLeaves<"$_self",
              "$_self.cast<::mlir::LLVM::LLVMStructType>().getBody()[0]",
              LLVM_AtomicCmpXchgType.predicate>,
  SubstLeaves<"$_self",
              "$_self.cast<::mlir::LLVM::LLVMStructType>().getBody()[1]",
              I1.predicate>]>,
 "an LLVM struct type with any integer or pointer followed by a single-bit "
 "integer">;

// FIXME: Need to add alignment attribute to MLIR cmpxchg operation.
def LLVM_AtomicCmpXchgOp : LLVM_Op<"cmpxchg"> {
  let arguments = (ins LLVM_PointerTo<LLVM_AtomicCmpXchgType>:$ptr,
                   LLVM_AtomicCmpXchgType:$cmp, LLVM_AtomicCmpXchgType:$val,
                   AtomicOrdering:$success_ordering,
                   AtomicOrdering:$failure_ordering);
  let results = (outs LLVM_AtomicCmpXchgResultType:$res);
  let llvmBuilder = [{
    $res = builder.CreateAtomicCmpXchg($ptr, $cmp, $val, llvm::MaybeAlign(),
                   getLLVMAtomicOrdering($success_ordering),
                   getLLVMAtomicOrdering($failure_ordering));
  }];
  let hasCustomAssemblyFormat = 1;
  let hasVerifier = 1;
}

def LLVM_AssumeOp : LLVM_Op<"intr.assume", []> {
  let arguments = (ins LLVM_Type:$cond);
  let llvmBuilder = [{
    llvm::Module *module = builder.GetInsertBlock()->getModule();
    llvm::Function *fn =
        llvm::Intrinsic::getDeclaration(module, llvm::Intrinsic::assume, {});
    builder.CreateCall(fn, {$cond});
  }];
}

def LLVM_FenceOp : LLVM_Op<"fence"> {
  let arguments = (ins AtomicOrdering:$ordering, StrAttr:$syncscope);
  let builders = [LLVM_VoidResultTypeOpBuilder, LLVM_ZeroResultOpBuilder];
  let llvmBuilder = [{
    llvm::LLVMContext &llvmContext = builder.getContext();
    builder.CreateFence(getLLVMAtomicOrdering($ordering),
      llvmContext.getOrInsertSyncScopeID($syncscope));
  }];
  let hasCustomAssemblyFormat = 1;
  let hasVerifier = 1;
}

def AsmATT : LLVM_EnumAttrCase<
  /*string cppSym=*/"AD_ATT", /*string irSym=*/"att",
  /*string llvmSym=*/"AD_ATT", /*int val=*/0>;
def AsmIntel : LLVM_EnumAttrCase<
  /*string cppSym=*/"AD_Intel", /*string irSym=*/"intel",
  /*string llvmSym=*/"AD_Intel", /*int val=*/1>;
def AsmATTOrIntel : LLVM_EnumAttr<
  /*string name=*/"AsmDialect",
  /*string llvmName=*/"::llvm::InlineAsm::AsmDialect",
  /*string description=*/"ATT (0) or Intel (1) asm dialect",
  /*list<LLVM_EnumAttrCase> cases=*/[AsmATT, AsmIntel]> {
  let cppNamespace = "::mlir::LLVM";
}

def LLVM_InlineAsmOp : LLVM_Op<"inline_asm", []> {
  let description = [{
    The InlineAsmOp mirrors the underlying LLVM semantics with a notable
    exception: the embedded `asm_string` is not allowed to define or reference
    any symbol or any global variable: only the operands of the op may be read,
    written, or referenced.
    Attempting to define or reference any symbol or any global behavior is
    considered undefined behavior at this time.
  }];
  let arguments = (
    ins Variadic<LLVM_Type>:$operands,
        StrAttr:$asm_string,
        StrAttr:$constraints,
        UnitAttr:$has_side_effects,
        UnitAttr:$is_align_stack,
        OptionalAttr<
          DefaultValuedAttr<AsmATTOrIntel, "AsmDialect::AD_ATT">>:$asm_dialect,
        OptionalAttr<ArrayAttr>:$operand_attrs);

  let results = (outs Optional<LLVM_Type>:$res);

  let assemblyFormat = [{
    (`has_side_effects` $has_side_effects^)?
    (`is_align_stack` $is_align_stack^)?
    (`asm_dialect` `=` $asm_dialect^)?
    (`operand_attrs` `=` $operand_attrs^)?
    attr-dict
    $asm_string `,` $constraints
    operands `:` functional-type(operands, results)
   }];

  let extraClassDeclaration = [{
    static StringRef getElementTypeAttrName() {
      return "elementtype";
    }
  }];
}

//
// LLVM Vector Predication operations.
//

// Integer Binary
def LLVM_VPAddOp  : LLVM_VPBinaryI<"add">;
def LLVM_VPSubOp  : LLVM_VPBinaryI<"sub">;
def LLVM_VPMulOp  : LLVM_VPBinaryI<"mul">;
def LLVM_VPSDivOp : LLVM_VPBinaryI<"sdiv">;
def LLVM_VPUDivOp : LLVM_VPBinaryI<"udiv">;
def LLVM_VPSRemOp : LLVM_VPBinaryI<"srem">;
def LLVM_VPURemOp : LLVM_VPBinaryI<"urem">;
def LLVM_VPAShrOp : LLVM_VPBinaryI<"ashr">;
def LLVM_VPLShrOp : LLVM_VPBinaryI<"lshr">;
def LLVM_VPShlOp  : LLVM_VPBinaryI<"shl">;
def LLVM_VPOrOp   : LLVM_VPBinaryI<"or">;
def LLVM_VPAndOp  : LLVM_VPBinaryI<"and">;
def LLVM_VPXorOp  : LLVM_VPBinaryI<"xor">;

// Float Binary
def LLVM_VPFAddOp : LLVM_VPBinaryF<"fadd">;
def LLVM_VPFSubOp : LLVM_VPBinaryF<"fsub">;
def LLVM_VPFMulOp : LLVM_VPBinaryF<"fmul">;
def LLVM_VPFDivOp : LLVM_VPBinaryF<"fdiv">;
def LLVM_VPFRemOp : LLVM_VPBinaryF<"frem">;

// Float Unary
def LLVM_VPFNegOp : LLVM_VPUnaryF<"fneg">;

// Float Ternary
def LLVM_VPFmaOp  : LLVM_VPTernaryF<"fma">;

// Integer Reduction
def LLVM_VPReduceAddOp  : LLVM_VPReductionI<"add">;
def LLVM_VPReduceMulOp  : LLVM_VPReductionI<"mul">;
def LLVM_VPReduceAndOp  : LLVM_VPReductionI<"and">;
def LLVM_VPReduceOrOp   : LLVM_VPReductionI<"or">;
def LLVM_VPReduceXorOp  : LLVM_VPReductionI<"xor">;
def LLVM_VPReduceSMaxOp : LLVM_VPReductionI<"smax">;
def LLVM_VPReduceSMinOp : LLVM_VPReductionI<"smin">;
def LLVM_VPReduceUMaxOp : LLVM_VPReductionI<"umax">;
def LLVM_VPReduceUMinOp : LLVM_VPReductionI<"umin">;

// Float Reduction
def LLVM_VPReduceFAddOp : LLVM_VPReductionF<"fadd">;
def LLVM_VPReduceFMulOp : LLVM_VPReductionF<"fmul">;
def LLVM_VPReduceFMaxOp : LLVM_VPReductionF<"fmax">;
def LLVM_VPReduceFMinOp : LLVM_VPReductionF<"fmin">;


#endif // LLVMIR_OPS