Welcome to mirror list, hosted at ThFree Co, Russian Federation.

github.com/prusa3d/PrusaSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'src/libslic3r/Fill/FillRectilinear3.cpp')
-rw-r--r--src/libslic3r/Fill/FillRectilinear3.cpp1642
1 files changed, 1642 insertions, 0 deletions
diff --git a/src/libslic3r/Fill/FillRectilinear3.cpp b/src/libslic3r/Fill/FillRectilinear3.cpp
new file mode 100644
index 000000000..8fc129eac
--- /dev/null
+++ b/src/libslic3r/Fill/FillRectilinear3.cpp
@@ -0,0 +1,1642 @@
+#include <stdlib.h>
+#include <stdint.h>
+
+#include <algorithm>
+#include <cmath>
+#include <limits>
+
+#include <boost/static_assert.hpp>
+
+#include "../ClipperUtils.hpp"
+#include "../ExPolygon.hpp"
+#include "../Geometry.hpp"
+#include "../Surface.hpp"
+#include "../Int128.hpp"
+
+#include "FillRectilinear3.hpp"
+
+ #define SLIC3R_DEBUG
+
+// Make assert active if SLIC3R_DEBUG
+#ifdef SLIC3R_DEBUG
+ #undef NDEBUG
+ #define DEBUG
+ #define _DEBUG
+ #include "SVG.hpp"
+#endif
+
+#include <cassert>
+
+namespace Slic3r {
+
+namespace FillRectilinear3_Internal {
+
+// A container maintaining the source expolygon with its inner offsetted polygon.
+// The source expolygon is offsetted twice:
+// 1) A tiny offset is used to get a contour, to which the open hatching lines will be extended.
+// 2) A larger offset is used to get a contor, along which the individual hatching lines will be connected.
+struct ExPolygonWithOffset
+{
+public:
+ ExPolygonWithOffset(
+ const ExPolygon &expolygon,
+ float aoffset1,
+ float aoffset2)
+ {
+ // Copy and rotate the source polygons.
+ polygons_src = expolygon;
+
+ double mitterLimit = 3.;
+ // for the infill pattern, don't cut the corners.
+ // default miterLimt = 3
+ //double mitterLimit = 10.;
+ assert(aoffset1 < 0);
+ assert(aoffset2 < 0);
+ assert(aoffset2 < aoffset1);
+// bool sticks_removed = remove_sticks(polygons_src);
+// if (sticks_removed) printf("Sticks removed!\n");
+ polygons_outer = offset(polygons_src, aoffset1,
+ ClipperLib::jtMiter,
+ mitterLimit);
+ polygons_inner = offset(polygons_outer, aoffset2 - aoffset1,
+ ClipperLib::jtMiter,
+ mitterLimit);
+ // Filter out contours with zero area or small area, contours with 2 points only.
+ const double min_area_threshold = 0.01 * aoffset2 * aoffset2;
+ remove_small(polygons_outer, min_area_threshold);
+ remove_small(polygons_inner, min_area_threshold);
+ remove_sticks(polygons_outer);
+ remove_sticks(polygons_inner);
+ n_contours_outer = polygons_outer.size();
+ n_contours_inner = polygons_inner.size();
+ n_contours = n_contours_outer + n_contours_inner;
+ polygons_ccw.assign(n_contours, false);
+ for (size_t i = 0; i < n_contours; ++ i) {
+ contour(i).remove_duplicate_points();
+ assert(! contour(i).has_duplicate_points());
+ polygons_ccw[i] = Slic3r::Geometry::is_ccw(contour(i));
+ }
+ }
+
+ // Any contour with offset1
+ bool is_contour_outer(size_t idx) const { return idx < n_contours_outer; }
+ // Any contour with offset2
+ bool is_contour_inner(size_t idx) const { return idx >= n_contours_outer; }
+
+ const Polygon& contour(size_t idx) const
+ { return is_contour_outer(idx) ? polygons_outer[idx] : polygons_inner[idx - n_contours_outer]; }
+
+ Polygon& contour(size_t idx)
+ { return is_contour_outer(idx) ? polygons_outer[idx] : polygons_inner[idx - n_contours_outer]; }
+
+ bool is_contour_ccw(size_t idx) const { return polygons_ccw[idx] != 0; }
+
+ BoundingBox bounding_box_src() const
+ { return get_extents(polygons_src); }
+ BoundingBox bounding_box_outer() const
+ { return get_extents(polygons_outer); }
+ BoundingBox bounding_box_inner() const
+ { return get_extents(polygons_inner); }
+
+#ifdef SLIC3R_DEBUG
+ void export_to_svg(Slic3r::SVG &svg) const {
+ svg.draw_outline(polygons_src, "black");
+ svg.draw_outline(polygons_outer, "green");
+ svg.draw_outline(polygons_inner, "brown");
+ }
+#endif /* SLIC3R_DEBUG */
+
+ ExPolygon polygons_src;
+ Polygons polygons_outer;
+ Polygons polygons_inner;
+
+ size_t n_contours_outer;
+ size_t n_contours_inner;
+ size_t n_contours;
+
+protected:
+ // For each polygon of polygons_inner, remember its orientation.
+ std::vector<unsigned char> polygons_ccw;
+};
+
+class SegmentedIntersectionLine;
+
+// Intersection point of a vertical line with a polygon segment.
+class SegmentIntersection
+{
+public:
+ SegmentIntersection() :
+ line(nullptr),
+ expoly_with_offset(nullptr),
+ iContour(0),
+ iSegment(0),
+ type(UNKNOWN),
+ consumed_vertical_up(false),
+ consumed_perimeter_right(false)
+ {}
+
+ // Parent object owning this intersection point.
+ const SegmentedIntersectionLine *line;
+ // Container with the source expolygon and its shrank copies, to be intersected by the line.
+ const ExPolygonWithOffset *expoly_with_offset;
+
+ // Index of a contour in ExPolygonWithOffset, with which this vertical line intersects.
+ size_t iContour;
+ // Index of a segment in iContour, with which this vertical line intersects.
+ size_t iSegment;
+
+ // Kind of intersection. With the original contour, or with the inner offestted contour?
+ // A vertical segment will be at least intersected by OUTER_LOW, OUTER_HIGH,
+ // but it could be intersected with OUTER_LOW, INNER_LOW, INNER_HIGH, OUTER_HIGH,
+ // and there may be more than one pair of INNER_LOW, INNER_HIGH between OUTER_LOW, OUTER_HIGH.
+ enum SegmentIntersectionType {
+ OUTER_LOW = 0,
+ OUTER_HIGH = 1,
+ INNER_LOW = 2,
+ INNER_HIGH = 3,
+ UNKNOWN = -1
+ };
+ SegmentIntersectionType type;
+
+ // For the INNER_LOW type, this point may be connected to another INNER_LOW point following a perimeter contour.
+ // For the INNER_HIGH type, this point may be connected to another INNER_HIGH point following a perimeter contour.
+ // If INNER_LOW is connected to INNER_HIGH or vice versa,
+ // one has to make sure the vertical infill line does not overlap with the connecting perimeter line.
+ bool is_inner() const { return type == INNER_LOW || type == INNER_HIGH; }
+ bool is_outer() const { return type == OUTER_LOW || type == OUTER_HIGH; }
+ bool is_low () const { return type == INNER_LOW || type == OUTER_LOW; }
+ bool is_high () const { return type == INNER_HIGH || type == OUTER_HIGH; }
+
+ // Calculate a position of this intersection point. The position does not need to be necessary exact.
+ Point pos() const;
+
+ // Returns 0, if this and other segments intersect at the hatching line.
+ // Returns -1, if this intersection is below the other intersection on the hatching line.
+ // Returns +1 otherwise.
+ int ordering_along_line(const SegmentIntersection &other) const;
+
+ // Compare two y intersection points given by rational numbers.
+ bool operator< (const SegmentIntersection &other) const;
+ // { return this->ordering_along_line(other) == -1; }
+ bool operator==(const SegmentIntersection &other) const { return this->ordering_along_line(other) == 0; }
+
+ //FIXME legacy code, suporting the old graph traversal algorithm. Please remove.
+ // Was this segment along the y axis consumed?
+ // Up means up along the vertical segment.
+ bool consumed_vertical_up;
+ // Was a segment of the inner perimeter contour consumed?
+ // Right means right from the vertical segment.
+ bool consumed_perimeter_right;
+};
+
+// A single hathing line intersecting the ExPolygonWithOffset.
+class SegmentedIntersectionLine
+{
+public:
+ // Index of this vertical intersection line.
+ size_t idx;
+ // Position of the line along the X axis of the oriented bounding box.
+// coord_t x;
+ // Position of this vertical intersection line, rotated to the world coordinate system.
+ Point pos;
+ // Direction of this vertical intersection line, rotated to the world coordinate system. The direction is not normalized to maintain a sufficient accuracy!
+ Vector dir;
+ // List of intersection points with polygons, sorted increasingly by the y axis.
+ // The SegmentIntersection keeps a pointer to this object to access the start and direction of this line.
+ std::vector<SegmentIntersection> intersections;
+};
+
+// Return an intersection point of the parent SegmentedIntersectionLine with the segment of a parent ExPolygonWithOffset.
+// The intersected segment of the ExPolygonWithOffset is addressed with (iContour, iSegment).
+// When calling this method, the SegmentedIntersectionLine must not be parallel with the segment.
+Point SegmentIntersection::pos() const
+{
+ // Get the two rays to be intersected.
+ const Polygon &poly = this->expoly_with_offset->contour(this->iContour);
+ // 30 bits + 1 signum bit.
+ const Point &seg_start = poly.points[(this->iSegment == 0) ? poly.points.size() - 1 : this->iSegment - 1];
+ const Point &seg_end = poly.points[this->iSegment];
+ // Point, vector of the segment.
+ const Vec2d p1(seg_start.cast<coordf_t>());
+ const Vec2d v1((seg_end - seg_start).cast<coordf_t>());
+ // Point, vector of this hatching line.
+ const Vec2d p2(line->pos.cast<coordf_t>());
+ const Vec2d v2(line->dir.cast<coordf_t>());
+ // Intersect the two rays.
+ double denom = v1(0) * v2(1) - v2(0) * v1(1);
+ Point out;
+ if (denom == 0.) {
+ // Lines are collinear. As the pos() method is not supposed to be called on collinear vectors,
+ // the source vectors are not quite collinear. Return the center of the contour segment.
+ out = seg_start + seg_end;
+ out(0) >>= 1;
+ out(1) >>= 1;
+ } else {
+ // Find the intersection point.
+ double t = (v2(0) * (p1(1) - p2(1)) - v2(1) * (p1(0) - p2(0))) / denom;
+ if (t < 0.)
+ out = seg_start;
+ else if (t > 1.)
+ out = seg_end;
+ else {
+ out(0) = coord_t(floor(p1(0) + t * v1(0) + 0.5));
+ out(1) = coord_t(floor(p1(1) + t * v1(1) + 0.5));
+ }
+ }
+ return out;
+}
+
+static inline int signum(int64_t v) { return (v > 0) - (v < 0); }
+
+// Returns 0, if this and other segments intersect at the hatching line.
+// Returns -1, if this intersection is below the other intersection on the hatching line.
+// Returns +1 otherwise.
+int SegmentIntersection::ordering_along_line(const SegmentIntersection &other) const
+{
+ assert(this->line == other.line);
+ assert(this->expoly_with_offset == other.expoly_with_offset);
+
+ if (this->iContour == other.iContour && this->iSegment == other.iSegment)
+ return true;
+
+ // Segment of this
+ const Polygon &poly_a = this->expoly_with_offset->contour(this->iContour);
+ // 30 bits + 1 signum bit.
+ const Point &seg_start_a = poly_a.points[(this->iSegment == 0) ? poly_a.points.size() - 1 : this->iSegment - 1];
+ const Point &seg_end_a = poly_a.points[this->iSegment];
+
+ // Segment of other
+ const Polygon &poly_b = this->expoly_with_offset->contour(other.iContour);
+ // 30 bits + 1 signum bit.
+ const Point &seg_start_b = poly_b.points[(other.iSegment == 0) ? poly_b.points.size() - 1 : other.iSegment - 1];
+ const Point &seg_end_b = poly_b.points[other.iSegment];
+
+ if (this->iContour == other.iContour) {
+ if ((this->iSegment + 1) % poly_a.points.size() == other.iSegment) {
+ // other.iSegment succeeds this->iSegment
+ assert(seg_end_a == seg_start_b);
+ // Avoid calling the 128bit x 128bit multiplication below if this->line intersects the common point.
+ if (cross2(Vec2i64(this->line->dir.cast<int64_t>()), (seg_end_b - this->line->pos).cast<int64_t>()) == 0)
+ return 0;
+ } else if ((other.iSegment + 1) % poly_a.points.size() == this->iSegment) {
+ // this->iSegment succeeds other.iSegment
+ assert(seg_start_a == seg_end_b);
+ // Avoid calling the 128bit x 128bit multiplication below if this->line intersects the common point.
+ if (cross2(Vec2i64(this->line->dir.cast<int64_t>()), (seg_start_a - this->line->pos).cast<int64_t>()) == 0)
+ return 0;
+ } else {
+ // General case.
+ }
+ }
+
+ // First test, whether both points of one segment are completely in one half-plane of the other line.
+ const Vec2i64 vec_b = (seg_end_b - seg_start_b).cast<int64_t>();
+ int side_start = signum(cross2(vec_b, (seg_start_a - seg_start_b).cast<int64_t>()));
+ int side_end = signum(cross2(vec_b, (seg_end_a - seg_start_b).cast<int64_t>()));
+ int side = side_start * side_end;
+ if (side > 0)
+ // This segment is completely inside one half-plane of the other line, therefore the ordering is trivial.
+ return signum(cross2(vec_b, this->line->dir.cast<int64_t>())) * side_start;
+
+ const Vec2i64 vec_a = (seg_end_a - seg_start_a).cast<int64_t>();
+ int side_start2 = signum(cross2(vec_a, (seg_start_b - seg_start_a).cast<int64_t>()));
+ int side_end2 = signum(cross2(vec_a, (seg_end_b - seg_start_a).cast<int64_t>()));
+ int side2 = side_start2 * side_end2;
+ //if (side == 0 && side2 == 0)
+ // The segments share one of their end points.
+ if (side2 > 0)
+ // This segment is completely inside one half-plane of the other line, therefore the ordering is trivial.
+ return signum(cross2(this->line->dir.cast<int64_t>(), vec_a)) * side_start2;
+
+ // The two segments intersect and they are not sucessive segments of the same contour.
+ // Ordering of the points depends on the position of the segment intersection (left / right from this->line),
+ // therefore a simple test over the input segment end points is not sufficient.
+
+ // Find the parameters of intersection of the two segmetns with this->line.
+ int64_t denom1 = cross2(this->line->dir.cast<int64_t>(), vec_a);
+ int64_t denom2 = cross2(this->line->dir.cast<int64_t>(), vec_b);
+ Vec2i64 vx_a = (seg_start_a - this->line->pos).cast<int64_t>();
+ Vec2i64 vx_b = (seg_start_b - this->line->pos).cast<int64_t>();
+ int64_t t1_times_denom1 = vx_a(0) * vec_a(1) - vx_a(1) * vec_a(0);
+ int64_t t2_times_denom2 = vx_b(0) * vec_b(1) - vx_b(1) * vec_b(0);
+ assert(denom1 != 0);
+ assert(denom2 != 0);
+ return Int128::compare_rationals_filtered(t1_times_denom1, denom1, t2_times_denom2, denom2);
+}
+
+// Compare two y intersection points given by rational numbers.
+bool SegmentIntersection::operator<(const SegmentIntersection &other) const
+{
+#ifdef _DEBUG
+ Point p1 = this->pos();
+ Point p2 = other.pos();
+ int64_t d = this->line->dir.cast<int64_t>().dot((p2 - p1).cast<int64_t>());
+#endif /* _DEBUG */
+ int ordering = this->ordering_along_line(other);
+#ifdef _DEBUG
+ if (ordering == -1)
+ assert(d >= - int64_t(SCALED_EPSILON));
+ else if (ordering == 1)
+ assert(d <= int64_t(SCALED_EPSILON));
+#endif /* _DEBUG */
+ return ordering == -1;
+}
+
+// When doing a rectilinear / grid / triangle / stars / cubic infill,
+// the following class holds the hatching lines of each of the hatching directions.
+class InfillHatchingSingleDirection
+{
+public:
+ // Hatching angle, CCW from the X axis.
+ double angle;
+ // Starting point of the 1st hatching line.
+ Point start_point;
+ // Direction vector, its size is not normalized to maintain a sufficient accuracy!
+ Vector direction;
+ // Spacing of the hatching lines, perpendicular to the direction vector.
+ coord_t line_spacing;
+ // Infill segments oriented at angle.
+ std::vector<SegmentedIntersectionLine> segs;
+};
+
+// For the rectilinear, grid, triangles, stars and cubic pattern fill one InfillHatchingSingleDirection structure
+// for each infill direction. The segments stored in InfillHatchingSingleDirection will then form a graph of candidate
+// paths to be extruded.
+static bool prepare_infill_hatching_segments(
+ // Input geometry to be hatch, containing two concentric contours for each input contour.
+ const ExPolygonWithOffset &poly_with_offset,
+ // fill density, dont_adjust
+ const FillParams &params,
+ // angle, pattern_shift, spacing
+ FillRectilinear3::FillDirParams &fill_dir_params,
+ // Reference point of the pattern, to which the infill lines will be alligned, and the base angle.
+ const std::pair<float, Point> &rotate_vector,
+ // Resulting straight segments of the infill graph.
+ InfillHatchingSingleDirection &out)
+{
+ out.angle = rotate_vector.first + fill_dir_params.angle;
+ out.direction = Point(coord_t(scale_(1000)), coord_t(0));
+ // Hatch along the Y axis of the rotated coordinate system.
+ out.direction.rotate(out.angle + 0.5 * M_PI);
+ out.segs.clear();
+
+ assert(params.density > 0.0001f && params.density <= 1.f);
+ coord_t line_spacing = coord_t(scale_(fill_dir_params.spacing) / params.density);
+
+ // Bounding box around the source contour, aligned with out.angle.
+ BoundingBox bounding_box = get_extents_rotated(poly_with_offset.polygons_src.contour, - out.angle);
+
+ // Define the flow spacing according to requested density.
+ if (params.full_infill() && ! params.dont_adjust) {
+ // Full infill, adjust the line spacing to fit an integer number of lines.
+ out.line_spacing = Fill::_adjust_solid_spacing(bounding_box.size()(0), line_spacing);
+ // Report back the adjusted line spacing.
+ fill_dir_params.spacing = unscale<double>(line_spacing);
+ } else {
+ // Extend bounding box so that our pattern will be aligned with the other layers.
+ // Transform the reference point to the rotated coordinate system.
+ Point refpt = rotate_vector.second.rotated(- out.angle);
+ // _align_to_grid will not work correctly with positive pattern_shift.
+ coord_t pattern_shift_scaled = coord_t(scale_(fill_dir_params.pattern_shift)) % line_spacing;
+ refpt(0) -= (pattern_shift_scaled >= 0) ? pattern_shift_scaled : (line_spacing + pattern_shift_scaled);
+ bounding_box.merge(Fill::_align_to_grid(
+ bounding_box.min,
+ Point(line_spacing, line_spacing),
+ refpt));
+ }
+
+ // Intersect a set of euqally spaced vertical lines wiht expolygon.
+ // n_vlines = ceil(bbox_width / line_spacing)
+ size_t n_vlines = (bounding_box.max(0) - bounding_box.min(0) + line_spacing - 1) / line_spacing;
+ coord_t x0 = bounding_box.min(0);
+ if (params.full_infill())
+ x0 += coord_t((line_spacing + SCALED_EPSILON) / 2);
+
+ out.line_spacing = line_spacing;
+ out.start_point = Point(x0, bounding_box.min(1));
+ out.start_point.rotate(out.angle);
+
+#ifdef SLIC3R_DEBUG
+ static int iRun = 0;
+ BoundingBox bbox_svg = poly_with_offset.bounding_box_outer();
+ ::Slic3r::SVG svg(debug_out_path("FillRectilinear2-%d.svg", iRun), bbox_svg); // , scale_(1.));
+ poly_with_offset.export_to_svg(svg);
+ {
+ ::Slic3r::SVG svg(debug_out_path("FillRectilinear2-initial-%d.svg", iRun), bbox_svg); // , scale_(1.));
+ poly_with_offset.export_to_svg(svg);
+ }
+ iRun ++;
+#endif /* SLIC3R_DEBUG */
+
+ // For each contour
+ // Allocate storage for the segments.
+ out.segs.assign(n_vlines, SegmentedIntersectionLine());
+ double cos_a = cos(out.angle);
+ double sin_a = sin(out.angle);
+ for (size_t i = 0; i < n_vlines; ++ i) {
+ auto &seg = out.segs[i];
+ seg.idx = i;
+ // seg(0) = x0 + coord_t(i) * line_spacing;
+ coord_t x = x0 + coord_t(i) * line_spacing;
+ seg.pos(0) = coord_t(floor(cos_a * x - sin_a * bounding_box.min(1) + 0.5));
+ seg.pos(1) = coord_t(floor(cos_a * bounding_box.min(1) + sin_a * x + 0.5));
+ seg.dir = out.direction;
+ }
+
+ for (size_t iContour = 0; iContour < poly_with_offset.n_contours; ++ iContour) {
+ const Points &contour = poly_with_offset.contour(iContour).points;
+ if (contour.size() < 2)
+ continue;
+ // For each segment
+ for (size_t iSegment = 0; iSegment < contour.size(); ++ iSegment) {
+ size_t iPrev = ((iSegment == 0) ? contour.size() : iSegment) - 1;
+ const Point *pl = &contour[iPrev];
+ const Point *pr = &contour[iSegment];
+ // Orient the segment to the direction vector.
+ const Point v = *pr - *pl;
+ int orientation = Int128::sign_determinant_2x2_filtered(v(0), v(1), out.direction(0), out.direction(1));
+ if (orientation == 0)
+ // Ignore strictly vertical segments.
+ continue;
+ if (orientation < 0)
+ // Always orient the input segment consistently towards the hatching direction.
+ std::swap(pl, pr);
+ // Which of the equally spaced vertical lines is intersected by this segment?
+ coord_t l = (coord_t)floor(cos_a * (*pl)(0) + sin_a * (*pl)(1) - SCALED_EPSILON);
+ coord_t r = (coord_t)ceil (cos_a * (*pr)(0) + sin_a * (*pr)(1) + SCALED_EPSILON);
+ assert(l < r - SCALED_EPSILON);
+ // il, ir are the left / right indices of vertical lines intersecting a segment
+ int il = std::max<int>(0, (l - x0 + line_spacing) / line_spacing);
+ int ir = std::min<int>(int(out.segs.size()) - 1, (r - x0) / line_spacing);
+ // The previous tests were done with floating point arithmetics over an epsilon-extended interval.
+ // Now do the same tests with exact arithmetics over the exact interval.
+ while (il <= ir && int128::orient(out.segs[il].pos, out.segs[il].pos + out.direction, *pl) < 0)
+ ++ il;
+ while (il <= ir && int128::orient(out.segs[ir].pos, out.segs[ir].pos + out.direction, *pr) > 0)
+ -- ir;
+ // Here it is ensured, that
+ // 1) out.seg is not parallel to (pl, pr)
+ // 2) all lines from il to ir intersect <pl, pr>.
+ assert(il >= 0 && ir < int(out.segs.size()));
+ for (int i = il; i <= ir; ++ i) {
+ // assert(out.segs[i](0) == i * line_spacing + x0);
+ // assert(l <= out.segs[i](0));
+ // assert(r >= out.segs[i](0));
+ SegmentIntersection is;
+ is.line = &out.segs[i];
+ is.expoly_with_offset = &poly_with_offset;
+ is.iContour = iContour;
+ is.iSegment = iSegment;
+ // Test whether the calculated intersection point falls into the bounding box of the input segment.
+ // +-1 to take rounding into account.
+ assert(int128::orient(out.segs[i].pos, out.segs[i].pos + out.direction, *pl) >= 0);
+ assert(int128::orient(out.segs[i].pos, out.segs[i].pos + out.direction, *pr) <= 0);
+ assert(is.pos()(0) + 1 >= std::min((*pl)(0), (*pr)(0)));
+ assert(is.pos()(1) + 1 >= std::min((*pl)(1), (*pr)(1)));
+ assert(is.pos()(0) <= std::max((*pl)(0), (*pr)(0)) + 1);
+ assert(is.pos()(1) <= std::max((*pl)(1), (*pr)(1)) + 1);
+ out.segs[i].intersections.push_back(is);
+ }
+ }
+ }
+
+ // Sort the intersections along their segments, specify the intersection types.
+ for (size_t i_seg = 0; i_seg < out.segs.size(); ++ i_seg) {
+ SegmentedIntersectionLine &sil = out.segs[i_seg];
+ // Sort the intersection points using exact rational arithmetic.
+ std::sort(sil.intersections.begin(), sil.intersections.end());
+#ifdef _DEBUG
+ // Verify that the intersections are sorted along the haching direction.
+ for (size_t i = 1; i < sil.intersections.size(); ++ i) {
+ Point p1 = sil.intersections[i - 1].pos();
+ Point p2 = sil.intersections[i].pos();
+ int64_t d = sil.dir.cast<int64_t>().dot((p2 - p1).cast<int64_t>());
+ assert(d >= - int64_t(SCALED_EPSILON));
+ }
+#endif /* _DEBUG */
+ // Assign the intersection types, remove duplicate or overlapping intersection points.
+ // When a loop vertex touches a vertical line, intersection point is generated for both segments.
+ // If such two segments are oriented equally, then one of them is removed.
+ // Otherwise the vertex is tangential to the vertical line and both segments are removed.
+ // The same rule applies, if the loop is pinched into a single point and this point touches the vertical line:
+ // The loop has a zero vertical size at the vertical line, therefore the intersection point is removed.
+ size_t j = 0;
+ for (size_t i = 0; i < sil.intersections.size(); ++ i) {
+ // What is the orientation of the segment at the intersection point?
+ size_t iContour = sil.intersections[i].iContour;
+ const Points &contour = poly_with_offset.contour(iContour).points;
+ size_t iSegment = sil.intersections[i].iSegment;
+ size_t iPrev = ((iSegment == 0) ? contour.size() : iSegment) - 1;
+ int dir = int128::cross(contour[iSegment] - contour[iPrev], sil.dir);
+ bool low = dir > 0;
+ sil.intersections[i].type = poly_with_offset.is_contour_outer(iContour) ?
+ (low ? SegmentIntersection::OUTER_LOW : SegmentIntersection::OUTER_HIGH) :
+ (low ? SegmentIntersection::INNER_LOW : SegmentIntersection::INNER_HIGH);
+ if (j > 0 && sil.intersections[i].iContour == sil.intersections[j-1].iContour) {
+ // Two successive intersection points on a vertical line with the same contour. This may be a special case.
+ if (sil.intersections[i] == sil.intersections[j-1]) {
+ // Two successive segments meet exactly at the vertical line.
+ #ifdef SLIC3R_DEBUG
+ // Verify that the segments of sil.intersections[i] and sil.intersections[j-1] are adjoint.
+ size_t iSegment2 = sil.intersections[j-1].iSegment;
+ size_t iPrev2 = ((iSegment2 == 0) ? contour.size() : iSegment2) - 1;
+ assert(iSegment == iPrev2 || iSegment2 == iPrev);
+ #endif /* SLIC3R_DEBUG */
+ if (sil.intersections[i].type == sil.intersections[j-1].type) {
+ // Two successive segments of the same direction (both to the right or both to the left)
+ // meet exactly at the vertical line.
+ // Remove the second intersection point.
+ } else {
+ // This is a loop returning to the same point.
+ // It may as well be a vertex of a loop touching this vertical line.
+ // Remove both the lines.
+ -- j;
+ }
+ } else if (sil.intersections[i].type == sil.intersections[j-1].type) {
+ // Two non successive segments of the same direction (both to the right or both to the left)
+ // meet exactly at the vertical line. That means there is a Z shaped path, where the center segment
+ // of the Z shaped path is aligned with this vertical line.
+ // Remove one of the intersection points while maximizing the vertical segment length.
+ if (low) {
+ // Remove the second intersection point, keep the first intersection point.
+ } else {
+ // Remove the first intersection point, keep the second intersection point.
+ sil.intersections[j-1] = sil.intersections[i];
+ }
+ } else {
+ // Vertical line intersects a contour segment at a general position (not at one of its end points).
+ // or the contour just touches this vertical line with a vertical segment or a sequence of vertical segments.
+ // Keep both intersection points.
+ if (j < i)
+ sil.intersections[j] = sil.intersections[i];
+ ++ j;
+ }
+ } else {
+ // Vertical line intersects a contour segment at a general position (not at one of its end points).
+ if (j < i)
+ sil.intersections[j] = sil.intersections[i];
+ ++ j;
+ }
+ }
+ // Shrink the list of intersections, if any of the intersection was removed during the classification.
+ if (j < sil.intersections.size())
+ sil.intersections.erase(sil.intersections.begin() + j, sil.intersections.end());
+ }
+
+ // Verify the segments. If something is wrong, give up.
+#define ASSERT_OR_RETURN(CONDITION) do { assert(CONDITION); if (! (CONDITION)) return false; } while (0)
+#ifdef _MSC_VER
+ #pragma warning(push)
+ #pragma warning(disable: 4127)
+#endif
+ for (size_t i_seg = 0; i_seg < out.segs.size(); ++ i_seg) {
+ SegmentedIntersectionLine &sil = out.segs[i_seg];
+ // The intersection points have to be even.
+ ASSERT_OR_RETURN((sil.intersections.size() & 1) == 0);
+ for (size_t i = 0; i < sil.intersections.size();) {
+ // An intersection segment crossing the bigger contour may cross the inner offsetted contour even number of times.
+ ASSERT_OR_RETURN(sil.intersections[i].type == SegmentIntersection::OUTER_LOW);
+ size_t j = i + 1;
+ ASSERT_OR_RETURN(j < sil.intersections.size());
+ ASSERT_OR_RETURN(sil.intersections[j].type == SegmentIntersection::INNER_LOW || sil.intersections[j].type == SegmentIntersection::OUTER_HIGH);
+ for (; j < sil.intersections.size() && sil.intersections[j].is_inner(); ++ j) ;
+ ASSERT_OR_RETURN(j < sil.intersections.size());
+ ASSERT_OR_RETURN((j & 1) == 1);
+ ASSERT_OR_RETURN(sil.intersections[j].type == SegmentIntersection::OUTER_HIGH);
+ ASSERT_OR_RETURN(i + 1 == j || sil.intersections[j - 1].type == SegmentIntersection::INNER_HIGH);
+ i = j + 1;
+ }
+ }
+#undef ASSERT_OR_RETURN
+#ifdef _MSC_VER
+ #pragma warning(push)
+#endif /* _MSC_VER */
+
+#ifdef SLIC3R_DEBUG
+ // Paint the segments and finalize the SVG file.
+ for (size_t i_seg = 0; i_seg < out.segs.size(); ++ i_seg) {
+ SegmentedIntersectionLine &sil = out.segs[i_seg];
+ for (size_t i = 0; i < sil.intersections.size();) {
+ size_t j = i + 1;
+ for (; j < sil.intersections.size() && sil.intersections[j].is_inner(); ++ j) ;
+ if (i + 1 == j) {
+ svg.draw(Line(sil.intersections[i ].pos(), sil.intersections[j ].pos()), "blue");
+ } else {
+ svg.draw(Line(sil.intersections[i ].pos(), sil.intersections[i+1].pos()), "green");
+ svg.draw(Line(sil.intersections[i+1].pos(), sil.intersections[j-1].pos()), (j - i + 1 > 4) ? "yellow" : "magenta");
+ svg.draw(Line(sil.intersections[j-1].pos(), sil.intersections[j ].pos()), "green");
+ }
+ i = j + 1;
+ }
+ }
+ svg.Close();
+#endif /* SLIC3R_DEBUG */
+
+
+ return true;
+}
+
+
+
+
+
+
+
+
+/****************************************************************** Legacy code, to be replaced by a graph algorithm ******************************************************************/
+
+
+// Having a segment of a closed polygon, calculate its Euclidian length.
+// The segment indices seg1 and seg2 signify an end point of an edge in the forward direction of the loop,
+// therefore the point p1 lies on poly.points[seg1-1], poly.points[seg1] etc.
+static inline coordf_t segment_length(const Polygon &poly, size_t seg1, const Point &p1, size_t seg2, const Point &p2)
+{
+#ifdef SLIC3R_DEBUG
+ // Verify that p1 lies on seg1. This is difficult to verify precisely,
+ // but at least verify, that p1 lies in the bounding box of seg1.
+ for (size_t i = 0; i < 2; ++ i) {
+ size_t seg = (i == 0) ? seg1 : seg2;
+ Point px = (i == 0) ? p1 : p2;
+ Point pa = poly.points[((seg == 0) ? poly.points.size() : seg) - 1];
+ Point pb = poly.points[seg];
+ if (pa(0) > pb(0))
+ std::swap(pa(0), pb(0));
+ if (pa(1) > pb(1))
+ std::swap(pa(1), pb(1));
+ assert(px(0) >= pa(0) && px(0) <= pb(0));
+ assert(px(1) >= pa(1) && px(1) <= pb(1));
+ }
+#endif /* SLIC3R_DEBUG */
+ const Point *pPrev = &p1;
+ const Point *pThis = NULL;
+ coordf_t len = 0;
+ if (seg1 <= seg2) {
+ for (size_t i = seg1; i < seg2; ++ i, pPrev = pThis)
+ len += (*pPrev - *(pThis = &poly.points[i])).cast<double>().norm();
+ } else {
+ for (size_t i = seg1; i < poly.points.size(); ++ i, pPrev = pThis)
+ len += (*pPrev - *(pThis = &poly.points[i])).cast<double>().norm();
+ for (size_t i = 0; i < seg2; ++ i, pPrev = pThis)
+ len += (*pPrev - *(pThis = &poly.points[i])).cast<double>().norm();
+ }
+ len += (*pPrev - p2).cast<double>().norm();
+ return len;
+}
+
+// Append a segment of a closed polygon to a polyline.
+// The segment indices seg1 and seg2 signify an end point of an edge in the forward direction of the loop.
+// Only insert intermediate points between seg1 and seg2.
+static inline void polygon_segment_append(Points &out, const Polygon &polygon, size_t seg1, size_t seg2)
+{
+ if (seg1 == seg2) {
+ // Nothing to append from this segment.
+ } else if (seg1 < seg2) {
+ // Do not append a point pointed to by seg2.
+ out.insert(out.end(), polygon.points.begin() + seg1, polygon.points.begin() + seg2);
+ } else {
+ out.reserve(out.size() + seg2 + polygon.points.size() - seg1);
+ out.insert(out.end(), polygon.points.begin() + seg1, polygon.points.end());
+ // Do not append a point pointed to by seg2.
+ out.insert(out.end(), polygon.points.begin(), polygon.points.begin() + seg2);
+ }
+}
+
+// Append a segment of a closed polygon to a polyline.
+// The segment indices seg1 and seg2 signify an end point of an edge in the forward direction of the loop,
+// but this time the segment is traversed backward.
+// Only insert intermediate points between seg1 and seg2.
+static inline void polygon_segment_append_reversed(Points &out, const Polygon &polygon, size_t seg1, size_t seg2)
+{
+ if (seg1 >= seg2) {
+ out.reserve(seg1 - seg2);
+ for (size_t i = seg1; i > seg2; -- i)
+ out.push_back(polygon.points[i - 1]);
+ } else {
+ // it could be, that seg1 == seg2. In that case, append the complete loop.
+ out.reserve(out.size() + seg2 + polygon.points.size() - seg1);
+ for (size_t i = seg1; i > 0; -- i)
+ out.push_back(polygon.points[i - 1]);
+ for (size_t i = polygon.points.size(); i > seg2; -- i)
+ out.push_back(polygon.points[i - 1]);
+ }
+}
+
+static inline int distance_of_segmens(const Polygon &poly, size_t seg1, size_t seg2, bool forward)
+{
+ int d = int(seg2) - int(seg1);
+ if (! forward)
+ d = - d;
+ if (d < 0)
+ d += int(poly.points.size());
+ return d;
+}
+
+// For a vertical line, an inner contour and an intersection point,
+// find an intersection point on the previous resp. next vertical line.
+// The intersection point is connected with the prev resp. next intersection point with iInnerContour.
+// Return -1 if there is no such point on the previous resp. next vertical line.
+static inline int intersection_on_prev_next_vertical_line(
+ const ExPolygonWithOffset &poly_with_offset,
+ const std::vector<SegmentedIntersectionLine> &segs,
+ size_t iVerticalLine,
+ size_t iInnerContour,
+ size_t iIntersection,
+ bool dir_is_next)
+{
+ size_t iVerticalLineOther = iVerticalLine;
+ if (dir_is_next) {
+ if (++ iVerticalLineOther == segs.size())
+ // No successive vertical line.
+ return -1;
+ } else if (iVerticalLineOther -- == 0) {
+ // No preceding vertical line.
+ return -1;
+ }
+
+ const SegmentedIntersectionLine &il = segs[iVerticalLine];
+ const SegmentIntersection &itsct = il.intersections[iIntersection];
+ const SegmentedIntersectionLine &il2 = segs[iVerticalLineOther];
+ const Polygon &poly = poly_with_offset.contour(iInnerContour);
+// const bool ccw = poly_with_offset.is_contour_ccw(iInnerContour);
+ const bool forward = itsct.is_low() == dir_is_next;
+ // Resulting index of an intersection point on il2.
+ int out = -1;
+ // Find an intersection point on iVerticalLineOther, intersecting iInnerContour
+ // at the same orientation as iIntersection, and being closest to iIntersection
+ // in the number of contour segments, when following the direction of the contour.
+ int dmin = std::numeric_limits<int>::max();
+ for (size_t i = 0; i < il2.intersections.size(); ++ i) {
+ const SegmentIntersection &itsct2 = il2.intersections[i];
+ if (itsct.iContour == itsct2.iContour && itsct.type == itsct2.type) {
+ /*
+ if (itsct.is_low()) {
+ assert(itsct.type == SegmentIntersection::INNER_LOW);
+ assert(iIntersection > 0);
+ assert(il.intersections[iIntersection-1].type == SegmentIntersection::OUTER_LOW);
+ assert(i > 0);
+ if (il2.intersections[i-1].is_inner())
+ // Take only the lowest inner intersection point.
+ continue;
+ assert(il2.intersections[i-1].type == SegmentIntersection::OUTER_LOW);
+ } else {
+ assert(itsct.type == SegmentIntersection::INNER_HIGH);
+ assert(iIntersection+1 < il.intersections.size());
+ assert(il.intersections[iIntersection+1].type == SegmentIntersection::OUTER_HIGH);
+ assert(i+1 < il2.intersections.size());
+ if (il2.intersections[i+1].is_inner())
+ // Take only the highest inner intersection point.
+ continue;
+ assert(il2.intersections[i+1].type == SegmentIntersection::OUTER_HIGH);
+ }
+ */
+ // The intersection points lie on the same contour and have the same orientation.
+ // Find the intersection point with a shortest path in the direction of the contour.
+ int d = distance_of_segmens(poly, itsct.iSegment, itsct2.iSegment, forward);
+ if (d < dmin) {
+ out = i;
+ dmin = d;
+ }
+ }
+ }
+ //FIXME this routine is not asymptotic optimal, it will be slow if there are many intersection points along the line.
+ return out;
+}
+
+static inline int intersection_on_prev_vertical_line(
+ const ExPolygonWithOffset &poly_with_offset,
+ const std::vector<SegmentedIntersectionLine> &segs,
+ size_t iVerticalLine,
+ size_t iInnerContour,
+ size_t iIntersection)
+{
+ return intersection_on_prev_next_vertical_line(poly_with_offset, segs, iVerticalLine, iInnerContour, iIntersection, false);
+}
+
+static inline int intersection_on_next_vertical_line(
+ const ExPolygonWithOffset &poly_with_offset,
+ const std::vector<SegmentedIntersectionLine> &segs,
+ size_t iVerticalLine,
+ size_t iInnerContour,
+ size_t iIntersection)
+{
+ return intersection_on_prev_next_vertical_line(poly_with_offset, segs, iVerticalLine, iInnerContour, iIntersection, true);
+}
+
+enum IntersectionTypeOtherVLine {
+ // There is no connection point on the other vertical line.
+ INTERSECTION_TYPE_OTHER_VLINE_UNDEFINED = -1,
+ // Connection point on the other vertical segment was found
+ // and it could be followed.
+ INTERSECTION_TYPE_OTHER_VLINE_OK = 0,
+ // The connection segment connects to a middle of a vertical segment.
+ // Cannot follow.
+ INTERSECTION_TYPE_OTHER_VLINE_INNER,
+ // Cannot extend the contor to this intersection point as either the connection segment
+ // or the succeeding vertical segment were already consumed.
+ INTERSECTION_TYPE_OTHER_VLINE_CONSUMED,
+ // Not the first intersection along the contor. This intersection point
+ // has been preceded by an intersection point along the vertical line.
+ INTERSECTION_TYPE_OTHER_VLINE_NOT_FIRST,
+};
+
+// Find an intersection on a previous line, but return -1, if the connecting segment of a perimeter was already extruded.
+static inline IntersectionTypeOtherVLine intersection_type_on_prev_next_vertical_line(
+ const std::vector<SegmentedIntersectionLine> &segs,
+ size_t iVerticalLine,
+ size_t iIntersection,
+ size_t iIntersectionOther,
+ bool dir_is_next)
+{
+ // This routine will propose a connecting line even if the connecting perimeter segment intersects
+ // iVertical line multiple times before reaching iIntersectionOther.
+ if (iIntersectionOther == -1)
+ return INTERSECTION_TYPE_OTHER_VLINE_UNDEFINED;
+ assert(dir_is_next ? (iVerticalLine + 1 < segs.size()) : (iVerticalLine > 0));
+ const SegmentedIntersectionLine &il_this = segs[iVerticalLine];
+ const SegmentIntersection &itsct_this = il_this.intersections[iIntersection];
+ const SegmentedIntersectionLine &il_other = segs[dir_is_next ? (iVerticalLine+1) : (iVerticalLine-1)];
+ const SegmentIntersection &itsct_other = il_other.intersections[iIntersectionOther];
+ assert(itsct_other.is_inner());
+ assert(iIntersectionOther > 0);
+ assert(iIntersectionOther + 1 < il_other.intersections.size());
+ // Is iIntersectionOther at the boundary of a vertical segment?
+ const SegmentIntersection &itsct_other2 = il_other.intersections[itsct_other.is_low() ? iIntersectionOther - 1 : iIntersectionOther + 1];
+ if (itsct_other2.is_inner())
+ // Cannot follow a perimeter segment into the middle of another vertical segment.
+ // Only perimeter segments connecting to the end of a vertical segment are followed.
+ return INTERSECTION_TYPE_OTHER_VLINE_INNER;
+ assert(itsct_other.is_low() == itsct_other2.is_low());
+ if (dir_is_next ? itsct_this.consumed_perimeter_right : itsct_other.consumed_perimeter_right)
+ // This perimeter segment was already consumed.
+ return INTERSECTION_TYPE_OTHER_VLINE_CONSUMED;
+ if (itsct_other.is_low() ? itsct_other.consumed_vertical_up : il_other.intersections[iIntersectionOther-1].consumed_vertical_up)
+ // This vertical segment was already consumed.
+ return INTERSECTION_TYPE_OTHER_VLINE_CONSUMED;
+ return INTERSECTION_TYPE_OTHER_VLINE_OK;
+}
+
+static inline IntersectionTypeOtherVLine intersection_type_on_prev_vertical_line(
+ const std::vector<SegmentedIntersectionLine> &segs,
+ size_t iVerticalLine,
+ size_t iIntersection,
+ size_t iIntersectionPrev)
+{
+ return intersection_type_on_prev_next_vertical_line(segs, iVerticalLine, iIntersection, iIntersectionPrev, false);
+}
+
+static inline IntersectionTypeOtherVLine intersection_type_on_next_vertical_line(
+ const std::vector<SegmentedIntersectionLine> &segs,
+ size_t iVerticalLine,
+ size_t iIntersection,
+ size_t iIntersectionNext)
+{
+ return intersection_type_on_prev_next_vertical_line(segs, iVerticalLine, iIntersection, iIntersectionNext, true);
+}
+
+// Measure an Euclidian length of a perimeter segment when going from iIntersection to iIntersection2.
+static inline coordf_t measure_perimeter_prev_next_segment_length(
+ const ExPolygonWithOffset &poly_with_offset,
+ const std::vector<SegmentedIntersectionLine> &segs,
+ size_t iVerticalLine,
+ size_t iInnerContour,
+ size_t iIntersection,
+ size_t iIntersection2,
+ bool dir_is_next)
+{
+ size_t iVerticalLineOther = iVerticalLine;
+ if (dir_is_next) {
+ if (++ iVerticalLineOther == segs.size())
+ // No successive vertical line.
+ return coordf_t(-1);
+ } else if (iVerticalLineOther -- == 0) {
+ // No preceding vertical line.
+ return coordf_t(-1);
+ }
+
+ const SegmentedIntersectionLine &il = segs[iVerticalLine];
+ const SegmentIntersection &itsct = il.intersections[iIntersection];
+ const SegmentedIntersectionLine &il2 = segs[iVerticalLineOther];
+ const SegmentIntersection &itsct2 = il2.intersections[iIntersection2];
+ const Polygon &poly = poly_with_offset.contour(iInnerContour);
+// const bool ccw = poly_with_offset.is_contour_ccw(iInnerContour);
+ assert(itsct.type == itsct2.type);
+ assert(itsct.iContour == itsct2.iContour);
+ assert(itsct.is_inner());
+ const bool forward = itsct.is_low() == dir_is_next;
+
+ Point p1 = itsct.pos();
+ Point p2 = itsct2.pos();
+ return forward ?
+ segment_length(poly, itsct .iSegment, p1, itsct2.iSegment, p2) :
+ segment_length(poly, itsct2.iSegment, p2, itsct .iSegment, p1);
+}
+
+static inline coordf_t measure_perimeter_prev_segment_length(
+ const ExPolygonWithOffset &poly_with_offset,
+ const std::vector<SegmentedIntersectionLine> &segs,
+ size_t iVerticalLine,
+ size_t iInnerContour,
+ size_t iIntersection,
+ size_t iIntersection2)
+{
+ return measure_perimeter_prev_next_segment_length(poly_with_offset, segs, iVerticalLine, iInnerContour, iIntersection, iIntersection2, false);
+}
+
+static inline coordf_t measure_perimeter_next_segment_length(
+ const ExPolygonWithOffset &poly_with_offset,
+ const std::vector<SegmentedIntersectionLine> &segs,
+ size_t iVerticalLine,
+ size_t iInnerContour,
+ size_t iIntersection,
+ size_t iIntersection2)
+{
+ return measure_perimeter_prev_next_segment_length(poly_with_offset, segs, iVerticalLine, iInnerContour, iIntersection, iIntersection2, true);
+}
+
+// Append the points of a perimeter segment when going from iIntersection to iIntersection2.
+// The first point (the point of iIntersection) will not be inserted,
+// the last point will be inserted.
+static inline void emit_perimeter_prev_next_segment(
+ const ExPolygonWithOffset &poly_with_offset,
+ const std::vector<SegmentedIntersectionLine> &segs,
+ size_t iVerticalLine,
+ size_t iInnerContour,
+ size_t iIntersection,
+ size_t iIntersection2,
+ Polyline &out,
+ bool dir_is_next)
+{
+ size_t iVerticalLineOther = iVerticalLine;
+ if (dir_is_next) {
+ ++ iVerticalLineOther;
+ assert(iVerticalLineOther < segs.size());
+ } else {
+ assert(iVerticalLineOther > 0);
+ -- iVerticalLineOther;
+ }
+
+ const SegmentedIntersectionLine &il = segs[iVerticalLine];
+ const SegmentIntersection &itsct = il.intersections[iIntersection];
+ const SegmentedIntersectionLine &il2 = segs[iVerticalLineOther];
+ const SegmentIntersection &itsct2 = il2.intersections[iIntersection2];
+ const Polygon &poly = poly_with_offset.contour(iInnerContour);
+// const bool ccw = poly_with_offset.is_contour_ccw(iInnerContour);
+ assert(itsct.type == itsct2.type);
+ assert(itsct.iContour == itsct2.iContour);
+ assert(itsct.is_inner());
+ const bool forward = itsct.is_low() == dir_is_next;
+ // Do not append the first point.
+ // out.points.push_back(Point(il.pos, itsct.pos));
+ if (forward)
+ polygon_segment_append(out.points, poly, itsct.iSegment, itsct2.iSegment);
+ else
+ polygon_segment_append_reversed(out.points, poly, itsct.iSegment, itsct2.iSegment);
+ // Append the last point.
+ out.points.push_back(itsct2.pos());
+}
+
+static inline coordf_t measure_perimeter_segment_on_vertical_line_length(
+ const ExPolygonWithOffset &poly_with_offset,
+ const std::vector<SegmentedIntersectionLine> &segs,
+ size_t iVerticalLine,
+ size_t iInnerContour,
+ size_t iIntersection,
+ size_t iIntersection2,
+ bool forward)
+{
+ const SegmentedIntersectionLine &il = segs[iVerticalLine];
+ const SegmentIntersection &itsct = il.intersections[iIntersection];
+ const SegmentIntersection &itsct2 = il.intersections[iIntersection2];
+ const Polygon &poly = poly_with_offset.contour(iInnerContour);
+ assert(itsct.is_inner());
+ assert(itsct2.is_inner());
+ assert(itsct.type != itsct2.type);
+ assert(itsct.iContour == iInnerContour);
+ assert(itsct.iContour == itsct2.iContour);
+ return forward ?
+ segment_length(poly, itsct .iSegment, itsct.pos(), itsct2.iSegment, itsct2.pos()) :
+ segment_length(poly, itsct2.iSegment, itsct2.pos(), itsct .iSegment, itsct.pos());
+}
+
+// Append the points of a perimeter segment when going from iIntersection to iIntersection2.
+// The first point (the point of iIntersection) will not be inserted,
+// the last point will be inserted.
+static inline void emit_perimeter_segment_on_vertical_line(
+ const ExPolygonWithOffset &poly_with_offset,
+ const std::vector<SegmentedIntersectionLine> &segs,
+ size_t iVerticalLine,
+ size_t iInnerContour,
+ size_t iIntersection,
+ size_t iIntersection2,
+ Polyline &out,
+ bool forward)
+{
+ const SegmentedIntersectionLine &il = segs[iVerticalLine];
+ const SegmentIntersection &itsct = il.intersections[iIntersection];
+ const SegmentIntersection &itsct2 = il.intersections[iIntersection2];
+ const Polygon &poly = poly_with_offset.contour(iInnerContour);
+ assert(itsct.is_inner());
+ assert(itsct2.is_inner());
+ assert(itsct.type != itsct2.type);
+ assert(itsct.iContour == iInnerContour);
+ assert(itsct.iContour == itsct2.iContour);
+ // Do not append the first point.
+ // out.points.push_back(Point(il.pos, itsct.pos));
+ if (forward)
+ polygon_segment_append(out.points, poly, itsct.iSegment, itsct2.iSegment);
+ else
+ polygon_segment_append_reversed(out.points, poly, itsct.iSegment, itsct2.iSegment);
+ // Append the last point.
+ out.points.push_back(itsct2.pos());
+}
+
+//TBD: For precise infill, measure the area of a slab spanned by an infill line.
+/*
+static inline float measure_outer_contour_slab(
+ const ExPolygonWithOffset &poly_with_offset,
+ const std::vector<SegmentedIntersectionLine> &segs,
+ size_t i_vline,
+ size_t iIntersection)
+{
+ const SegmentedIntersectionLine &il = segs[i_vline];
+ const SegmentIntersection &itsct = il.intersections[i_vline];
+ const SegmentIntersection &itsct2 = il.intersections[iIntersection2];
+ const Polygon &poly = poly_with_offset.contour((itsct.iContour);
+ assert(itsct.is_outer());
+ assert(itsct2.is_outer());
+ assert(itsct.type != itsct2.type);
+ assert(itsct.iContour == itsct2.iContour);
+ if (! itsct.is_outer() || ! itsct2.is_outer() || itsct.type == itsct2.type || itsct.iContour != itsct2.iContour)
+ // Error, return zero area.
+ return 0.f;
+
+ // Find possible connection points on the previous / next vertical line.
+ int iPrev = intersection_on_prev_vertical_line(poly_with_offset, segs, i_vline, itsct.iContour, i_intersection);
+ int iNext = intersection_on_next_vertical_line(poly_with_offset, segs, i_vline, itsct.iContour, i_intersection);
+ // Find possible connection points on the same vertical line.
+ int iAbove = iBelow = -1;
+ // Does the perimeter intersect the current vertical line above intrsctn?
+ for (size_t i = i_intersection + 1; i + 1 < seg.intersections.size(); ++ i)
+ if (seg.intersections[i].iContour == itsct.iContour)
+ { iAbove = i; break; }
+ // Does the perimeter intersect the current vertical line below intrsctn?
+ for (int i = int(i_intersection) - 1; i > 0; -- i)
+ if (seg.intersections[i].iContour == itsct.iContour)
+ { iBelow = i; break; }
+
+ if (iSegAbove != -1 && seg.intersections[iAbove].type == SegmentIntersection::OUTER_HIGH) {
+ // Invalidate iPrev resp. iNext, if the perimeter crosses the current vertical line earlier than iPrev resp. iNext.
+ // The perimeter contour orientation.
+ const Polygon &poly = poly_with_offset.contour(itsct.iContour);
+ {
+ int d_horiz = (iPrev == -1) ? std::numeric_limits<int>::max() :
+ distance_of_segmens(poly, segs[i_vline-1].intersections[iPrev].iSegment, itsct.iSegment, true);
+ int d_down = (iBelow == -1) ? std::numeric_limits<int>::max() :
+ distance_of_segmens(poly, iSegBelow, itsct.iSegment, true);
+ int d_up = (iAbove == -1) ? std::numeric_limits<int>::max() :
+ distance_of_segmens(poly, iSegAbove, itsct.iSegment, true);
+ if (intrsctn_type_prev == INTERSECTION_TYPE_OTHER_VLINE_OK && d_horiz > std::min(d_down, d_up))
+ // The vertical crossing comes eralier than the prev crossing.
+ // Disable the perimeter going back.
+ intrsctn_type_prev = INTERSECTION_TYPE_OTHER_VLINE_NOT_FIRST;
+ if (d_up > std::min(d_horiz, d_down))
+ // The horizontal crossing comes earlier than the vertical crossing.
+ vert_seg_dir_valid_mask &= ~DIR_BACKWARD;
+ }
+ {
+ int d_horiz = (iNext == -1) ? std::numeric_limits<int>::max() :
+ distance_of_segmens(poly, itsct.iSegment, segs[i_vline+1].intersections[iNext].iSegment, true);
+ int d_down = (iSegBelow == -1) ? std::numeric_limits<int>::max() :
+ distance_of_segmens(poly, itsct.iSegment, iSegBelow, true);
+ int d_up = (iSegAbove == -1) ? std::numeric_limits<int>::max() :
+ distance_of_segmens(poly, itsct.iSegment, iSegAbove, true);
+ if (d_up > std::min(d_horiz, d_down))
+ // The horizontal crossing comes earlier than the vertical crossing.
+ vert_seg_dir_valid_mask &= ~DIR_FORWARD;
+ }
+ }
+}
+*/
+
+enum DirectionMask
+{
+ DIR_FORWARD = 1,
+ DIR_BACKWARD = 2
+};
+
+// For the rectilinear, grid, triangles, stars and cubic pattern fill one InfillHatchingSingleDirection structure
+// for each infill direction. The segments stored in InfillHatchingSingleDirection will then form a graph of candidate
+// paths to be extruded.
+static bool fill_hatching_segments_legacy(
+ // Input geometry to be hatch, containing two concentric contours for each input contour.
+ const ExPolygonWithOffset &poly_with_offset,
+ // fill density, dont_adjust
+ const FillParams &params,
+ const coord_t link_max_length,
+ // Resulting straight segments of the infill graph.
+ InfillHatchingSingleDirection &hatching,
+ Polylines &polylines_out)
+{
+ // At the end, only the new polylines will be rotated back.
+ size_t n_polylines_out_initial = polylines_out.size();
+
+ std::vector<SegmentedIntersectionLine> &segs = hatching.segs;
+
+ // For each outer only chords, measure their maximum distance to the bow of the outer contour.
+ // Mark an outer only chord as consumed, if the distance is low.
+ for (size_t i_vline = 0; i_vline < segs.size(); ++ i_vline) {
+ SegmentedIntersectionLine &seg = segs[i_vline];
+ for (size_t i_intersection = 0; i_intersection + 1 < seg.intersections.size(); ++ i_intersection) {
+ if (seg.intersections[i_intersection].type == SegmentIntersection::OUTER_LOW &&
+ seg.intersections[i_intersection+1].type == SegmentIntersection::OUTER_HIGH) {
+ bool consumed = false;
+// if (params.full_infill()) {
+// measure_outer_contour_slab(poly_with_offset, segs, i_vline, i_ntersection);
+// } else
+ consumed = true;
+ seg.intersections[i_intersection].consumed_vertical_up = consumed;
+ }
+ }
+ }
+
+ // Now construct a graph.
+ // Find the first point.
+ // Naively one would expect to achieve best results by chaining the paths by the shortest distance,
+ // but that procedure does not create the longest continuous paths.
+ // A simple "sweep left to right" procedure achieves better results.
+ size_t i_vline = 0;
+ size_t i_intersection = size_t(-1);
+ // Follow the line, connect the lines into a graph.
+ // Until no new line could be added to the output path:
+ Point pointLast;
+ Polyline *polyline_current = NULL;
+ if (! polylines_out.empty())
+ pointLast = polylines_out.back().points.back();
+ for (;;) {
+ if (i_intersection == size_t(-1)) {
+ // The path has been interrupted. Find a next starting point, closest to the previous extruder position.
+ coordf_t dist2min = std::numeric_limits<coordf_t>().max();
+ for (size_t i_vline2 = 0; i_vline2 < segs.size(); ++ i_vline2) {
+ const SegmentedIntersectionLine &seg = segs[i_vline2];
+ if (! seg.intersections.empty()) {
+ assert(seg.intersections.size() > 1);
+ // Even number of intersections with the loops.
+ assert((seg.intersections.size() & 1) == 0);
+ assert(seg.intersections.front().type == SegmentIntersection::OUTER_LOW);
+ for (size_t i = 0; i < seg.intersections.size(); ++ i) {
+ const SegmentIntersection &intrsctn = seg.intersections[i];
+ if (intrsctn.is_outer()) {
+ assert(intrsctn.is_low() || i > 0);
+ bool consumed = intrsctn.is_low() ?
+ intrsctn.consumed_vertical_up :
+ seg.intersections[i-1].consumed_vertical_up;
+ if (! consumed) {
+ coordf_t dist2 = (intrsctn.pos() - pointLast).cast<double>().norm();
+ if (dist2 < dist2min) {
+ dist2min = dist2;
+ i_vline = i_vline2;
+ i_intersection = i;
+ //FIXME We are taking the first left point always. Verify, that the caller chains the paths
+ // by a shortest distance, while reversing the paths if needed.
+ //if (polylines_out.empty())
+ // Initial state, take the first line, which is the first from the left.
+ goto found;
+ }
+ }
+ }
+ }
+ }
+ }
+ if (i_intersection == size_t(-1))
+ // We are finished.
+ break;
+ found:
+ // Start a new path.
+ polylines_out.push_back(Polyline());
+ polyline_current = &polylines_out.back();
+ // Emit the first point of a path.
+ pointLast = segs[i_vline].intersections[i_intersection].pos();
+ polyline_current->points.push_back(pointLast);
+ }
+
+ // From the initial point (i_vline, i_intersection), follow a path.
+ SegmentedIntersectionLine &seg = segs[i_vline];
+ SegmentIntersection *intrsctn = &seg.intersections[i_intersection];
+ bool going_up = intrsctn->is_low();
+ bool try_connect = false;
+ if (going_up) {
+ assert(! intrsctn->consumed_vertical_up);
+ assert(i_intersection + 1 < seg.intersections.size());
+ // Step back to the beginning of the vertical segment to mark it as consumed.
+ if (intrsctn->is_inner()) {
+ assert(i_intersection > 0);
+ -- intrsctn;
+ -- i_intersection;
+ }
+ // Consume the complete vertical segment up to the outer contour.
+ do {
+ intrsctn->consumed_vertical_up = true;
+ ++ intrsctn;
+ ++ i_intersection;
+ assert(i_intersection < seg.intersections.size());
+ } while (intrsctn->type != SegmentIntersection::OUTER_HIGH);
+ if ((intrsctn - 1)->is_inner()) {
+ // Step back.
+ -- intrsctn;
+ -- i_intersection;
+ assert(intrsctn->type == SegmentIntersection::INNER_HIGH);
+ try_connect = true;
+ }
+ } else {
+ // Going down.
+ assert(intrsctn->is_high());
+ assert(i_intersection > 0);
+ assert(! (intrsctn - 1)->consumed_vertical_up);
+ // Consume the complete vertical segment up to the outer contour.
+ if (intrsctn->is_inner())
+ intrsctn->consumed_vertical_up = true;
+ do {
+ assert(i_intersection > 0);
+ -- intrsctn;
+ -- i_intersection;
+ intrsctn->consumed_vertical_up = true;
+ } while (intrsctn->type != SegmentIntersection::OUTER_LOW);
+ if ((intrsctn + 1)->is_inner()) {
+ // Step back.
+ ++ intrsctn;
+ ++ i_intersection;
+ assert(intrsctn->type == SegmentIntersection::INNER_LOW);
+ try_connect = true;
+ }
+ }
+ if (try_connect) {
+ // Decide, whether to finish the segment, or whether to follow the perimeter.
+
+ // 1) Find possible connection points on the previous / next vertical line.
+ int iPrev = intersection_on_prev_vertical_line(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection);
+ int iNext = intersection_on_next_vertical_line(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection);
+ IntersectionTypeOtherVLine intrsctn_type_prev = intersection_type_on_prev_vertical_line(segs, i_vline, i_intersection, iPrev);
+ IntersectionTypeOtherVLine intrsctn_type_next = intersection_type_on_next_vertical_line(segs, i_vline, i_intersection, iNext);
+
+ // 2) Find possible connection points on the same vertical line.
+ int iAbove = -1;
+ int iBelow = -1;
+ int iSegAbove = -1;
+ int iSegBelow = -1;
+ {
+ SegmentIntersection::SegmentIntersectionType type_crossing = (intrsctn->type == SegmentIntersection::INNER_LOW) ?
+ SegmentIntersection::INNER_HIGH : SegmentIntersection::INNER_LOW;
+ // Does the perimeter intersect the current vertical line above intrsctn?
+ for (size_t i = i_intersection + 1; i + 1 < seg.intersections.size(); ++ i)
+// if (seg.intersections[i].iContour == intrsctn->iContour && seg.intersections[i].type == type_crossing) {
+ if (seg.intersections[i].iContour == intrsctn->iContour) {
+ iAbove = i;
+ iSegAbove = seg.intersections[i].iSegment;
+ break;
+ }
+ // Does the perimeter intersect the current vertical line below intrsctn?
+ for (size_t i = i_intersection - 1; i > 0; -- i)
+// if (seg.intersections[i].iContour == intrsctn->iContour && seg.intersections[i].type == type_crossing) {
+ if (seg.intersections[i].iContour == intrsctn->iContour) {
+ iBelow = i;
+ iSegBelow = seg.intersections[i].iSegment;
+ break;
+ }
+ }
+
+ // 3) Sort the intersection points, clear iPrev / iNext / iSegBelow / iSegAbove,
+ // if it is preceded by any other intersection point along the contour.
+ unsigned int vert_seg_dir_valid_mask =
+ (going_up ?
+ (iSegAbove != -1 && seg.intersections[iAbove].type == SegmentIntersection::INNER_LOW) :
+ (iSegBelow != -1 && seg.intersections[iBelow].type == SegmentIntersection::INNER_HIGH)) ?
+ (DIR_FORWARD | DIR_BACKWARD) :
+ 0;
+ {
+ // Invalidate iPrev resp. iNext, if the perimeter crosses the current vertical line earlier than iPrev resp. iNext.
+ // The perimeter contour orientation.
+ const bool forward = intrsctn->is_low(); // == poly_with_offset.is_contour_ccw(intrsctn->iContour);
+ const Polygon &poly = poly_with_offset.contour(intrsctn->iContour);
+ {
+ int d_horiz = (iPrev == -1) ? std::numeric_limits<int>::max() :
+ distance_of_segmens(poly, segs[i_vline-1].intersections[iPrev].iSegment, intrsctn->iSegment, forward);
+ int d_down = (iSegBelow == -1) ? std::numeric_limits<int>::max() :
+ distance_of_segmens(poly, iSegBelow, intrsctn->iSegment, forward);
+ int d_up = (iSegAbove == -1) ? std::numeric_limits<int>::max() :
+ distance_of_segmens(poly, iSegAbove, intrsctn->iSegment, forward);
+ if (intrsctn_type_prev == INTERSECTION_TYPE_OTHER_VLINE_OK && d_horiz > std::min(d_down, d_up))
+ // The vertical crossing comes eralier than the prev crossing.
+ // Disable the perimeter going back.
+ intrsctn_type_prev = INTERSECTION_TYPE_OTHER_VLINE_NOT_FIRST;
+ if (going_up ? (d_up > std::min(d_horiz, d_down)) : (d_down > std::min(d_horiz, d_up)))
+ // The horizontal crossing comes earlier than the vertical crossing.
+ vert_seg_dir_valid_mask &= ~(forward ? DIR_BACKWARD : DIR_FORWARD);
+ }
+ {
+ int d_horiz = (iNext == -1) ? std::numeric_limits<int>::max() :
+ distance_of_segmens(poly, intrsctn->iSegment, segs[i_vline+1].intersections[iNext].iSegment, forward);
+ int d_down = (iSegBelow == -1) ? std::numeric_limits<int>::max() :
+ distance_of_segmens(poly, intrsctn->iSegment, iSegBelow, forward);
+ int d_up = (iSegAbove == -1) ? std::numeric_limits<int>::max() :
+ distance_of_segmens(poly, intrsctn->iSegment, iSegAbove, forward);
+ if (intrsctn_type_next == INTERSECTION_TYPE_OTHER_VLINE_OK && d_horiz > std::min(d_down, d_up))
+ // The vertical crossing comes eralier than the prev crossing.
+ // Disable the perimeter going forward.
+ intrsctn_type_next = INTERSECTION_TYPE_OTHER_VLINE_NOT_FIRST;
+ if (going_up ? (d_up > std::min(d_horiz, d_down)) : (d_down > std::min(d_horiz, d_up)))
+ // The horizontal crossing comes earlier than the vertical crossing.
+ vert_seg_dir_valid_mask &= ~(forward ? DIR_FORWARD : DIR_BACKWARD);
+ }
+ }
+
+ // 4) Try to connect to a previous or next vertical line, making a zig-zag pattern.
+ if (intrsctn_type_prev == INTERSECTION_TYPE_OTHER_VLINE_OK || intrsctn_type_next == INTERSECTION_TYPE_OTHER_VLINE_OK) {
+ coordf_t distPrev = (intrsctn_type_prev != INTERSECTION_TYPE_OTHER_VLINE_OK) ? std::numeric_limits<coord_t>::max() :
+ measure_perimeter_prev_segment_length(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, iPrev);
+ coordf_t distNext = (intrsctn_type_next != INTERSECTION_TYPE_OTHER_VLINE_OK) ? std::numeric_limits<coord_t>::max() :
+ measure_perimeter_next_segment_length(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, iNext);
+ // Take the shorter path.
+ //FIXME this may not be always the best strategy to take the shortest connection line now.
+ bool take_next = (intrsctn_type_prev == INTERSECTION_TYPE_OTHER_VLINE_OK && intrsctn_type_next == INTERSECTION_TYPE_OTHER_VLINE_OK) ?
+ (distNext < distPrev) :
+ intrsctn_type_next == INTERSECTION_TYPE_OTHER_VLINE_OK;
+ assert(intrsctn->is_inner());
+ bool skip = params.dont_connect || (link_max_length > 0 && (take_next ? distNext : distPrev) > link_max_length);
+ if (skip) {
+ // Just skip the connecting contour and start a new path.
+ goto dont_connect;
+ polyline_current->points.push_back(intrsctn->pos());
+ polylines_out.push_back(Polyline());
+ polyline_current = &polylines_out.back();
+ const SegmentedIntersectionLine &il2 = segs[take_next ? (i_vline + 1) : (i_vline - 1)];
+ polyline_current->points.push_back(il2.intersections[take_next ? iNext : iPrev].pos());
+ } else {
+ polyline_current->points.push_back(intrsctn->pos());
+ emit_perimeter_prev_next_segment(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, take_next ? iNext : iPrev, *polyline_current, take_next);
+ }
+ // Mark both the left and right connecting segment as consumed, because one cannot go to this intersection point as it has been consumed.
+ if (iPrev != -1)
+ segs[i_vline-1].intersections[iPrev].consumed_perimeter_right = true;
+ if (iNext != -1)
+ intrsctn->consumed_perimeter_right = true;
+ //FIXME consume the left / right connecting segments at the other end of this line? Currently it is not critical because a perimeter segment is not followed if the vertical segment at the other side has already been consumed.
+ // Advance to the neighbor line.
+ if (take_next) {
+ ++ i_vline;
+ i_intersection = iNext;
+ } else {
+ -- i_vline;
+ i_intersection = iPrev;
+ }
+ continue;
+ }
+
+ // 5) Try to connect to a previous or next point on the same vertical line.
+ if (vert_seg_dir_valid_mask) {
+ bool valid = true;
+ // Verify, that there is no intersection with the inner contour up to the end of the contour segment.
+ // Verify, that the successive segment has not been consumed yet.
+ if (going_up) {
+ if (seg.intersections[iAbove].consumed_vertical_up) {
+ valid = false;
+ } else {
+ for (int i = (int)i_intersection + 1; i < iAbove && valid; ++i)
+ if (seg.intersections[i].is_inner())
+ valid = false;
+ }
+ } else {
+ if (seg.intersections[iBelow-1].consumed_vertical_up) {
+ valid = false;
+ } else {
+ for (int i = iBelow + 1; i < (int)i_intersection && valid; ++i)
+ if (seg.intersections[i].is_inner())
+ valid = false;
+ }
+ }
+ if (valid) {
+ const Polygon &poly = poly_with_offset.contour(intrsctn->iContour);
+ int iNext = going_up ? iAbove : iBelow;
+ int iSegNext = going_up ? iSegAbove : iSegBelow;
+ bool dir_forward = (vert_seg_dir_valid_mask == (DIR_FORWARD | DIR_BACKWARD)) ?
+ // Take the shorter length between the current and the next intersection point.
+ (distance_of_segmens(poly, intrsctn->iSegment, iSegNext, true) <
+ distance_of_segmens(poly, intrsctn->iSegment, iSegNext, false)) :
+ (vert_seg_dir_valid_mask == DIR_FORWARD);
+ // Skip this perimeter line?
+ bool skip = params.dont_connect;
+ if (! skip && link_max_length > 0) {
+ coordf_t link_length = measure_perimeter_segment_on_vertical_line_length(
+ poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, iNext, dir_forward);
+ skip = link_length > link_max_length;
+ }
+ polyline_current->points.push_back(intrsctn->pos());
+ if (skip) {
+ // Just skip the connecting contour and start a new path.
+ polylines_out.push_back(Polyline());
+ polyline_current = &polylines_out.back();
+ polyline_current->points.push_back(seg.intersections[iNext].pos());
+ } else {
+ // Consume the connecting contour and the next segment.
+ emit_perimeter_segment_on_vertical_line(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, iNext, *polyline_current, dir_forward);
+ }
+ // Mark both the left and right connecting segment as consumed, because one cannot go to this intersection point as it has been consumed.
+ // If there are any outer intersection points skipped (bypassed) by the contour,
+ // mark them as processed.
+ if (going_up) {
+ for (int i = (int)i_intersection; i < iAbove; ++ i)
+ seg.intersections[i].consumed_vertical_up = true;
+ } else {
+ for (int i = iBelow; i < (int)i_intersection; ++ i)
+ seg.intersections[i].consumed_vertical_up = true;
+ }
+// seg.intersections[going_up ? i_intersection : i_intersection - 1].consumed_vertical_up = true;
+ intrsctn->consumed_perimeter_right = true;
+ i_intersection = iNext;
+ if (going_up)
+ ++ intrsctn;
+ else
+ -- intrsctn;
+ intrsctn->consumed_perimeter_right = true;
+ continue;
+ }
+ }
+ dont_connect:
+ // No way to continue the current polyline. Take the rest of the line up to the outer contour.
+ // This will finish the polyline, starting another polyline at a new point.
+ if (going_up)
+ ++ intrsctn;
+ else
+ -- intrsctn;
+ }
+
+ // Finish the current vertical line,
+ // reset the current vertical line to pick a new starting point in the next round.
+ assert(intrsctn->is_outer());
+ assert(intrsctn->is_high() == going_up);
+ pointLast = intrsctn->pos();
+ polyline_current->points.push_back(pointLast);
+ // Handle duplicate points and zero length segments.
+ polyline_current->remove_duplicate_points();
+ assert(! polyline_current->has_duplicate_points());
+ // Handle nearly zero length edges.
+ if (polyline_current->points.size() <= 1 ||
+ (polyline_current->points.size() == 2 &&
+ std::abs(polyline_current->points.front()(0) - polyline_current->points.back()(0)) < SCALED_EPSILON &&
+ std::abs(polyline_current->points.front()(1) - polyline_current->points.back()(1)) < SCALED_EPSILON))
+ polylines_out.pop_back();
+ intrsctn = NULL;
+ i_intersection = -1;
+ polyline_current = NULL;
+ }
+
+#ifdef SLIC3R_DEBUG
+ {
+ static int iRun = 0;
+ BoundingBox bbox_svg = poly_with_offset.bounding_box_outer();
+ {
+ ::Slic3r::SVG svg(debug_out_path("FillRectilinear2-final-%03d.svg", iRun), bbox_svg); // , scale_(1.));
+ poly_with_offset.export_to_svg(svg);
+ for (size_t i = n_polylines_out_initial; i < polylines_out.size(); ++ i)
+ svg.draw(polylines_out[i].lines(), "black");
+ }
+ // Paint a picture per polyline. This makes it easier to discover the order of the polylines and their overlap.
+ for (size_t i_polyline = n_polylines_out_initial; i_polyline < polylines_out.size(); ++ i_polyline) {
+ ::Slic3r::SVG svg(debug_out_path("FillRectilinear2-final-%03d-%03d.svg", iRun, i_polyline), bbox_svg); // , scale_(1.));
+ svg.draw(polylines_out[i_polyline].lines(), "black");
+ }
+ }
+#endif /* SLIC3R_DEBUG */
+
+ // paths must be rotated back
+ for (Polylines::iterator it = polylines_out.begin() + n_polylines_out_initial; it != polylines_out.end(); ++ it) {
+ // No need to translate, the absolute position is irrelevant.
+ // it->translate(- rotate_vector.second(0), - rotate_vector.second(1));
+ assert(! it->has_duplicate_points());
+ //it->rotate(rotate_vector.first);
+ //FIXME rather simplify the paths to avoid very short edges?
+ //assert(! it->has_duplicate_points());
+ it->remove_duplicate_points();
+ }
+
+#ifdef SLIC3R_DEBUG
+ // Verify, that there are no duplicate points in the sequence.
+ for (Polyline &polyline : polylines_out)
+ assert(! polyline.has_duplicate_points());
+#endif /* SLIC3R_DEBUG */
+
+ return true;
+}
+
+}; // namespace FillRectilinear3_Internal
+
+bool FillRectilinear3::fill_surface_by_lines(const Surface *surface, const FillParams &params, std::vector<FillDirParams> &fill_dir_params, Polylines &polylines_out)
+{
+ assert(params.density > 0.0001f && params.density <= 1.f);
+
+ const float INFILL_OVERLAP_OVER_SPACING = 0.45f;
+ assert(INFILL_OVERLAP_OVER_SPACING > 0 && INFILL_OVERLAP_OVER_SPACING < 0.5f);
+
+ // On the polygons of poly_with_offset, the infill lines will be connected.
+ FillRectilinear3_Internal::ExPolygonWithOffset poly_with_offset(
+ surface->expolygon,
+ float(scale_(- (0.5 - INFILL_OVERLAP_OVER_SPACING) * this->spacing)),
+ float(scale_(- 0.5 * this->spacing)));
+ if (poly_with_offset.n_contours_inner == 0) {
+ // Not a single infill line fits.
+ //FIXME maybe one shall trigger the gap fill here?
+ return true;
+ }
+
+ // Rotate polygons so that we can work with vertical lines here
+ std::pair<float, Point> rotate_vector = this->_infill_direction(surface);
+ std::vector<FillRectilinear3_Internal::InfillHatchingSingleDirection> hatching(fill_dir_params.size(), FillRectilinear3_Internal::InfillHatchingSingleDirection());
+ for (size_t i = 0; i < hatching.size(); ++ i)
+ if (! FillRectilinear3_Internal::prepare_infill_hatching_segments(poly_with_offset, params, fill_dir_params[i], rotate_vector, hatching[i]))
+ return false;
+
+ for (size_t i = 0; i < hatching.size(); ++ i)
+ if (! FillRectilinear3_Internal::fill_hatching_segments_legacy(
+ poly_with_offset,
+ params,
+ this->link_max_length,
+ hatching[i],
+ polylines_out))
+ return false;
+
+ return true;
+}
+
+Polylines FillRectilinear3::fill_surface(const Surface *surface, const FillParams &params)
+{
+ Polylines polylines_out;
+ std::vector<FillDirParams> fill_dir_params;
+ fill_dir_params.emplace_back(FillDirParams(this->spacing, 0.f));
+ if (! fill_surface_by_lines(surface, params, fill_dir_params, polylines_out))
+ printf("FillRectilinear3::fill_surface() failed to fill a region.\n");
+ if (params.full_infill() && ! params.dont_adjust)
+ // Return back the adjusted spacing.
+ this->spacing = fill_dir_params.front().spacing;
+ return polylines_out;
+}
+
+Polylines FillGrid3::fill_surface(const Surface *surface, const FillParams &params)
+{
+ // Each linear fill covers half of the target coverage.
+ FillParams params2 = params;
+ params2.density *= 0.5f;
+ Polylines polylines_out;
+ std::vector<FillDirParams> fill_dir_params;
+ fill_dir_params.emplace_back(FillDirParams(this->spacing, 0.f));
+ fill_dir_params.emplace_back(FillDirParams(this->spacing, float(M_PI / 2.)));
+ if (! fill_surface_by_lines(surface, params2, fill_dir_params, polylines_out))
+ printf("FillGrid3::fill_surface() failed to fill a region.\n");
+ return polylines_out;
+}
+
+Polylines FillTriangles3::fill_surface(const Surface *surface, const FillParams &params)
+{
+ // Each linear fill covers 1/3 of the target coverage.
+ FillParams params2 = params;
+ params2.density *= 0.333333333f;
+ Polylines polylines_out;
+ std::vector<FillDirParams> fill_dir_params;
+ fill_dir_params.emplace_back(FillDirParams(this->spacing, 0.));
+ fill_dir_params.emplace_back(FillDirParams(this->spacing, M_PI / 3.));
+ fill_dir_params.emplace_back(FillDirParams(this->spacing, 2. * M_PI / 3.));
+ if (! fill_surface_by_lines(surface, params2, fill_dir_params, polylines_out))
+ printf("FillTriangles3::fill_surface() failed to fill a region.\n");
+ return polylines_out;
+}
+
+Polylines FillStars3::fill_surface(const Surface *surface, const FillParams &params)
+{
+ // Each linear fill covers 1/3 of the target coverage.
+ FillParams params2 = params;
+ params2.density *= 0.333333333f;
+ Polylines polylines_out;
+ std::vector<FillDirParams> fill_dir_params;
+ fill_dir_params.emplace_back(FillDirParams(this->spacing, 0.));
+ fill_dir_params.emplace_back(FillDirParams(this->spacing, M_PI / 3.));
+ fill_dir_params.emplace_back(FillDirParams(this->spacing, 2. * M_PI / 3., 0.5 * this->spacing / params2.density));
+ if (! fill_surface_by_lines(surface, params2, fill_dir_params, polylines_out))
+ printf("FillStars3::fill_surface() failed to fill a region.\n");
+ return polylines_out;
+}
+
+Polylines FillCubic3::fill_surface(const Surface *surface, const FillParams &params)
+{
+ // Each linear fill covers 1/3 of the target coverage.
+ FillParams params2 = params;
+ params2.density *= 0.333333333f;
+ Polylines polylines_out;
+ std::vector<FillDirParams> fill_dir_params;
+ coordf_t dx = sqrt(0.5) * z;
+ fill_dir_params.emplace_back(FillDirParams(this->spacing, 0., dx));
+ fill_dir_params.emplace_back(FillDirParams(this->spacing, M_PI / 3., -dx));
+ fill_dir_params.emplace_back(FillDirParams(this->spacing, 2. * M_PI / 3., dx));
+ if (! fill_surface_by_lines(surface, params2, fill_dir_params, polylines_out))
+ printf("FillCubic3::fill_surface() failed to fill a region.\n");
+ return polylines_out;
+}
+
+} // namespace Slic3r