Welcome to mirror list, hosted at ThFree Co, Russian Federation.

FillRectilinear3.cpp « Fill « libslic3r « src - github.com/prusa3d/PrusaSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 8fc129eacbcc42e717832eee4b7d2fbf03fa5497 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
#include <stdlib.h>
#include <stdint.h>

#include <algorithm>
#include <cmath>
#include <limits>

#include <boost/static_assert.hpp>

#include "../ClipperUtils.hpp"
#include "../ExPolygon.hpp"
#include "../Geometry.hpp"
#include "../Surface.hpp"
#include "../Int128.hpp"

#include "FillRectilinear3.hpp"

 #define SLIC3R_DEBUG

// Make assert active if SLIC3R_DEBUG
#ifdef SLIC3R_DEBUG
    #undef NDEBUG
    #define DEBUG
    #define _DEBUG
    #include "SVG.hpp"
#endif

#include <cassert>

namespace Slic3r {

namespace FillRectilinear3_Internal {

// A container maintaining the source expolygon with its inner offsetted polygon.
// The source expolygon is offsetted twice: 
// 1) A tiny offset is used to get a contour, to which the open hatching lines will be extended.
// 2) A larger offset is used to get a contor, along which the individual hatching lines will be connected.
struct ExPolygonWithOffset
{
public:
    ExPolygonWithOffset(
        const ExPolygon &expolygon,
        float aoffset1,
        float aoffset2)
    {
        // Copy and rotate the source polygons.
        polygons_src = expolygon;

        double mitterLimit = 3.;
        // for the infill pattern, don't cut the corners.
        // default miterLimt = 3
        //double mitterLimit = 10.;
        assert(aoffset1 < 0);
        assert(aoffset2 < 0);
        assert(aoffset2 < aoffset1);
//        bool sticks_removed = remove_sticks(polygons_src);
//        if (sticks_removed) printf("Sticks removed!\n");
        polygons_outer = offset(polygons_src, aoffset1,
            ClipperLib::jtMiter,
            mitterLimit);
        polygons_inner = offset(polygons_outer, aoffset2 - aoffset1,
            ClipperLib::jtMiter,
            mitterLimit);
        // Filter out contours with zero area or small area, contours with 2 points only.
        const double min_area_threshold = 0.01 * aoffset2 * aoffset2;
        remove_small(polygons_outer, min_area_threshold);
        remove_small(polygons_inner, min_area_threshold);
        remove_sticks(polygons_outer);
        remove_sticks(polygons_inner);
        n_contours_outer = polygons_outer.size();
        n_contours_inner = polygons_inner.size();
        n_contours = n_contours_outer + n_contours_inner;
        polygons_ccw.assign(n_contours, false);
        for (size_t i = 0; i < n_contours; ++ i) {
            contour(i).remove_duplicate_points();
            assert(! contour(i).has_duplicate_points());
            polygons_ccw[i] = Slic3r::Geometry::is_ccw(contour(i));
        }
    }

    // Any contour with offset1
    bool             is_contour_outer(size_t idx) const { return idx < n_contours_outer; }
    // Any contour with offset2
    bool             is_contour_inner(size_t idx) const { return idx >= n_contours_outer; }

    const Polygon&   contour(size_t idx) const 
        { return is_contour_outer(idx) ? polygons_outer[idx] : polygons_inner[idx - n_contours_outer]; }

    Polygon&         contour(size_t idx)
        { return is_contour_outer(idx) ? polygons_outer[idx] : polygons_inner[idx - n_contours_outer]; }

    bool             is_contour_ccw(size_t idx) const { return polygons_ccw[idx] != 0; }

    BoundingBox      bounding_box_src() const 
        { return get_extents(polygons_src); }
    BoundingBox      bounding_box_outer() const 
        { return get_extents(polygons_outer); }
    BoundingBox      bounding_box_inner() const 
        { return get_extents(polygons_inner); }

#ifdef SLIC3R_DEBUG
    void export_to_svg(Slic3r::SVG &svg) const {
        svg.draw_outline(polygons_src,   "black");
        svg.draw_outline(polygons_outer, "green");
        svg.draw_outline(polygons_inner, "brown");
    }
#endif /* SLIC3R_DEBUG */

    ExPolygon        polygons_src;
    Polygons         polygons_outer;
    Polygons         polygons_inner;

    size_t           n_contours_outer;
    size_t           n_contours_inner;
    size_t           n_contours;

protected:
    // For each polygon of polygons_inner, remember its orientation.
    std::vector<unsigned char> polygons_ccw;
};

class SegmentedIntersectionLine;

// Intersection point of a vertical line with a polygon segment.
class SegmentIntersection
{
public:
    SegmentIntersection() :
        line(nullptr),
        expoly_with_offset(nullptr),
        iContour(0),
        iSegment(0),
        type(UNKNOWN),
        consumed_vertical_up(false),
        consumed_perimeter_right(false)
        {}

    // Parent object owning this intersection point.
    const SegmentedIntersectionLine *line;
    // Container with the source expolygon and its shrank copies, to be intersected by the line.
    const ExPolygonWithOffset       *expoly_with_offset;

    // Index of a contour in ExPolygonWithOffset, with which this vertical line intersects.
    size_t                           iContour;
    // Index of a segment in iContour, with which this vertical line intersects.
    size_t                           iSegment;

    // Kind of intersection. With the original contour, or with the inner offestted contour?
    // A vertical segment will be at least intersected by OUTER_LOW, OUTER_HIGH,
    // but it could be intersected with OUTER_LOW, INNER_LOW, INNER_HIGH, OUTER_HIGH,
    // and there may be more than one pair of INNER_LOW, INNER_HIGH between OUTER_LOW, OUTER_HIGH.
    enum SegmentIntersectionType {
        OUTER_LOW   = 0,
        OUTER_HIGH  = 1,
        INNER_LOW   = 2,
        INNER_HIGH  = 3,
        UNKNOWN     = -1
    };
    SegmentIntersectionType    type;

    // For the INNER_LOW type, this point may be connected to another INNER_LOW point following a perimeter contour.
    // For the INNER_HIGH type, this point may be connected to another INNER_HIGH point following a perimeter contour.
    // If INNER_LOW is connected to INNER_HIGH or vice versa,
    // one has to make sure the vertical infill line does not overlap with the connecting perimeter line.
    bool is_inner() const { return type == INNER_LOW  || type == INNER_HIGH; }
    bool is_outer() const { return type == OUTER_LOW  || type == OUTER_HIGH; }
    bool is_low  () const { return type == INNER_LOW  || type == OUTER_LOW; }
    bool is_high () const { return type == INNER_HIGH || type == OUTER_HIGH; }

    // Calculate a position of this intersection point. The position does not need to be necessary exact.
    Point       pos() const;

    // Returns 0, if this and other segments intersect at the hatching line.
    // Returns -1, if this intersection is below the other intersection on the hatching line.
    // Returns +1 otherwise. 
    int         ordering_along_line(const SegmentIntersection &other) const;

    // Compare two y intersection points given by rational numbers.
    bool        operator< (const SegmentIntersection &other) const;
    //    { return this->ordering_along_line(other) == -1; }
    bool        operator==(const SegmentIntersection &other) const { return this->ordering_along_line(other) == 0; }

    //FIXME legacy code, suporting the old graph traversal algorithm. Please remove.
    // Was this segment along the y axis consumed?
    // Up means up along the vertical segment.
    bool consumed_vertical_up;
    // Was a segment of the inner perimeter contour consumed?
    // Right means right from the vertical segment.
    bool consumed_perimeter_right;
};

// A single hathing line intersecting the ExPolygonWithOffset.
class SegmentedIntersectionLine
{
public:
    // Index of this vertical intersection line.
    size_t                              idx;
    // Position of the line along the X axis of the oriented bounding box.
//    coord_t                             x;
    // Position of this vertical intersection line, rotated to the world coordinate system.
    Point                               pos;
    // Direction of this vertical intersection line, rotated to the world coordinate system. The direction is not normalized to maintain a sufficient accuracy!
    Vector                              dir;
    // List of intersection points with polygons, sorted increasingly by the y axis.
    // The SegmentIntersection keeps a pointer to this object to access the start and direction of this line.
    std::vector<SegmentIntersection>    intersections;
};

// Return an intersection point of the parent SegmentedIntersectionLine with the segment of a parent ExPolygonWithOffset.
// The intersected segment of the ExPolygonWithOffset is addressed with (iContour, iSegment).
// When calling this method, the SegmentedIntersectionLine must not be parallel with the segment.
Point SegmentIntersection::pos() const
{
    // Get the two rays to be intersected.
    const Polygon &poly = this->expoly_with_offset->contour(this->iContour);
    // 30 bits + 1 signum bit.
    const Point   &seg_start = poly.points[(this->iSegment == 0) ? poly.points.size() - 1 : this->iSegment - 1];
    const Point   &seg_end   = poly.points[this->iSegment];
    // Point, vector of the segment.
    const Vec2d   p1(seg_start.cast<coordf_t>());
    const Vec2d   v1((seg_end - seg_start).cast<coordf_t>());
    // Point, vector of this hatching line.
    const Vec2d   p2(line->pos.cast<coordf_t>());
    const Vec2d   v2(line->dir.cast<coordf_t>());
    // Intersect the two rays.
    double denom = v1(0) * v2(1) - v2(0) * v1(1);
    Point out;
    if (denom == 0.) {
        // Lines are collinear. As the pos() method is not supposed to be called on collinear vectors,
        // the source vectors are not quite collinear. Return the center of the contour segment.
        out = seg_start + seg_end;
        out(0) >>= 1;
        out(1) >>= 1;
    } else {
        // Find the intersection point.
        double t = (v2(0) * (p1(1) - p2(1)) - v2(1) * (p1(0) - p2(0))) / denom;
        if (t < 0.)
            out = seg_start;
        else if (t > 1.)
            out = seg_end;
        else {
            out(0) = coord_t(floor(p1(0) + t * v1(0) + 0.5));
            out(1) = coord_t(floor(p1(1) + t * v1(1) + 0.5));
        }
    }
    return out;
}

static inline int signum(int64_t v) { return (v > 0) - (v < 0); }

// Returns 0, if this and other segments intersect at the hatching line.
// Returns -1, if this intersection is below the other intersection on the hatching line.
// Returns +1 otherwise. 
int SegmentIntersection::ordering_along_line(const SegmentIntersection &other) const
{
    assert(this->line == other.line);
    assert(this->expoly_with_offset == other.expoly_with_offset);

    if (this->iContour == other.iContour && this->iSegment == other.iSegment)
        return true;

    // Segment of this
    const Polygon &poly_a      = this->expoly_with_offset->contour(this->iContour);
    // 30 bits + 1 signum bit.
    const Point   &seg_start_a = poly_a.points[(this->iSegment == 0) ? poly_a.points.size() - 1 : this->iSegment - 1];
    const Point   &seg_end_a   = poly_a.points[this->iSegment];

    // Segment of other
    const Polygon &poly_b      = this->expoly_with_offset->contour(other.iContour);
    // 30 bits + 1 signum bit.
    const Point   &seg_start_b = poly_b.points[(other.iSegment == 0) ? poly_b.points.size() - 1 : other.iSegment - 1];
    const Point   &seg_end_b   = poly_b.points[other.iSegment];

    if (this->iContour == other.iContour) {
        if ((this->iSegment + 1) % poly_a.points.size() == other.iSegment) {
            // other.iSegment succeeds this->iSegment
			assert(seg_end_a == seg_start_b);
			// Avoid calling the 128bit x 128bit multiplication below if this->line intersects the common point.
			if (cross2(Vec2i64(this->line->dir.cast<int64_t>()), (seg_end_b - this->line->pos).cast<int64_t>()) == 0)
				return 0;
        } else if ((other.iSegment + 1) % poly_a.points.size() == this->iSegment) {
            // this->iSegment succeeds other.iSegment
			assert(seg_start_a == seg_end_b);
			// Avoid calling the 128bit x 128bit multiplication below if this->line intersects the common point.
			if (cross2(Vec2i64(this->line->dir.cast<int64_t>()), (seg_start_a - this->line->pos).cast<int64_t>()) == 0)
				return 0;
        } else {
            // General case.
        }
    }

    // First test, whether both points of one segment are completely in one half-plane of the other line.
    const Vec2i64 vec_b = (seg_end_b - seg_start_b).cast<int64_t>();
    int side_start = signum(cross2(vec_b, (seg_start_a - seg_start_b).cast<int64_t>()));
    int side_end   = signum(cross2(vec_b, (seg_end_a   - seg_start_b).cast<int64_t>()));
    int side       = side_start * side_end;
    if (side > 0)
        // This segment is completely inside one half-plane of the other line, therefore the ordering is trivial.
        return signum(cross2(vec_b, this->line->dir.cast<int64_t>())) * side_start;

    const Vec2i64 vec_a = (seg_end_a - seg_start_a).cast<int64_t>();
    int side_start2 = signum(cross2(vec_a, (seg_start_b - seg_start_a).cast<int64_t>()));
    int side_end2   = signum(cross2(vec_a, (seg_end_b   - seg_start_a).cast<int64_t>()));
    int side2       = side_start2 * side_end2;
    //if (side == 0 && side2 == 0)
        // The segments share one of their end points.
    if (side2 > 0)
        // This segment is completely inside one half-plane of the other line, therefore the ordering is trivial.
        return signum(cross2(this->line->dir.cast<int64_t>(), vec_a)) * side_start2;

    // The two segments intersect and they are not sucessive segments of the same contour.
    // Ordering of the points depends on the position of the segment intersection (left / right from this->line),
    // therefore a simple test over the input segment end points is not sufficient.

    // Find the parameters of intersection of the two segmetns with this->line.
	int64_t denom1 = cross2(this->line->dir.cast<int64_t>(), vec_a);
	int64_t denom2 = cross2(this->line->dir.cast<int64_t>(), vec_b);
	Vec2i64 vx_a   = (seg_start_a - this->line->pos).cast<int64_t>();
	Vec2i64 vx_b   = (seg_start_b - this->line->pos).cast<int64_t>();
	int64_t t1_times_denom1 = vx_a(0) * vec_a(1) - vx_a(1) * vec_a(0);
	int64_t t2_times_denom2 = vx_b(0) * vec_b(1) - vx_b(1) * vec_b(0);
	assert(denom1 != 0);
    assert(denom2 != 0);
    return Int128::compare_rationals_filtered(t1_times_denom1, denom1, t2_times_denom2, denom2);
}

// Compare two y intersection points given by rational numbers.
bool SegmentIntersection::operator<(const SegmentIntersection &other) const
{
#ifdef _DEBUG
    Point p1 = this->pos();
    Point p2 = other.pos();
    int64_t d = this->line->dir.cast<int64_t>().dot((p2 - p1).cast<int64_t>());
#endif /* _DEBUG */
    int   ordering = this->ordering_along_line(other);
#ifdef _DEBUG
    if (ordering == -1)
        assert(d >= - int64_t(SCALED_EPSILON));
    else if (ordering == 1)
        assert(d <= int64_t(SCALED_EPSILON));
#endif /* _DEBUG */
    return ordering == -1;
}

// When doing a rectilinear / grid / triangle / stars / cubic infill,
// the following class holds the hatching lines of each of the hatching directions.
class InfillHatchingSingleDirection
{
public:
    // Hatching angle, CCW from the X axis.
    double                                  angle;
    // Starting point of the 1st hatching line.
    Point                                   start_point;
    // Direction vector, its size is not normalized to maintain a sufficient accuracy!
    Vector                                  direction;
    // Spacing of the hatching lines, perpendicular to the direction vector.
    coord_t                                 line_spacing;
    // Infill segments oriented at angle.
    std::vector<SegmentedIntersectionLine>  segs;
};

// For the rectilinear, grid, triangles, stars and cubic pattern fill one InfillHatchingSingleDirection structure
// for each infill direction. The segments stored in InfillHatchingSingleDirection will then form a graph of candidate
// paths to be extruded.
static bool prepare_infill_hatching_segments(
    // Input geometry to be hatch, containing two concentric contours for each input contour.
    const ExPolygonWithOffset      &poly_with_offset,
    // fill density, dont_adjust
    const FillParams               &params,
    // angle, pattern_shift, spacing
    FillRectilinear3::FillDirParams &fill_dir_params,
    // Reference point of the pattern, to which the infill lines will be alligned, and the base angle.
    const std::pair<float, Point>  &rotate_vector,
    // Resulting straight segments of the infill graph.
    InfillHatchingSingleDirection  &out)
{
    out.angle = rotate_vector.first + fill_dir_params.angle;
    out.direction = Point(coord_t(scale_(1000)), coord_t(0));
    // Hatch along the Y axis of the rotated coordinate system.
    out.direction.rotate(out.angle + 0.5 * M_PI);
    out.segs.clear();

    assert(params.density > 0.0001f && params.density <= 1.f);
    coord_t line_spacing = coord_t(scale_(fill_dir_params.spacing) / params.density);

    // Bounding box around the source contour, aligned with out.angle.
    BoundingBox bounding_box = get_extents_rotated(poly_with_offset.polygons_src.contour, - out.angle);

    // Define the flow spacing according to requested density.
    if (params.full_infill() && ! params.dont_adjust) {
        // Full infill, adjust the line spacing to fit an integer number of lines.
        out.line_spacing = Fill::_adjust_solid_spacing(bounding_box.size()(0), line_spacing);
        // Report back the adjusted line spacing.
        fill_dir_params.spacing = unscale<double>(line_spacing);
    } else {
        // Extend bounding box so that our pattern will be aligned with the other layers.
        // Transform the reference point to the rotated coordinate system.
        Point refpt = rotate_vector.second.rotated(- out.angle);
        // _align_to_grid will not work correctly with positive pattern_shift.
        coord_t pattern_shift_scaled = coord_t(scale_(fill_dir_params.pattern_shift)) % line_spacing;
        refpt(0) -= (pattern_shift_scaled >= 0) ? pattern_shift_scaled : (line_spacing + pattern_shift_scaled);
        bounding_box.merge(Fill::_align_to_grid(
            bounding_box.min, 
            Point(line_spacing, line_spacing), 
            refpt));
    }

    // Intersect a set of euqally spaced vertical lines wiht expolygon.
    // n_vlines = ceil(bbox_width / line_spacing)
    size_t  n_vlines = (bounding_box.max(0) - bounding_box.min(0) + line_spacing - 1) / line_spacing;
    coord_t x0 = bounding_box.min(0);
    if (params.full_infill())
        x0 += coord_t((line_spacing + SCALED_EPSILON) / 2);

    out.line_spacing = line_spacing;
    out.start_point = Point(x0, bounding_box.min(1));
    out.start_point.rotate(out.angle);

#ifdef SLIC3R_DEBUG
    static int iRun = 0;
    BoundingBox bbox_svg = poly_with_offset.bounding_box_outer();
    ::Slic3r::SVG svg(debug_out_path("FillRectilinear2-%d.svg", iRun), bbox_svg); // , scale_(1.));
    poly_with_offset.export_to_svg(svg);
    {
        ::Slic3r::SVG svg(debug_out_path("FillRectilinear2-initial-%d.svg", iRun), bbox_svg); // , scale_(1.));
        poly_with_offset.export_to_svg(svg);
    }
    iRun ++;
#endif /* SLIC3R_DEBUG */

    // For each contour
    // Allocate storage for the segments.
    out.segs.assign(n_vlines, SegmentedIntersectionLine());
    double cos_a = cos(out.angle);
    double sin_a = sin(out.angle);
    for (size_t i = 0; i < n_vlines; ++ i) {
        auto &seg = out.segs[i];
        seg.idx = i;
        // seg(0)   = x0 + coord_t(i) * line_spacing;
        coord_t x = x0 + coord_t(i) * line_spacing;
        seg.pos(0) = coord_t(floor(cos_a * x                  - sin_a * bounding_box.min(1) + 0.5));
        seg.pos(1) = coord_t(floor(cos_a * bounding_box.min(1) + sin_a * x                  + 0.5));
        seg.dir = out.direction;
    }

    for (size_t iContour = 0; iContour < poly_with_offset.n_contours; ++ iContour) {
        const Points &contour = poly_with_offset.contour(iContour).points;
        if (contour.size() < 2)
            continue;
        // For each segment
        for (size_t iSegment = 0; iSegment < contour.size(); ++ iSegment) {
            size_t iPrev = ((iSegment == 0) ? contour.size() : iSegment) - 1;
            const Point *pl = &contour[iPrev];
            const Point *pr = &contour[iSegment];
            // Orient the segment to the direction vector.
            const Point  v  = *pr - *pl;
            int   orientation = Int128::sign_determinant_2x2_filtered(v(0), v(1), out.direction(0), out.direction(1));
            if (orientation == 0)
                // Ignore strictly vertical segments.
                continue;
            if (orientation < 0)
                // Always orient the input segment consistently towards the hatching direction.
                std::swap(pl, pr);
            // Which of the equally spaced vertical lines is intersected by this segment?
            coord_t l = (coord_t)floor(cos_a * (*pl)(0) + sin_a * (*pl)(1) - SCALED_EPSILON);
            coord_t r = (coord_t)ceil (cos_a * (*pr)(0) + sin_a * (*pr)(1) + SCALED_EPSILON);
			assert(l < r - SCALED_EPSILON);
            // il, ir are the left / right indices of vertical lines intersecting a segment
            int il = std::max<int>(0, (l - x0 + line_spacing) / line_spacing);
			int ir = std::min<int>(int(out.segs.size()) - 1, (r - x0) / line_spacing);
            // The previous tests were done with floating point arithmetics over an epsilon-extended interval.
            // Now do the same tests with exact arithmetics over the exact interval.
            while (il <= ir && int128::orient(out.segs[il].pos, out.segs[il].pos + out.direction, *pl) < 0)
                ++ il;
            while (il <= ir && int128::orient(out.segs[ir].pos, out.segs[ir].pos + out.direction, *pr) > 0)
                -- ir;
            // Here it is ensured, that
            // 1) out.seg is not parallel to (pl, pr)
            // 2) all lines from il to ir intersect <pl, pr>.
            assert(il >= 0 && ir < int(out.segs.size()));
            for (int i = il; i <= ir; ++ i) {
                // assert(out.segs[i](0) == i * line_spacing + x0);
                // assert(l <= out.segs[i](0));
                // assert(r >= out.segs[i](0));
                SegmentIntersection is;
                is.line     = &out.segs[i];
                is.expoly_with_offset = &poly_with_offset;
                is.iContour = iContour;
				is.iSegment = iSegment;
                // Test whether the calculated intersection point falls into the bounding box of the input segment.
                // +-1 to take rounding into account.
                assert(int128::orient(out.segs[i].pos, out.segs[i].pos + out.direction, *pl) >= 0);
                assert(int128::orient(out.segs[i].pos, out.segs[i].pos + out.direction, *pr) <= 0);
                assert(is.pos()(0) + 1 >= std::min((*pl)(0), (*pr)(0)));
                assert(is.pos()(1) + 1 >= std::min((*pl)(1), (*pr)(1)));
                assert(is.pos()(0)     <= std::max((*pl)(0), (*pr)(0)) + 1);
                assert(is.pos()(1)     <= std::max((*pl)(1), (*pr)(1)) + 1);
                out.segs[i].intersections.push_back(is);
            }
        }
    }

    // Sort the intersections along their segments, specify the intersection types.
    for (size_t i_seg = 0; i_seg < out.segs.size(); ++ i_seg) {
        SegmentedIntersectionLine &sil = out.segs[i_seg];
        // Sort the intersection points using exact rational arithmetic.
        std::sort(sil.intersections.begin(), sil.intersections.end());
#ifdef _DEBUG
        // Verify that the intersections are sorted along the haching direction.
        for (size_t i = 1; i < sil.intersections.size(); ++ i) {
            Point p1 = sil.intersections[i - 1].pos();
            Point p2 = sil.intersections[i].pos();
            int64_t d = sil.dir.cast<int64_t>().dot((p2 - p1).cast<int64_t>());
            assert(d >= - int64_t(SCALED_EPSILON));
        }
#endif /* _DEBUG */
        // Assign the intersection types, remove duplicate or overlapping intersection points.
        // When a loop vertex touches a vertical line, intersection point is generated for both segments.
        // If such two segments are oriented equally, then one of them is removed.
        // Otherwise the vertex is tangential to the vertical line and both segments are removed.
        // The same rule applies, if the loop is pinched into a single point and this point touches the vertical line:
        // The loop has a zero vertical size at the vertical line, therefore the intersection point is removed.
        size_t j = 0;
        for (size_t i = 0; i < sil.intersections.size(); ++ i) {
            // What is the orientation of the segment at the intersection point?
            size_t iContour = sil.intersections[i].iContour;
            const Points &contour = poly_with_offset.contour(iContour).points;
            size_t iSegment = sil.intersections[i].iSegment;
            size_t iPrev    = ((iSegment == 0) ? contour.size() : iSegment) - 1;
            int    dir      = int128::cross(contour[iSegment] - contour[iPrev], sil.dir);
            bool low = dir > 0;
            sil.intersections[i].type = poly_with_offset.is_contour_outer(iContour) ? 
                (low ? SegmentIntersection::OUTER_LOW : SegmentIntersection::OUTER_HIGH) :
                (low ? SegmentIntersection::INNER_LOW : SegmentIntersection::INNER_HIGH);
            if (j > 0 && sil.intersections[i].iContour == sil.intersections[j-1].iContour) {
                // Two successive intersection points on a vertical line with the same contour. This may be a special case.
                if (sil.intersections[i] == sil.intersections[j-1]) {
                    // Two successive segments meet exactly at the vertical line.
        #ifdef SLIC3R_DEBUG
                    // Verify that the segments of sil.intersections[i] and sil.intersections[j-1] are adjoint.
                    size_t iSegment2 = sil.intersections[j-1].iSegment;
                    size_t iPrev2    = ((iSegment2 == 0) ? contour.size() : iSegment2) - 1;
                    assert(iSegment == iPrev2 || iSegment2 == iPrev);
        #endif /* SLIC3R_DEBUG */
                    if (sil.intersections[i].type == sil.intersections[j-1].type) {
                        // Two successive segments of the same direction (both to the right or both to the left)
                        // meet exactly at the vertical line.
                        // Remove the second intersection point.
                    } else {
                        // This is a loop returning to the same point.
                        // It may as well be a vertex of a loop touching this vertical line.
                        // Remove both the lines.
                        -- j;
                    }
                } else if (sil.intersections[i].type == sil.intersections[j-1].type) {
                    // Two non successive segments of the same direction (both to the right or both to the left)
                    // meet exactly at the vertical line. That means there is a Z shaped path, where the center segment
                    // of the Z shaped path is aligned with this vertical line.
                    // Remove one of the intersection points while maximizing the vertical segment length.
                    if (low) {
                        // Remove the second intersection point, keep the first intersection point.
                    } else {
                        // Remove the first intersection point, keep the second intersection point.
                        sil.intersections[j-1] = sil.intersections[i];
                    }
                } else {
                    // Vertical line intersects a contour segment at a general position (not at one of its end points).
                    // or the contour just touches this vertical line with a vertical segment or a sequence of vertical segments.
                    // Keep both intersection points.
                    if (j < i)
                        sil.intersections[j] = sil.intersections[i];
                    ++ j;
                }
            } else {
                // Vertical line intersects a contour segment at a general position (not at one of its end points).
                if (j < i)
                    sil.intersections[j] = sil.intersections[i];
                ++ j;
            }
        }
        // Shrink the list of intersections, if any of the intersection was removed during the classification.
        if (j < sil.intersections.size())
            sil.intersections.erase(sil.intersections.begin() + j, sil.intersections.end());
    }

    // Verify the segments. If something is wrong, give up.
#define ASSERT_OR_RETURN(CONDITION) do { assert(CONDITION); if (! (CONDITION)) return false; } while (0)
#ifdef _MSC_VER
    #pragma warning(push)
    #pragma warning(disable: 4127)
#endif
    for (size_t i_seg = 0; i_seg < out.segs.size(); ++ i_seg) {
        SegmentedIntersectionLine &sil = out.segs[i_seg];
        // The intersection points have to be even.
        ASSERT_OR_RETURN((sil.intersections.size() & 1) == 0);
        for (size_t i = 0; i < sil.intersections.size();) {
            // An intersection segment crossing the bigger contour may cross the inner offsetted contour even number of times.
            ASSERT_OR_RETURN(sil.intersections[i].type == SegmentIntersection::OUTER_LOW);
            size_t j = i + 1;
            ASSERT_OR_RETURN(j < sil.intersections.size());
            ASSERT_OR_RETURN(sil.intersections[j].type == SegmentIntersection::INNER_LOW || sil.intersections[j].type == SegmentIntersection::OUTER_HIGH);
            for (; j < sil.intersections.size() && sil.intersections[j].is_inner(); ++ j) ;
            ASSERT_OR_RETURN(j < sil.intersections.size());
            ASSERT_OR_RETURN((j & 1) == 1);
            ASSERT_OR_RETURN(sil.intersections[j].type == SegmentIntersection::OUTER_HIGH);
            ASSERT_OR_RETURN(i + 1 == j || sil.intersections[j - 1].type == SegmentIntersection::INNER_HIGH);
            i = j + 1;
        }
    }
#undef ASSERT_OR_RETURN
#ifdef _MSC_VER
    #pragma warning(push)
#endif /* _MSC_VER */

#ifdef SLIC3R_DEBUG
    // Paint the segments and finalize the SVG file.
    for (size_t i_seg = 0; i_seg < out.segs.size(); ++ i_seg) {
        SegmentedIntersectionLine &sil = out.segs[i_seg];
        for (size_t i = 0; i < sil.intersections.size();) {
            size_t j = i + 1;
            for (; j < sil.intersections.size() && sil.intersections[j].is_inner(); ++ j) ;
            if (i + 1 == j) {
                svg.draw(Line(sil.intersections[i  ].pos(), sil.intersections[j  ].pos()), "blue");
            } else {
                svg.draw(Line(sil.intersections[i  ].pos(), sil.intersections[i+1].pos()), "green");
                svg.draw(Line(sil.intersections[i+1].pos(), sil.intersections[j-1].pos()), (j - i + 1 > 4) ? "yellow" : "magenta");
                svg.draw(Line(sil.intersections[j-1].pos(), sil.intersections[j  ].pos()), "green");
            }
            i = j + 1;
        }
    }
    svg.Close();
#endif /* SLIC3R_DEBUG */


    return true;
}








/****************************************************************** Legacy code, to be replaced by a graph algorithm ******************************************************************/


// Having a segment of a closed polygon, calculate its Euclidian length.
// The segment indices seg1 and seg2 signify an end point of an edge in the forward direction of the loop,
// therefore the point p1 lies on poly.points[seg1-1], poly.points[seg1] etc.
static inline coordf_t segment_length(const Polygon &poly, size_t seg1, const Point &p1, size_t seg2, const Point &p2)
{
#ifdef SLIC3R_DEBUG
    // Verify that p1 lies on seg1. This is difficult to verify precisely,
    // but at least verify, that p1 lies in the bounding box of seg1.
    for (size_t i = 0; i < 2; ++ i) {
        size_t seg = (i == 0) ? seg1 : seg2;
        Point  px  = (i == 0) ? p1   : p2;
        Point  pa  = poly.points[((seg == 0) ? poly.points.size() : seg) - 1];
        Point  pb  = poly.points[seg];
        if (pa(0) > pb(0))
            std::swap(pa(0), pb(0));
        if (pa(1) > pb(1))
            std::swap(pa(1), pb(1));
        assert(px(0) >= pa(0) && px(0) <= pb(0));
        assert(px(1) >= pa(1) && px(1) <= pb(1));
    }
#endif /* SLIC3R_DEBUG */
    const Point *pPrev = &p1;
    const Point *pThis = NULL;
    coordf_t len = 0;
    if (seg1 <= seg2) {
        for (size_t i = seg1; i < seg2; ++ i, pPrev = pThis)
           len += (*pPrev - *(pThis = &poly.points[i])).cast<double>().norm();
    } else {
        for (size_t i = seg1; i < poly.points.size(); ++ i, pPrev = pThis)
           len += (*pPrev - *(pThis = &poly.points[i])).cast<double>().norm();
        for (size_t i = 0; i < seg2; ++ i, pPrev = pThis)
           len += (*pPrev - *(pThis = &poly.points[i])).cast<double>().norm();
    }
    len += (*pPrev - p2).cast<double>().norm();
    return len;
}

// Append a segment of a closed polygon to a polyline.
// The segment indices seg1 and seg2 signify an end point of an edge in the forward direction of the loop.
// Only insert intermediate points between seg1 and seg2.
static inline void polygon_segment_append(Points &out, const Polygon &polygon, size_t seg1, size_t seg2)
{
    if (seg1 == seg2) {
        // Nothing to append from this segment.
    } else if (seg1 < seg2) {
        // Do not append a point pointed to by seg2.
        out.insert(out.end(), polygon.points.begin() + seg1, polygon.points.begin() + seg2);
    } else {
        out.reserve(out.size() + seg2 + polygon.points.size() - seg1);
        out.insert(out.end(), polygon.points.begin() + seg1, polygon.points.end());
        // Do not append a point pointed to by seg2.
        out.insert(out.end(), polygon.points.begin(), polygon.points.begin() + seg2);
    }
}

// Append a segment of a closed polygon to a polyline.
// The segment indices seg1 and seg2 signify an end point of an edge in the forward direction of the loop,
// but this time the segment is traversed backward.
// Only insert intermediate points between seg1 and seg2.
static inline void polygon_segment_append_reversed(Points &out, const Polygon &polygon, size_t seg1, size_t seg2)
{
    if (seg1 >= seg2) {
        out.reserve(seg1 - seg2);
        for (size_t i = seg1; i > seg2; -- i)
            out.push_back(polygon.points[i - 1]);
    } else {
        // it could be, that seg1 == seg2. In that case, append the complete loop.
        out.reserve(out.size() + seg2 + polygon.points.size() - seg1);
        for (size_t i = seg1; i > 0; -- i)
            out.push_back(polygon.points[i - 1]);
        for (size_t i = polygon.points.size(); i > seg2; -- i)
            out.push_back(polygon.points[i - 1]);
    }
}

static inline int distance_of_segmens(const Polygon &poly, size_t seg1, size_t seg2, bool forward)
{
    int d = int(seg2) - int(seg1);
    if (! forward)
        d = - d;
    if (d < 0)
        d += int(poly.points.size());
    return d;
}

// For a vertical line, an inner contour and an intersection point,
// find an intersection point on the previous resp. next vertical line.
// The intersection point is connected with the prev resp. next intersection point with iInnerContour.
// Return -1 if there is no such point on the previous resp. next vertical line.
static inline int intersection_on_prev_next_vertical_line(
    const ExPolygonWithOffset                     &poly_with_offset,
    const std::vector<SegmentedIntersectionLine>  &segs,
    size_t                                         iVerticalLine,
    size_t                                         iInnerContour,
    size_t                                         iIntersection,
    bool                                           dir_is_next)
{
    size_t iVerticalLineOther = iVerticalLine;
    if (dir_is_next) {
        if (++ iVerticalLineOther == segs.size())
            // No successive vertical line.
            return -1;
    } else if (iVerticalLineOther -- == 0) {
        // No preceding vertical line.
        return -1;
    }

    const SegmentedIntersectionLine &il    = segs[iVerticalLine];
    const SegmentIntersection       &itsct = il.intersections[iIntersection];
    const SegmentedIntersectionLine &il2   = segs[iVerticalLineOther];
    const Polygon                   &poly  = poly_with_offset.contour(iInnerContour);
//    const bool                       ccw   = poly_with_offset.is_contour_ccw(iInnerContour);
    const bool                       forward = itsct.is_low() == dir_is_next;
    // Resulting index of an intersection point on il2.
    int                              out   = -1;
    // Find an intersection point on iVerticalLineOther, intersecting iInnerContour
    // at the same orientation as iIntersection, and being closest to iIntersection
    // in the number of contour segments, when following the direction of the contour.
    int                              dmin  = std::numeric_limits<int>::max();
    for (size_t i = 0; i < il2.intersections.size(); ++ i) {
        const SegmentIntersection &itsct2 = il2.intersections[i];
        if (itsct.iContour == itsct2.iContour && itsct.type == itsct2.type) {
            /*
            if (itsct.is_low()) {
                assert(itsct.type == SegmentIntersection::INNER_LOW);
                assert(iIntersection > 0);
                assert(il.intersections[iIntersection-1].type == SegmentIntersection::OUTER_LOW);                
                assert(i > 0);
                if (il2.intersections[i-1].is_inner())
                    // Take only the lowest inner intersection point.
                    continue;
                assert(il2.intersections[i-1].type == SegmentIntersection::OUTER_LOW);
            } else {
                assert(itsct.type == SegmentIntersection::INNER_HIGH);
                assert(iIntersection+1 < il.intersections.size());
                assert(il.intersections[iIntersection+1].type == SegmentIntersection::OUTER_HIGH);
                assert(i+1 < il2.intersections.size());
                if (il2.intersections[i+1].is_inner())
                    // Take only the highest inner intersection point.
                    continue;
                assert(il2.intersections[i+1].type == SegmentIntersection::OUTER_HIGH);
            }
            */
            // The intersection points lie on the same contour and have the same orientation.
            // Find the intersection point with a shortest path in the direction of the contour.
            int d = distance_of_segmens(poly, itsct.iSegment, itsct2.iSegment, forward);
            if (d < dmin) {
                out = i;
                dmin = d;
            }
        }
    }
    //FIXME this routine is not asymptotic optimal, it will be slow if there are many intersection points along the line.
    return out;
}

static inline int intersection_on_prev_vertical_line(
    const ExPolygonWithOffset                     &poly_with_offset, 
    const std::vector<SegmentedIntersectionLine>  &segs,
    size_t                                         iVerticalLine,
    size_t                                         iInnerContour,
    size_t                                         iIntersection)
{
    return intersection_on_prev_next_vertical_line(poly_with_offset, segs, iVerticalLine, iInnerContour, iIntersection, false);
}

static inline int intersection_on_next_vertical_line(
    const ExPolygonWithOffset                     &poly_with_offset, 
    const std::vector<SegmentedIntersectionLine>  &segs, 
    size_t                                         iVerticalLine, 
    size_t                                         iInnerContour, 
    size_t                                         iIntersection)
{
    return intersection_on_prev_next_vertical_line(poly_with_offset, segs, iVerticalLine, iInnerContour, iIntersection, true);
}

enum IntersectionTypeOtherVLine {
    // There is no connection point on the other vertical line.
    INTERSECTION_TYPE_OTHER_VLINE_UNDEFINED = -1,
    // Connection point on the other vertical segment was found
    // and it could be followed.
    INTERSECTION_TYPE_OTHER_VLINE_OK = 0,
    // The connection segment connects to a middle of a vertical segment.
    // Cannot follow.
    INTERSECTION_TYPE_OTHER_VLINE_INNER,
    // Cannot extend the contor to this intersection point as either the connection segment
    // or the succeeding vertical segment were already consumed.
    INTERSECTION_TYPE_OTHER_VLINE_CONSUMED,
    // Not the first intersection along the contor. This intersection point
    // has been preceded by an intersection point along the vertical line.
    INTERSECTION_TYPE_OTHER_VLINE_NOT_FIRST,
};

// Find an intersection on a previous line, but return -1, if the connecting segment of a perimeter was already extruded.
static inline IntersectionTypeOtherVLine intersection_type_on_prev_next_vertical_line(
    const std::vector<SegmentedIntersectionLine>  &segs,
    size_t                                         iVerticalLine,
    size_t                                         iIntersection,
    size_t                                         iIntersectionOther,
    bool                                           dir_is_next)
{
    // This routine will propose a connecting line even if the connecting perimeter segment intersects 
    // iVertical line multiple times before reaching iIntersectionOther.
    if (iIntersectionOther == -1)
        return INTERSECTION_TYPE_OTHER_VLINE_UNDEFINED;
    assert(dir_is_next ? (iVerticalLine + 1 < segs.size()) : (iVerticalLine > 0));
    const SegmentedIntersectionLine &il_this      = segs[iVerticalLine];
    const SegmentIntersection       &itsct_this   = il_this.intersections[iIntersection];
    const SegmentedIntersectionLine &il_other     = segs[dir_is_next ? (iVerticalLine+1) : (iVerticalLine-1)];
    const SegmentIntersection       &itsct_other  = il_other.intersections[iIntersectionOther];
    assert(itsct_other.is_inner());
    assert(iIntersectionOther > 0);
    assert(iIntersectionOther + 1 < il_other.intersections.size());
    // Is iIntersectionOther at the boundary of a vertical segment?
    const SegmentIntersection       &itsct_other2 = il_other.intersections[itsct_other.is_low() ? iIntersectionOther - 1 : iIntersectionOther + 1];
    if (itsct_other2.is_inner())
        // Cannot follow a perimeter segment into the middle of another vertical segment.
        // Only perimeter segments connecting to the end of a vertical segment are followed.
        return INTERSECTION_TYPE_OTHER_VLINE_INNER;
    assert(itsct_other.is_low() == itsct_other2.is_low());
    if (dir_is_next ? itsct_this.consumed_perimeter_right : itsct_other.consumed_perimeter_right)
        // This perimeter segment was already consumed.
        return INTERSECTION_TYPE_OTHER_VLINE_CONSUMED;
    if (itsct_other.is_low() ? itsct_other.consumed_vertical_up : il_other.intersections[iIntersectionOther-1].consumed_vertical_up)
        // This vertical segment was already consumed.
        return INTERSECTION_TYPE_OTHER_VLINE_CONSUMED;
    return INTERSECTION_TYPE_OTHER_VLINE_OK;
}

static inline IntersectionTypeOtherVLine intersection_type_on_prev_vertical_line(
    const std::vector<SegmentedIntersectionLine>  &segs, 
    size_t                                         iVerticalLine, 
    size_t                                         iIntersection,
    size_t                                         iIntersectionPrev)
{
    return intersection_type_on_prev_next_vertical_line(segs, iVerticalLine, iIntersection, iIntersectionPrev, false);
}

static inline IntersectionTypeOtherVLine intersection_type_on_next_vertical_line(
    const std::vector<SegmentedIntersectionLine>  &segs, 
    size_t                                         iVerticalLine, 
    size_t                                         iIntersection,
    size_t                                         iIntersectionNext)
{
    return intersection_type_on_prev_next_vertical_line(segs, iVerticalLine, iIntersection, iIntersectionNext, true);
}

// Measure an Euclidian length of a perimeter segment when going from iIntersection to iIntersection2.
static inline coordf_t measure_perimeter_prev_next_segment_length(
    const ExPolygonWithOffset                     &poly_with_offset, 
    const std::vector<SegmentedIntersectionLine>  &segs,
    size_t                                         iVerticalLine,
    size_t                                         iInnerContour,
    size_t                                         iIntersection,
    size_t                                         iIntersection2,
    bool                                           dir_is_next)
{
    size_t iVerticalLineOther = iVerticalLine;
    if (dir_is_next) {
        if (++ iVerticalLineOther == segs.size())
            // No successive vertical line.
            return coordf_t(-1);
    } else if (iVerticalLineOther -- == 0) {
        // No preceding vertical line.
        return coordf_t(-1);
    }

    const SegmentedIntersectionLine &il     = segs[iVerticalLine];
    const SegmentIntersection       &itsct  = il.intersections[iIntersection];
    const SegmentedIntersectionLine &il2    = segs[iVerticalLineOther];
    const SegmentIntersection       &itsct2 = il2.intersections[iIntersection2];
    const Polygon                   &poly   = poly_with_offset.contour(iInnerContour);
//    const bool                       ccw    = poly_with_offset.is_contour_ccw(iInnerContour);
    assert(itsct.type == itsct2.type);
    assert(itsct.iContour == itsct2.iContour);
    assert(itsct.is_inner());
    const bool                       forward = itsct.is_low() == dir_is_next;

    Point p1 = itsct.pos();
    Point p2 = itsct2.pos();
    return forward ?
        segment_length(poly, itsct .iSegment, p1, itsct2.iSegment, p2) :
        segment_length(poly, itsct2.iSegment, p2, itsct .iSegment, p1);
}

static inline coordf_t measure_perimeter_prev_segment_length(
    const ExPolygonWithOffset                     &poly_with_offset,
    const std::vector<SegmentedIntersectionLine>  &segs,
    size_t                                         iVerticalLine,
    size_t                                         iInnerContour,
    size_t                                         iIntersection,
    size_t                                         iIntersection2)
{
    return measure_perimeter_prev_next_segment_length(poly_with_offset, segs, iVerticalLine, iInnerContour, iIntersection, iIntersection2, false);
}

static inline coordf_t measure_perimeter_next_segment_length(
    const ExPolygonWithOffset                     &poly_with_offset,
    const std::vector<SegmentedIntersectionLine>  &segs,
    size_t                                         iVerticalLine,
    size_t                                         iInnerContour,
    size_t                                         iIntersection,
    size_t                                         iIntersection2)
{
    return measure_perimeter_prev_next_segment_length(poly_with_offset, segs, iVerticalLine, iInnerContour, iIntersection, iIntersection2, true);
}

// Append the points of a perimeter segment when going from iIntersection to iIntersection2.
// The first point (the point of iIntersection) will not be inserted,
// the last point will be inserted.
static inline void emit_perimeter_prev_next_segment(
    const ExPolygonWithOffset                     &poly_with_offset,
    const std::vector<SegmentedIntersectionLine>  &segs,
    size_t                                         iVerticalLine,
    size_t                                         iInnerContour,
    size_t                                         iIntersection,
    size_t                                         iIntersection2,
    Polyline                                      &out,
    bool                                           dir_is_next)
{
    size_t iVerticalLineOther = iVerticalLine;
    if (dir_is_next) {
        ++ iVerticalLineOther;
        assert(iVerticalLineOther < segs.size());
    } else {
        assert(iVerticalLineOther > 0);
        -- iVerticalLineOther;
    }

    const SegmentedIntersectionLine &il     = segs[iVerticalLine];
    const SegmentIntersection       &itsct  = il.intersections[iIntersection];
    const SegmentedIntersectionLine &il2    = segs[iVerticalLineOther];
    const SegmentIntersection       &itsct2 = il2.intersections[iIntersection2];
    const Polygon                   &poly   = poly_with_offset.contour(iInnerContour);
//    const bool                       ccw    = poly_with_offset.is_contour_ccw(iInnerContour);
    assert(itsct.type == itsct2.type);
    assert(itsct.iContour == itsct2.iContour);
    assert(itsct.is_inner());
    const bool                       forward = itsct.is_low() == dir_is_next;
    // Do not append the first point.
    // out.points.push_back(Point(il.pos, itsct.pos));
    if (forward)
        polygon_segment_append(out.points, poly, itsct.iSegment, itsct2.iSegment);
    else
        polygon_segment_append_reversed(out.points, poly, itsct.iSegment, itsct2.iSegment);
    // Append the last point.
    out.points.push_back(itsct2.pos());
}

static inline coordf_t measure_perimeter_segment_on_vertical_line_length(
    const ExPolygonWithOffset                     &poly_with_offset,
    const std::vector<SegmentedIntersectionLine>  &segs,
    size_t                                         iVerticalLine,
    size_t                                         iInnerContour,
    size_t                                         iIntersection,
    size_t                                         iIntersection2,
    bool                                           forward)
{
    const SegmentedIntersectionLine &il = segs[iVerticalLine];
    const SegmentIntersection       &itsct = il.intersections[iIntersection];
    const SegmentIntersection       &itsct2 = il.intersections[iIntersection2];
    const Polygon                   &poly = poly_with_offset.contour(iInnerContour);
    assert(itsct.is_inner());
    assert(itsct2.is_inner());
    assert(itsct.type != itsct2.type);
    assert(itsct.iContour == iInnerContour);
    assert(itsct.iContour == itsct2.iContour);
    return forward ?
        segment_length(poly, itsct .iSegment, itsct.pos(),  itsct2.iSegment, itsct2.pos()) :
        segment_length(poly, itsct2.iSegment, itsct2.pos(), itsct .iSegment, itsct.pos());
}

// Append the points of a perimeter segment when going from iIntersection to iIntersection2.
// The first point (the point of iIntersection) will not be inserted,
// the last point will be inserted.
static inline void emit_perimeter_segment_on_vertical_line(
    const ExPolygonWithOffset                     &poly_with_offset,
    const std::vector<SegmentedIntersectionLine>  &segs,
    size_t                                         iVerticalLine,
    size_t                                         iInnerContour,
    size_t                                         iIntersection,
    size_t                                         iIntersection2,
    Polyline                                      &out,
    bool                                           forward)
{
    const SegmentedIntersectionLine &il = segs[iVerticalLine];
    const SegmentIntersection       &itsct = il.intersections[iIntersection];
    const SegmentIntersection       &itsct2 = il.intersections[iIntersection2];
    const Polygon                   &poly = poly_with_offset.contour(iInnerContour);
    assert(itsct.is_inner());
    assert(itsct2.is_inner());
    assert(itsct.type != itsct2.type);
    assert(itsct.iContour == iInnerContour);
    assert(itsct.iContour == itsct2.iContour);
    // Do not append the first point.
    // out.points.push_back(Point(il.pos, itsct.pos));
    if (forward)
        polygon_segment_append(out.points, poly, itsct.iSegment, itsct2.iSegment);
    else
        polygon_segment_append_reversed(out.points, poly, itsct.iSegment, itsct2.iSegment);
    // Append the last point.
    out.points.push_back(itsct2.pos());
}

//TBD: For precise infill, measure the area of a slab spanned by an infill line.
/*
static inline float measure_outer_contour_slab(
    const ExPolygonWithOffset                     &poly_with_offset,
    const std::vector<SegmentedIntersectionLine>  &segs,
    size_t                                         i_vline,
    size_t                                         iIntersection)
{
    const SegmentedIntersectionLine &il     = segs[i_vline];
    const SegmentIntersection       &itsct  = il.intersections[i_vline];
    const SegmentIntersection       &itsct2 = il.intersections[iIntersection2];
    const Polygon                   &poly   = poly_with_offset.contour((itsct.iContour);
    assert(itsct.is_outer());
    assert(itsct2.is_outer());
    assert(itsct.type != itsct2.type);
    assert(itsct.iContour == itsct2.iContour);
    if (! itsct.is_outer() || ! itsct2.is_outer() || itsct.type == itsct2.type || itsct.iContour != itsct2.iContour)
        // Error, return zero area.
        return 0.f;

    // Find possible connection points on the previous / next vertical line.
    int iPrev = intersection_on_prev_vertical_line(poly_with_offset, segs, i_vline, itsct.iContour, i_intersection);
    int iNext = intersection_on_next_vertical_line(poly_with_offset, segs, i_vline, itsct.iContour, i_intersection);
    // Find possible connection points on the same vertical line.
    int iAbove = iBelow = -1;
    // Does the perimeter intersect the current vertical line above intrsctn?
    for (size_t i = i_intersection + 1; i + 1 < seg.intersections.size(); ++ i)
        if (seg.intersections[i].iContour == itsct.iContour)
            { iAbove = i; break; }
    // Does the perimeter intersect the current vertical line below intrsctn?
    for (int i = int(i_intersection) - 1; i > 0; -- i)
        if (seg.intersections[i].iContour == itsct.iContour)
            { iBelow = i; break; }

    if (iSegAbove != -1 && seg.intersections[iAbove].type == SegmentIntersection::OUTER_HIGH) {
        // Invalidate iPrev resp. iNext, if the perimeter crosses the current vertical line earlier than iPrev resp. iNext.
        // The perimeter contour orientation.
        const Polygon &poly = poly_with_offset.contour(itsct.iContour);
        {
            int d_horiz = (iPrev  == -1) ? std::numeric_limits<int>::max() :
                distance_of_segmens(poly, segs[i_vline-1].intersections[iPrev].iSegment, itsct.iSegment, true);
            int d_down  = (iBelow == -1) ? std::numeric_limits<int>::max() :
                distance_of_segmens(poly, iSegBelow, itsct.iSegment, true);
            int d_up    = (iAbove == -1) ? std::numeric_limits<int>::max() :
                distance_of_segmens(poly, iSegAbove, itsct.iSegment, true);
            if (intrsctn_type_prev == INTERSECTION_TYPE_OTHER_VLINE_OK && d_horiz > std::min(d_down, d_up))
                // The vertical crossing comes eralier than the prev crossing.
                // Disable the perimeter going back.
                intrsctn_type_prev = INTERSECTION_TYPE_OTHER_VLINE_NOT_FIRST;
            if (d_up > std::min(d_horiz, d_down))
                // The horizontal crossing comes earlier than the vertical crossing.
                vert_seg_dir_valid_mask &= ~DIR_BACKWARD;
        }
        {
            int d_horiz = (iNext     == -1) ? std::numeric_limits<int>::max() :
                distance_of_segmens(poly, itsct.iSegment, segs[i_vline+1].intersections[iNext].iSegment, true);
            int d_down  = (iSegBelow == -1) ? std::numeric_limits<int>::max() :
                distance_of_segmens(poly, itsct.iSegment, iSegBelow, true);
            int d_up    = (iSegAbove == -1) ? std::numeric_limits<int>::max() :
                distance_of_segmens(poly, itsct.iSegment, iSegAbove, true);
            if (d_up > std::min(d_horiz, d_down))
                // The horizontal crossing comes earlier than the vertical crossing.
                vert_seg_dir_valid_mask &= ~DIR_FORWARD;
        }
    }
}
*/

enum DirectionMask
{
    DIR_FORWARD  = 1,
    DIR_BACKWARD = 2
};

// For the rectilinear, grid, triangles, stars and cubic pattern fill one InfillHatchingSingleDirection structure
// for each infill direction. The segments stored in InfillHatchingSingleDirection will then form a graph of candidate
// paths to be extruded.
static bool fill_hatching_segments_legacy(
    // Input geometry to be hatch, containing two concentric contours for each input contour.
    const ExPolygonWithOffset      &poly_with_offset,
    // fill density, dont_adjust
    const FillParams               &params,
    const coord_t                   link_max_length,
    // Resulting straight segments of the infill graph.
    InfillHatchingSingleDirection  &hatching,
    Polylines                      &polylines_out)
{
    // At the end, only the new polylines will be rotated back.
    size_t n_polylines_out_initial = polylines_out.size();

    std::vector<SegmentedIntersectionLine> &segs = hatching.segs;

    // For each outer only chords, measure their maximum distance to the bow of the outer contour.
    // Mark an outer only chord as consumed, if the distance is low.
    for (size_t i_vline = 0; i_vline < segs.size(); ++ i_vline) {
        SegmentedIntersectionLine &seg = segs[i_vline];
        for (size_t i_intersection = 0; i_intersection + 1 < seg.intersections.size(); ++ i_intersection) {
            if (seg.intersections[i_intersection].type == SegmentIntersection::OUTER_LOW &&
                seg.intersections[i_intersection+1].type == SegmentIntersection::OUTER_HIGH) {
                bool consumed = false;
//                if (params.full_infill()) {
//                        measure_outer_contour_slab(poly_with_offset, segs, i_vline, i_ntersection);
//                } else
                    consumed = true;
                seg.intersections[i_intersection].consumed_vertical_up = consumed;
            }
        }
    }

    // Now construct a graph.
    // Find the first point.
    // Naively one would expect to achieve best results by chaining the paths by the shortest distance,
    // but that procedure does not create the longest continuous paths.
    // A simple "sweep left to right" procedure achieves better results.
    size_t    i_vline = 0;
    size_t    i_intersection = size_t(-1);
    // Follow the line, connect the lines into a graph.
    // Until no new line could be added to the output path:
    Point     pointLast;
    Polyline *polyline_current = NULL;
    if (! polylines_out.empty())
        pointLast = polylines_out.back().points.back();
    for (;;) {
        if (i_intersection == size_t(-1)) {
            // The path has been interrupted. Find a next starting point, closest to the previous extruder position.
            coordf_t dist2min = std::numeric_limits<coordf_t>().max();
            for (size_t i_vline2 = 0; i_vline2 < segs.size(); ++ i_vline2) {
                const SegmentedIntersectionLine &seg = segs[i_vline2];
                if (! seg.intersections.empty()) {
                    assert(seg.intersections.size() > 1);
                    // Even number of intersections with the loops.
                    assert((seg.intersections.size() & 1) == 0);
                    assert(seg.intersections.front().type == SegmentIntersection::OUTER_LOW);
                    for (size_t i = 0; i < seg.intersections.size(); ++ i) {
                        const SegmentIntersection &intrsctn = seg.intersections[i];
                        if (intrsctn.is_outer()) {
                            assert(intrsctn.is_low() || i > 0);
                            bool consumed = intrsctn.is_low() ? 
                                intrsctn.consumed_vertical_up : 
                                seg.intersections[i-1].consumed_vertical_up;
                            if (! consumed) {
                                coordf_t dist2 = (intrsctn.pos() - pointLast).cast<double>().norm();
                                if (dist2 < dist2min) {
                                    dist2min = dist2;
                                    i_vline = i_vline2;
                                    i_intersection = i;
                                    //FIXME We are taking the first left point always. Verify, that the caller chains the paths
                                    // by a shortest distance, while reversing the paths if needed.
                                    //if (polylines_out.empty())
                                        // Initial state, take the first line, which is the first from the left.
                                        goto found;
                                }
                            }
                        }
                    }
                }
            }
            if (i_intersection == size_t(-1))
                // We are finished.
                break;
        found:
            // Start a new path.
            polylines_out.push_back(Polyline());
            polyline_current = &polylines_out.back();
            // Emit the first point of a path.
            pointLast = segs[i_vline].intersections[i_intersection].pos();
            polyline_current->points.push_back(pointLast);
        }

        // From the initial point (i_vline, i_intersection), follow a path.
        SegmentedIntersectionLine &seg      = segs[i_vline];
        SegmentIntersection       *intrsctn = &seg.intersections[i_intersection];
        bool going_up = intrsctn->is_low();
        bool try_connect = false;
        if (going_up) {
            assert(! intrsctn->consumed_vertical_up);
            assert(i_intersection + 1 < seg.intersections.size());
            // Step back to the beginning of the vertical segment to mark it as consumed.
            if (intrsctn->is_inner()) {
                assert(i_intersection > 0);
                -- intrsctn;
                -- i_intersection;
            }
            // Consume the complete vertical segment up to the outer contour.
            do {
                intrsctn->consumed_vertical_up = true;
                ++ intrsctn;
                ++ i_intersection;
                assert(i_intersection < seg.intersections.size());
            } while (intrsctn->type != SegmentIntersection::OUTER_HIGH);
            if ((intrsctn - 1)->is_inner()) {
                // Step back.
                -- intrsctn;
                -- i_intersection;
                assert(intrsctn->type == SegmentIntersection::INNER_HIGH);
                try_connect = true;
            }
        } else {
            // Going down.
            assert(intrsctn->is_high());
            assert(i_intersection > 0);
            assert(! (intrsctn - 1)->consumed_vertical_up);
            // Consume the complete vertical segment up to the outer contour.
            if (intrsctn->is_inner())
                intrsctn->consumed_vertical_up = true;
            do {
                assert(i_intersection > 0);
                -- intrsctn;
                -- i_intersection;
                intrsctn->consumed_vertical_up = true;
            } while (intrsctn->type != SegmentIntersection::OUTER_LOW);
            if ((intrsctn + 1)->is_inner()) {
                // Step back.
                ++ intrsctn;
                ++ i_intersection;
                assert(intrsctn->type == SegmentIntersection::INNER_LOW);
                try_connect = true;
            }
        }
        if (try_connect) {
            // Decide, whether to finish the segment, or whether to follow the perimeter.

            // 1) Find possible connection points on the previous / next vertical line.
            int iPrev = intersection_on_prev_vertical_line(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection);
            int iNext = intersection_on_next_vertical_line(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection);
            IntersectionTypeOtherVLine intrsctn_type_prev = intersection_type_on_prev_vertical_line(segs, i_vline, i_intersection, iPrev);
            IntersectionTypeOtherVLine intrsctn_type_next = intersection_type_on_next_vertical_line(segs, i_vline, i_intersection, iNext);

            // 2) Find possible connection points on the same vertical line.
            int iAbove = -1;
            int iBelow = -1;
            int iSegAbove = -1;
            int iSegBelow = -1;
            {
                SegmentIntersection::SegmentIntersectionType type_crossing = (intrsctn->type == SegmentIntersection::INNER_LOW) ?
                    SegmentIntersection::INNER_HIGH : SegmentIntersection::INNER_LOW;
                // Does the perimeter intersect the current vertical line above intrsctn?
                for (size_t i = i_intersection + 1; i + 1 < seg.intersections.size(); ++ i)
//                    if (seg.intersections[i].iContour == intrsctn->iContour && seg.intersections[i].type == type_crossing) {
                    if (seg.intersections[i].iContour == intrsctn->iContour) {
                        iAbove = i;
                        iSegAbove = seg.intersections[i].iSegment;
                        break;
                    }
                // Does the perimeter intersect the current vertical line below intrsctn?
                for (size_t i = i_intersection - 1; i > 0; -- i)
//                    if (seg.intersections[i].iContour == intrsctn->iContour && seg.intersections[i].type == type_crossing) {
                    if (seg.intersections[i].iContour == intrsctn->iContour) {
                        iBelow = i;
                        iSegBelow = seg.intersections[i].iSegment;
                        break;
                    }
            }

            // 3) Sort the intersection points, clear iPrev / iNext / iSegBelow / iSegAbove,
            // if it is preceded by any other intersection point along the contour.
            unsigned int vert_seg_dir_valid_mask = 
                (going_up ? 
                    (iSegAbove != -1 && seg.intersections[iAbove].type == SegmentIntersection::INNER_LOW) :
                    (iSegBelow != -1 && seg.intersections[iBelow].type == SegmentIntersection::INNER_HIGH)) ?
                (DIR_FORWARD | DIR_BACKWARD) :
                0;
            {
                // Invalidate iPrev resp. iNext, if the perimeter crosses the current vertical line earlier than iPrev resp. iNext.
                // The perimeter contour orientation.
                const bool forward = intrsctn->is_low(); // == poly_with_offset.is_contour_ccw(intrsctn->iContour);
                const Polygon &poly = poly_with_offset.contour(intrsctn->iContour);
                {
                    int d_horiz = (iPrev     == -1) ? std::numeric_limits<int>::max() :
                        distance_of_segmens(poly, segs[i_vline-1].intersections[iPrev].iSegment, intrsctn->iSegment, forward);
                    int d_down  = (iSegBelow == -1) ? std::numeric_limits<int>::max() :
                        distance_of_segmens(poly, iSegBelow, intrsctn->iSegment, forward);
                    int d_up    = (iSegAbove == -1) ? std::numeric_limits<int>::max() :
                        distance_of_segmens(poly, iSegAbove, intrsctn->iSegment, forward);
                    if (intrsctn_type_prev == INTERSECTION_TYPE_OTHER_VLINE_OK && d_horiz > std::min(d_down, d_up))
                        // The vertical crossing comes eralier than the prev crossing.
                        // Disable the perimeter going back.
                        intrsctn_type_prev = INTERSECTION_TYPE_OTHER_VLINE_NOT_FIRST;
                    if (going_up ? (d_up > std::min(d_horiz, d_down)) : (d_down > std::min(d_horiz, d_up)))
                        // The horizontal crossing comes earlier than the vertical crossing.
                        vert_seg_dir_valid_mask &= ~(forward ? DIR_BACKWARD : DIR_FORWARD);
                }
                {
                    int d_horiz = (iNext     == -1) ? std::numeric_limits<int>::max() :
                        distance_of_segmens(poly, intrsctn->iSegment, segs[i_vline+1].intersections[iNext].iSegment, forward);
                    int d_down  = (iSegBelow == -1) ? std::numeric_limits<int>::max() :
                        distance_of_segmens(poly, intrsctn->iSegment, iSegBelow, forward);
                    int d_up    = (iSegAbove == -1) ? std::numeric_limits<int>::max() :
                        distance_of_segmens(poly, intrsctn->iSegment, iSegAbove, forward);
                    if (intrsctn_type_next == INTERSECTION_TYPE_OTHER_VLINE_OK && d_horiz > std::min(d_down, d_up))
                        // The vertical crossing comes eralier than the prev crossing.
                        // Disable the perimeter going forward.
                        intrsctn_type_next = INTERSECTION_TYPE_OTHER_VLINE_NOT_FIRST;
                    if (going_up ? (d_up > std::min(d_horiz, d_down)) : (d_down > std::min(d_horiz, d_up)))
                        // The horizontal crossing comes earlier than the vertical crossing.
                        vert_seg_dir_valid_mask &= ~(forward ? DIR_FORWARD : DIR_BACKWARD);
                }
            }

            // 4) Try to connect to a previous or next vertical line, making a zig-zag pattern.
            if (intrsctn_type_prev == INTERSECTION_TYPE_OTHER_VLINE_OK || intrsctn_type_next == INTERSECTION_TYPE_OTHER_VLINE_OK) {
                coordf_t distPrev = (intrsctn_type_prev != INTERSECTION_TYPE_OTHER_VLINE_OK) ? std::numeric_limits<coord_t>::max() :
                    measure_perimeter_prev_segment_length(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, iPrev);
                coordf_t distNext = (intrsctn_type_next != INTERSECTION_TYPE_OTHER_VLINE_OK) ? std::numeric_limits<coord_t>::max() :
                    measure_perimeter_next_segment_length(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, iNext);
                // Take the shorter path.
                //FIXME this may not be always the best strategy to take the shortest connection line now.
                bool take_next = (intrsctn_type_prev == INTERSECTION_TYPE_OTHER_VLINE_OK && intrsctn_type_next == INTERSECTION_TYPE_OTHER_VLINE_OK) ?
                    (distNext < distPrev) : 
                    intrsctn_type_next == INTERSECTION_TYPE_OTHER_VLINE_OK;
                assert(intrsctn->is_inner());
                bool skip = params.dont_connect || (link_max_length > 0 && (take_next ? distNext : distPrev) > link_max_length);
                if (skip) {
                    // Just skip the connecting contour and start a new path.
                    goto dont_connect;
                    polyline_current->points.push_back(intrsctn->pos());
                    polylines_out.push_back(Polyline()); 
                    polyline_current = &polylines_out.back(); 
                    const SegmentedIntersectionLine &il2 = segs[take_next ? (i_vline + 1) : (i_vline - 1)];
                    polyline_current->points.push_back(il2.intersections[take_next ? iNext : iPrev].pos());
                } else {
                    polyline_current->points.push_back(intrsctn->pos());
                    emit_perimeter_prev_next_segment(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, take_next ? iNext : iPrev, *polyline_current, take_next);
                }
                // Mark both the left and right connecting segment as consumed, because one cannot go to this intersection point as it has been consumed.
                if (iPrev != -1)
                    segs[i_vline-1].intersections[iPrev].consumed_perimeter_right = true;
                if (iNext != -1)
                    intrsctn->consumed_perimeter_right = true;
                //FIXME consume the left / right connecting segments at the other end of this line? Currently it is not critical because a perimeter segment is not followed if the vertical segment at the other side has already been consumed.
                // Advance to the neighbor line.
                if (take_next) {
                    ++ i_vline;
                    i_intersection = iNext;
                } else {
                    -- i_vline;
                    i_intersection = iPrev;
                }
                continue;
            } 

            // 5) Try to connect to a previous or next point on the same vertical line.
            if (vert_seg_dir_valid_mask) {
                bool valid = true;
                // Verify, that there is no intersection with the inner contour up to the end of the contour segment.
                // Verify, that the successive segment has not been consumed yet.
                if (going_up) {
                    if (seg.intersections[iAbove].consumed_vertical_up) {
                        valid = false;
                    } else {
                        for (int i = (int)i_intersection + 1; i < iAbove && valid; ++i)
                            if (seg.intersections[i].is_inner()) 
                                valid = false;
                    }
                } else {
                    if (seg.intersections[iBelow-1].consumed_vertical_up) {
                        valid = false;
                    } else {
                        for (int i = iBelow + 1; i < (int)i_intersection && valid; ++i)
                            if (seg.intersections[i].is_inner()) 
                                valid = false;
                    }
                }
                if (valid) {
                    const Polygon &poly = poly_with_offset.contour(intrsctn->iContour);
                    int iNext    = going_up ? iAbove : iBelow;
                    int iSegNext = going_up ? iSegAbove : iSegBelow;
                    bool dir_forward = (vert_seg_dir_valid_mask == (DIR_FORWARD | DIR_BACKWARD)) ?
                        // Take the shorter length between the current and the next intersection point.
                        (distance_of_segmens(poly, intrsctn->iSegment, iSegNext, true) <
                         distance_of_segmens(poly, intrsctn->iSegment, iSegNext, false)) :
                        (vert_seg_dir_valid_mask == DIR_FORWARD);
                    // Skip this perimeter line?
                    bool skip = params.dont_connect;
                    if (! skip && link_max_length > 0) {
                        coordf_t link_length = measure_perimeter_segment_on_vertical_line_length(
                            poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, iNext, dir_forward);
                        skip = link_length > link_max_length;
                    }
                    polyline_current->points.push_back(intrsctn->pos());
                    if (skip) {
                        // Just skip the connecting contour and start a new path.
                        polylines_out.push_back(Polyline()); 
                        polyline_current = &polylines_out.back();
                        polyline_current->points.push_back(seg.intersections[iNext].pos());
                    } else {
                        // Consume the connecting contour and the next segment.
                        emit_perimeter_segment_on_vertical_line(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, iNext, *polyline_current, dir_forward);
                    }
                    // Mark both the left and right connecting segment as consumed, because one cannot go to this intersection point as it has been consumed.
                    // If there are any outer intersection points skipped (bypassed) by the contour,
                    // mark them as processed.
                    if (going_up) {
                        for (int i = (int)i_intersection; i < iAbove; ++ i)
                            seg.intersections[i].consumed_vertical_up = true;
                    } else {
                        for (int i = iBelow; i < (int)i_intersection; ++ i)
                            seg.intersections[i].consumed_vertical_up = true;
                    }
//                    seg.intersections[going_up ? i_intersection : i_intersection - 1].consumed_vertical_up = true;
                    intrsctn->consumed_perimeter_right = true;
                    i_intersection = iNext;
                    if (going_up)
                        ++ intrsctn;
                    else
                        -- intrsctn;
                    intrsctn->consumed_perimeter_right = true;
                    continue;
                }
            }
        dont_connect: 
            // No way to continue the current polyline. Take the rest of the line up to the outer contour.
            // This will finish the polyline, starting another polyline at a new point.
            if (going_up)
                ++ intrsctn;
            else
                -- intrsctn;
        }

        // Finish the current vertical line,
        // reset the current vertical line to pick a new starting point in the next round.
        assert(intrsctn->is_outer());
        assert(intrsctn->is_high() == going_up);
        pointLast = intrsctn->pos();
        polyline_current->points.push_back(pointLast);
        // Handle duplicate points and zero length segments.
        polyline_current->remove_duplicate_points();
        assert(! polyline_current->has_duplicate_points());
        // Handle nearly zero length edges.
        if (polyline_current->points.size() <= 1 ||
            (polyline_current->points.size() == 2 &&
                std::abs(polyline_current->points.front()(0) - polyline_current->points.back()(0)) < SCALED_EPSILON &&
                std::abs(polyline_current->points.front()(1) - polyline_current->points.back()(1)) < SCALED_EPSILON))
            polylines_out.pop_back();
        intrsctn = NULL;
        i_intersection = -1;
        polyline_current = NULL;
    }

#ifdef SLIC3R_DEBUG
    {
        static int iRun = 0;
        BoundingBox bbox_svg = poly_with_offset.bounding_box_outer();
        {
            ::Slic3r::SVG svg(debug_out_path("FillRectilinear2-final-%03d.svg", iRun), bbox_svg); // , scale_(1.));
            poly_with_offset.export_to_svg(svg);
            for (size_t i = n_polylines_out_initial; i < polylines_out.size(); ++ i)
                svg.draw(polylines_out[i].lines(), "black");
        }
        // Paint a picture per polyline. This makes it easier to discover the order of the polylines and their overlap.
        for (size_t i_polyline = n_polylines_out_initial; i_polyline < polylines_out.size(); ++ i_polyline) {
            ::Slic3r::SVG svg(debug_out_path("FillRectilinear2-final-%03d-%03d.svg", iRun, i_polyline), bbox_svg); // , scale_(1.));
            svg.draw(polylines_out[i_polyline].lines(), "black");
        }
    }
#endif /* SLIC3R_DEBUG */

    // paths must be rotated back
    for (Polylines::iterator it = polylines_out.begin() + n_polylines_out_initial; it != polylines_out.end(); ++ it) {
        // No need to translate, the absolute position is irrelevant.
        // it->translate(- rotate_vector.second(0), - rotate_vector.second(1));
        assert(! it->has_duplicate_points());
        //it->rotate(rotate_vector.first);
        //FIXME rather simplify the paths to avoid very short edges?
        //assert(! it->has_duplicate_points());
        it->remove_duplicate_points();
    }

#ifdef SLIC3R_DEBUG
    // Verify, that there are no duplicate points in the sequence.
    for (Polyline &polyline : polylines_out)
        assert(! polyline.has_duplicate_points());
#endif /* SLIC3R_DEBUG */

    return true;
}

}; // namespace FillRectilinear3_Internal

bool FillRectilinear3::fill_surface_by_lines(const Surface *surface, const FillParams &params, std::vector<FillDirParams> &fill_dir_params, Polylines &polylines_out)
{
    assert(params.density > 0.0001f && params.density <= 1.f);

    const float INFILL_OVERLAP_OVER_SPACING = 0.45f;
    assert(INFILL_OVERLAP_OVER_SPACING > 0 && INFILL_OVERLAP_OVER_SPACING < 0.5f);

    // On the polygons of poly_with_offset, the infill lines will be connected.
    FillRectilinear3_Internal::ExPolygonWithOffset poly_with_offset(
        surface->expolygon,
        float(scale_(- (0.5 - INFILL_OVERLAP_OVER_SPACING) * this->spacing)),
        float(scale_(- 0.5 * this->spacing)));
    if (poly_with_offset.n_contours_inner == 0) {
        // Not a single infill line fits.
        //FIXME maybe one shall trigger the gap fill here?
        return true;
    }

    // Rotate polygons so that we can work with vertical lines here
    std::pair<float, Point> rotate_vector = this->_infill_direction(surface);
    std::vector<FillRectilinear3_Internal::InfillHatchingSingleDirection> hatching(fill_dir_params.size(), FillRectilinear3_Internal::InfillHatchingSingleDirection());
    for (size_t i = 0; i < hatching.size(); ++ i)
        if (! FillRectilinear3_Internal::prepare_infill_hatching_segments(poly_with_offset, params, fill_dir_params[i], rotate_vector, hatching[i]))
            return false;

    for (size_t i = 0; i < hatching.size(); ++ i)
        if (! FillRectilinear3_Internal::fill_hatching_segments_legacy(
                poly_with_offset,
                params,
                this->link_max_length,
                hatching[i],
                polylines_out))
            return false;

    return true;
}

Polylines FillRectilinear3::fill_surface(const Surface *surface, const FillParams &params)
{
    Polylines polylines_out;
    std::vector<FillDirParams> fill_dir_params;
    fill_dir_params.emplace_back(FillDirParams(this->spacing, 0.f));
    if (! fill_surface_by_lines(surface, params, fill_dir_params, polylines_out))
        printf("FillRectilinear3::fill_surface() failed to fill a region.\n");
    if (params.full_infill() && ! params.dont_adjust)
        // Return back the adjusted spacing.
        this->spacing = fill_dir_params.front().spacing;
    return polylines_out;
}

Polylines FillGrid3::fill_surface(const Surface *surface, const FillParams &params)
{
    // Each linear fill covers half of the target coverage.
    FillParams params2 = params;
    params2.density *= 0.5f;
    Polylines polylines_out;
    std::vector<FillDirParams> fill_dir_params;
    fill_dir_params.emplace_back(FillDirParams(this->spacing, 0.f));
    fill_dir_params.emplace_back(FillDirParams(this->spacing, float(M_PI / 2.)));
    if (! fill_surface_by_lines(surface, params2, fill_dir_params, polylines_out))
        printf("FillGrid3::fill_surface() failed to fill a region.\n");
    return polylines_out;
}

Polylines FillTriangles3::fill_surface(const Surface *surface, const FillParams &params)
{
    // Each linear fill covers 1/3 of the target coverage.
    FillParams params2 = params;
    params2.density *= 0.333333333f;
    Polylines polylines_out;
    std::vector<FillDirParams> fill_dir_params;
    fill_dir_params.emplace_back(FillDirParams(this->spacing, 0.));
    fill_dir_params.emplace_back(FillDirParams(this->spacing, M_PI / 3.));
    fill_dir_params.emplace_back(FillDirParams(this->spacing, 2. * M_PI / 3.));
    if (! fill_surface_by_lines(surface, params2, fill_dir_params, polylines_out))
        printf("FillTriangles3::fill_surface() failed to fill a region.\n");
    return polylines_out;
}

Polylines FillStars3::fill_surface(const Surface *surface, const FillParams &params)
{
    // Each linear fill covers 1/3 of the target coverage.
    FillParams params2 = params;
    params2.density *= 0.333333333f;
    Polylines polylines_out;
    std::vector<FillDirParams> fill_dir_params;
    fill_dir_params.emplace_back(FillDirParams(this->spacing, 0.));
    fill_dir_params.emplace_back(FillDirParams(this->spacing, M_PI / 3.));
    fill_dir_params.emplace_back(FillDirParams(this->spacing, 2. * M_PI / 3., 0.5 * this->spacing / params2.density));
    if (! fill_surface_by_lines(surface, params2, fill_dir_params, polylines_out))
        printf("FillStars3::fill_surface() failed to fill a region.\n");
    return polylines_out;
}

Polylines FillCubic3::fill_surface(const Surface *surface, const FillParams &params)
{
    // Each linear fill covers 1/3 of the target coverage.
    FillParams params2 = params;
    params2.density *= 0.333333333f;
    Polylines polylines_out;
    std::vector<FillDirParams> fill_dir_params;
    coordf_t dx = sqrt(0.5) * z;
    fill_dir_params.emplace_back(FillDirParams(this->spacing, 0.,             dx));
    fill_dir_params.emplace_back(FillDirParams(this->spacing, M_PI / 3.,     -dx));
    fill_dir_params.emplace_back(FillDirParams(this->spacing, 2. * M_PI / 3., dx));
    if (! fill_surface_by_lines(surface, params2, fill_dir_params, polylines_out))
        printf("FillCubic3::fill_surface() failed to fill a region.\n");
    return polylines_out;
}

} // namespace Slic3r