Welcome to mirror list, hosted at ThFree Co, Russian Federation.

github.com/prusa3d/PrusaSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'src/libslic3r/Point.hpp')
-rw-r--r--src/libslic3r/Point.hpp1134
1 files changed, 569 insertions, 565 deletions
diff --git a/src/libslic3r/Point.hpp b/src/libslic3r/Point.hpp
index 84152ee9c..ec071673b 100644
--- a/src/libslic3r/Point.hpp
+++ b/src/libslic3r/Point.hpp
@@ -1,565 +1,569 @@
-#ifndef slic3r_Point_hpp_
-#define slic3r_Point_hpp_
-
-#include "libslic3r.h"
-#include <cstddef>
-#include <vector>
-#include <cmath>
-#include <string>
-#include <sstream>
-#include <unordered_map>
-
-#include <Eigen/Geometry>
-
-#include "LocalesUtils.hpp"
-
-namespace Slic3r {
-
-class BoundingBox;
-class BoundingBoxf;
-class Line;
-class MultiPoint;
-class Point;
-using Vector = Point;
-
-// Base template for eigen derived vectors
-template<int N, int M, class T>
-using Mat = Eigen::Matrix<T, N, M, Eigen::DontAlign, N, M>;
-
-template<int N, class T> using Vec = Mat<N, 1, T>;
-
-template<typename NumberType>
-using DynVec = Eigen::Matrix<NumberType, Eigen::Dynamic, 1>;
-
-// Eigen types, to replace the Slic3r's own types in the future.
-// Vector types with a fixed point coordinate base type.
-using Vec2crd = Eigen::Matrix<coord_t, 2, 1, Eigen::DontAlign>;
-using Vec3crd = Eigen::Matrix<coord_t, 3, 1, Eigen::DontAlign>;
-using Vec2i = Eigen::Matrix<int, 2, 1, Eigen::DontAlign>;
-using Vec3i = Eigen::Matrix<int, 3, 1, Eigen::DontAlign>;
-using Vec4i = Eigen::Matrix<int, 4, 1, Eigen::DontAlign>;
-using Vec2i32 = Eigen::Matrix<int32_t, 2, 1, Eigen::DontAlign>;
-using Vec2i64 = Eigen::Matrix<int64_t, 2, 1, Eigen::DontAlign>;
-using Vec3i32 = Eigen::Matrix<int32_t, 3, 1, Eigen::DontAlign>;
-using Vec3i64 = Eigen::Matrix<int64_t, 3, 1, Eigen::DontAlign>;
-
-// Vector types with a double coordinate base type.
-using Vec2f = Eigen::Matrix<float, 2, 1, Eigen::DontAlign>;
-using Vec3f = Eigen::Matrix<float, 3, 1, Eigen::DontAlign>;
-using Vec2d = Eigen::Matrix<double, 2, 1, Eigen::DontAlign>;
-using Vec3d = Eigen::Matrix<double, 3, 1, Eigen::DontAlign>;
-
-using Points = std::vector<Point>;
-using PointPtrs = std::vector<Point*>;
-using PointConstPtrs = std::vector<const Point*>;
-using Points3 = std::vector<Vec3crd>;
-using Pointfs = std::vector<Vec2d>;
-using Vec2ds = std::vector<Vec2d>;
-using Pointf3s = std::vector<Vec3d>;
-
-using Matrix2f = Eigen::Matrix<float, 2, 2, Eigen::DontAlign>;
-using Matrix2d = Eigen::Matrix<double, 2, 2, Eigen::DontAlign>;
-using Matrix3f = Eigen::Matrix<float, 3, 3, Eigen::DontAlign>;
-using Matrix3d = Eigen::Matrix<double, 3, 3, Eigen::DontAlign>;
-using Matrix4f = Eigen::Matrix<float, 4, 4, Eigen::DontAlign>;
-using Matrix4d = Eigen::Matrix<double, 4, 4, Eigen::DontAlign>;
-
-template<int N, class T>
-using Transform = Eigen::Transform<float, N, Eigen::Affine, Eigen::DontAlign>;
-
-using Transform2f = Eigen::Transform<float, 2, Eigen::Affine, Eigen::DontAlign>;
-using Transform2d = Eigen::Transform<double, 2, Eigen::Affine, Eigen::DontAlign>;
-using Transform3f = Eigen::Transform<float, 3, Eigen::Affine, Eigen::DontAlign>;
-using Transform3d = Eigen::Transform<double, 3, Eigen::Affine, Eigen::DontAlign>;
-
-// I don't know why Eigen::Transform::Identity() return a const object...
-template<int N, class T> Transform<N, T> identity() { return Transform<N, T>::Identity(); }
-inline const auto &identity3f = identity<3, float>;
-inline const auto &identity3d = identity<3, double>;
-
-inline bool operator<(const Vec2d &lhs, const Vec2d &rhs) { return lhs.x() < rhs.x() || (lhs.x() == rhs.x() && lhs.y() < rhs.y()); }
-
-// Cross product of two 2D vectors.
-// None of the vectors may be of int32_t type as the result would overflow.
-template<typename Derived, typename Derived2>
-inline typename Derived::Scalar cross2(const Eigen::MatrixBase<Derived> &v1, const Eigen::MatrixBase<Derived2> &v2)
-{
- static_assert(Derived::IsVectorAtCompileTime && int(Derived::SizeAtCompileTime) == 2, "cross2(): first parameter is not a 2D vector");
- static_assert(Derived2::IsVectorAtCompileTime && int(Derived2::SizeAtCompileTime) == 2, "cross2(): first parameter is not a 2D vector");
- static_assert(! std::is_same<typename Derived::Scalar, int32_t>::value, "cross2(): Scalar type must not be int32_t, otherwise the cross product would overflow.");
- static_assert(std::is_same<typename Derived::Scalar, typename Derived2::Scalar>::value, "cross2(): Scalar types of 1st and 2nd operand must be equal.");
- return v1.x() * v2.y() - v1.y() * v2.x();
-}
-
-// 2D vector perpendicular to the argument.
-template<typename Derived>
-inline Eigen::Matrix<typename Derived::Scalar, 2, 1, Eigen::DontAlign> perp(const Eigen::MatrixBase<Derived> &v)
-{
- static_assert(Derived::IsVectorAtCompileTime && int(Derived::SizeAtCompileTime) == 2, "perp(): parameter is not a 2D vector");
- return { - v.y(), v.x() };
-}
-
-// Angle from v1 to v2, returning double atan2(y, x) normalized to <-PI, PI>.
-template<typename Derived, typename Derived2>
-inline double angle(const Eigen::MatrixBase<Derived> &v1, const Eigen::MatrixBase<Derived2> &v2) {
- static_assert(Derived::IsVectorAtCompileTime && int(Derived::SizeAtCompileTime) == 2, "angle(): first parameter is not a 2D vector");
- static_assert(Derived2::IsVectorAtCompileTime && int(Derived2::SizeAtCompileTime) == 2, "angle(): second parameter is not a 2D vector");
- auto v1d = v1.template cast<double>();
- auto v2d = v2.template cast<double>();
- return atan2(cross2(v1d, v2d), v1d.dot(v2d));
-}
-
-template<class T, int N, int Options>
-Eigen::Matrix<T, 2, 1, Eigen::DontAlign> to_2d(const Eigen::MatrixBase<Eigen::Matrix<T, N, 1, Options>> &ptN) { return { ptN.x(), ptN.y() }; }
-
-template<class T, int Options>
-Eigen::Matrix<T, 3, 1, Eigen::DontAlign> to_3d(const Eigen::MatrixBase<Eigen::Matrix<T, 2, 1, Options>> & pt, const T z) { return { pt.x(), pt.y(), z }; }
-
-inline Vec2d unscale(coord_t x, coord_t y) { return Vec2d(unscale<double>(x), unscale<double>(y)); }
-inline Vec2d unscale(const Vec2crd &pt) { return Vec2d(unscale<double>(pt.x()), unscale<double>(pt.y())); }
-inline Vec2d unscale(const Vec2d &pt) { return Vec2d(unscale<double>(pt.x()), unscale<double>(pt.y())); }
-inline Vec3d unscale(coord_t x, coord_t y, coord_t z) { return Vec3d(unscale<double>(x), unscale<double>(y), unscale<double>(z)); }
-inline Vec3d unscale(const Vec3crd &pt) { return Vec3d(unscale<double>(pt.x()), unscale<double>(pt.y()), unscale<double>(pt.z())); }
-inline Vec3d unscale(const Vec3d &pt) { return Vec3d(unscale<double>(pt.x()), unscale<double>(pt.y()), unscale<double>(pt.z())); }
-
-inline std::string to_string(const Vec2crd &pt) { return std::string("[") + float_to_string_decimal_point(pt.x()) + ", " + float_to_string_decimal_point(pt.y()) + "]"; }
-inline std::string to_string(const Vec2d &pt) { return std::string("[") + float_to_string_decimal_point(pt.x()) + ", " + float_to_string_decimal_point(pt.y()) + "]"; }
-inline std::string to_string(const Vec3crd &pt) { return std::string("[") + float_to_string_decimal_point(pt.x()) + ", " + float_to_string_decimal_point(pt.y()) + ", " + float_to_string_decimal_point(pt.z()) + "]"; }
-inline std::string to_string(const Vec3d &pt) { return std::string("[") + float_to_string_decimal_point(pt.x()) + ", " + float_to_string_decimal_point(pt.y()) + ", " + float_to_string_decimal_point(pt.z()) + "]"; }
-
-std::vector<Vec3f> transform(const std::vector<Vec3f>& points, const Transform3f& t);
-Pointf3s transform(const Pointf3s& points, const Transform3d& t);
-
-template<int N, class T> using Vec = Eigen::Matrix<T, N, 1, Eigen::DontAlign, N, 1>;
-
-class Point : public Vec2crd
-{
-public:
- using coord_type = coord_t;
-
- Point() : Vec2crd(0, 0) {}
- Point(int32_t x, int32_t y) : Vec2crd(coord_t(x), coord_t(y)) {}
- Point(int64_t x, int64_t y) : Vec2crd(coord_t(x), coord_t(y)) {}
- Point(double x, double y) : Vec2crd(coord_t(lrint(x)), coord_t(lrint(y))) {}
- Point(const Point &rhs) { *this = rhs; }
- explicit Point(const Vec2d& rhs) : Vec2crd(coord_t(lrint(rhs.x())), coord_t(lrint(rhs.y()))) {}
- // This constructor allows you to construct Point from Eigen expressions
- template<typename OtherDerived>
- Point(const Eigen::MatrixBase<OtherDerived> &other) : Vec2crd(other) {}
- static Point new_scale(coordf_t x, coordf_t y) { return Point(coord_t(scale_(x)), coord_t(scale_(y))); }
- static Point new_scale(const Vec2d &v) { return Point(coord_t(scale_(v.x())), coord_t(scale_(v.y()))); }
- static Point new_scale(const Vec2f &v) { return Point(coord_t(scale_(v.x())), coord_t(scale_(v.y()))); }
-
- // This method allows you to assign Eigen expressions to MyVectorType
- template<typename OtherDerived>
- Point& operator=(const Eigen::MatrixBase<OtherDerived> &other)
- {
- this->Vec2crd::operator=(other);
- return *this;
- }
-
- Point& operator+=(const Point& rhs) { this->x() += rhs.x(); this->y() += rhs.y(); return *this; }
- Point& operator-=(const Point& rhs) { this->x() -= rhs.x(); this->y() -= rhs.y(); return *this; }
- Point& operator*=(const double &rhs) { this->x() = coord_t(this->x() * rhs); this->y() = coord_t(this->y() * rhs); return *this; }
- Point operator*(const double &rhs) { return Point(this->x() * rhs, this->y() * rhs); }
-
- void rotate(double angle) { this->rotate(std::cos(angle), std::sin(angle)); }
- void rotate(double cos_a, double sin_a) {
- double cur_x = (double)this->x();
- double cur_y = (double)this->y();
- this->x() = (coord_t)round(cos_a * cur_x - sin_a * cur_y);
- this->y() = (coord_t)round(cos_a * cur_y + sin_a * cur_x);
- }
-
- void rotate(double angle, const Point &center);
- Point rotated(double angle) const { Point res(*this); res.rotate(angle); return res; }
- Point rotated(double cos_a, double sin_a) const { Point res(*this); res.rotate(cos_a, sin_a); return res; }
- Point rotated(double angle, const Point &center) const { Point res(*this); res.rotate(angle, center); return res; }
- int nearest_point_index(const Points &points) const;
- int nearest_point_index(const PointConstPtrs &points) const;
- int nearest_point_index(const PointPtrs &points) const;
- bool nearest_point(const Points &points, Point* point) const;
- Point projection_onto(const MultiPoint &poly) const;
- Point projection_onto(const Line &line) const;
-};
-
-inline bool operator<(const Point &l, const Point &r)
-{
- return l.x() < r.x() || (l.x() == r.x() && l.y() < r.y());
-}
-
-inline Point operator* (const Point& l, const double &r)
-{
- return {coord_t(l.x() * r), coord_t(l.y() * r)};
-}
-
-inline bool is_approx(const Point &p1, const Point &p2, coord_t epsilon = coord_t(SCALED_EPSILON))
-{
- Point d = (p2 - p1).cwiseAbs();
- return d.x() < epsilon && d.y() < epsilon;
-}
-
-inline bool is_approx(const Vec2f &p1, const Vec2f &p2, float epsilon = float(EPSILON))
-{
- Vec2f d = (p2 - p1).cwiseAbs();
- return d.x() < epsilon && d.y() < epsilon;
-}
-
-inline bool is_approx(const Vec2d &p1, const Vec2d &p2, double epsilon = EPSILON)
-{
- Vec2d d = (p2 - p1).cwiseAbs();
- return d.x() < epsilon && d.y() < epsilon;
-}
-
-inline bool is_approx(const Vec3f &p1, const Vec3f &p2, float epsilon = float(EPSILON))
-{
- Vec3f d = (p2 - p1).cwiseAbs();
- return d.x() < epsilon && d.y() < epsilon && d.z() < epsilon;
-}
-
-inline bool is_approx(const Vec3d &p1, const Vec3d &p2, double epsilon = EPSILON)
-{
- Vec3d d = (p2 - p1).cwiseAbs();
- return d.x() < epsilon && d.y() < epsilon && d.z() < epsilon;
-}
-
-inline Point lerp(const Point &a, const Point &b, double t)
-{
- assert((t >= -EPSILON) && (t <= 1. + EPSILON));
- return ((1. - t) * a.cast<double>() + t * b.cast<double>()).cast<coord_t>();
-}
-
-BoundingBox get_extents(const Points &pts);
-BoundingBox get_extents(const std::vector<Points> &pts);
-BoundingBoxf get_extents(const std::vector<Vec2d> &pts);
-
-// Test for duplicate points in a vector of points.
-// The points are copied, sorted and checked for duplicates globally.
-bool has_duplicate_points(std::vector<Point> &&pts);
-inline bool has_duplicate_points(const std::vector<Point> &pts)
-{
- std::vector<Point> cpy = pts;
- return has_duplicate_points(std::move(cpy));
-}
-
-// Test for duplicate points in a vector of points.
-// Only successive points are checked for equality.
-inline bool has_duplicate_successive_points(const std::vector<Point> &pts)
-{
- for (size_t i = 1; i < pts.size(); ++ i)
- if (pts[i - 1] == pts[i])
- return true;
- return false;
-}
-
-// Test for duplicate points in a vector of points.
-// Only successive points are checked for equality. Additionally, first and last points are compared for equality.
-inline bool has_duplicate_successive_points_closed(const std::vector<Point> &pts)
-{
- return has_duplicate_successive_points(pts) || (pts.size() >= 2 && pts.front() == pts.back());
-}
-
-namespace int128 {
- // Exact orientation predicate,
- // returns +1: CCW, 0: collinear, -1: CW.
- int orient(const Vec2crd &p1, const Vec2crd &p2, const Vec2crd &p3);
- // Exact orientation predicate,
- // returns +1: CCW, 0: collinear, -1: CW.
- int cross(const Vec2crd &v1, const Vec2crd &v2);
-}
-
-// To be used by std::unordered_map, std::unordered_multimap and friends.
-struct PointHash {
- size_t operator()(const Vec2crd &pt) const {
- return coord_t((89 * 31 + int64_t(pt.x())) * 31 + pt.y());
- }
-};
-
-// A generic class to search for a closest Point in a given radius.
-// It uses std::unordered_multimap to implement an efficient 2D spatial hashing.
-// The PointAccessor has to return const Point*.
-// If a nullptr is returned, it is ignored by the query.
-template<typename ValueType, typename PointAccessor> class ClosestPointInRadiusLookup
-{
-public:
- ClosestPointInRadiusLookup(coord_t search_radius, PointAccessor point_accessor = PointAccessor()) :
- m_search_radius(search_radius), m_point_accessor(point_accessor), m_grid_log2(0)
- {
- // Resolution of a grid, twice the search radius + some epsilon.
- coord_t gridres = 2 * m_search_radius + 4;
- m_grid_resolution = gridres;
- assert(m_grid_resolution > 0);
- assert(m_grid_resolution < (coord_t(1) << 30));
- // Compute m_grid_log2 = log2(m_grid_resolution)
- if (m_grid_resolution > 32767) {
- m_grid_resolution >>= 16;
- m_grid_log2 += 16;
- }
- if (m_grid_resolution > 127) {
- m_grid_resolution >>= 8;
- m_grid_log2 += 8;
- }
- if (m_grid_resolution > 7) {
- m_grid_resolution >>= 4;
- m_grid_log2 += 4;
- }
- if (m_grid_resolution > 1) {
- m_grid_resolution >>= 2;
- m_grid_log2 += 2;
- }
- if (m_grid_resolution > 0)
- ++ m_grid_log2;
- m_grid_resolution = 1 << m_grid_log2;
- assert(m_grid_resolution >= gridres);
- assert(gridres > m_grid_resolution / 2);
- }
-
- void insert(const ValueType &value) {
- const Vec2crd *pt = m_point_accessor(value);
- if (pt != nullptr)
- m_map.emplace(std::make_pair(Vec2crd(pt->x()>>m_grid_log2, pt->y()>>m_grid_log2), value));
- }
-
- void insert(ValueType &&value) {
- const Vec2crd *pt = m_point_accessor(value);
- if (pt != nullptr)
- m_map.emplace(std::make_pair(Vec2crd(pt->x()>>m_grid_log2, pt->y()>>m_grid_log2), std::move(value)));
- }
-
- // Erase a data point equal to value. (ValueType has to declare the operator==).
- // Returns true if the data point equal to value was found and removed.
- bool erase(const ValueType &value) {
- const Point *pt = m_point_accessor(value);
- if (pt != nullptr) {
- // Range of fragment starts around grid_corner, close to pt.
- auto range = m_map.equal_range(Point((*pt).x()>>m_grid_log2, (*pt).y()>>m_grid_log2));
- // Remove the first item.
- for (auto it = range.first; it != range.second; ++ it) {
- if (it->second == value) {
- m_map.erase(it);
- return true;
- }
- }
- }
- return false;
- }
-
- // Return a pair of <ValueType*, distance_squared>
- std::pair<const ValueType*, double> find(const Vec2crd &pt) {
- // Iterate over 4 closest grid cells around pt,
- // find the closest start point inside these cells to pt.
- const ValueType *value_min = nullptr;
- double dist_min = std::numeric_limits<double>::max();
- // Round pt to a closest grid_cell corner.
- Vec2crd grid_corner((pt.x()+(m_grid_resolution>>1))>>m_grid_log2, (pt.y()+(m_grid_resolution>>1))>>m_grid_log2);
- // For four neighbors of grid_corner:
- for (coord_t neighbor_y = -1; neighbor_y < 1; ++ neighbor_y) {
- for (coord_t neighbor_x = -1; neighbor_x < 1; ++ neighbor_x) {
- // Range of fragment starts around grid_corner, close to pt.
- auto range = m_map.equal_range(Vec2crd(grid_corner.x() + neighbor_x, grid_corner.y() + neighbor_y));
- // Find the map entry closest to pt.
- for (auto it = range.first; it != range.second; ++it) {
- const ValueType &value = it->second;
- const Vec2crd *pt2 = m_point_accessor(value);
- if (pt2 != nullptr) {
- const double d2 = (pt - *pt2).cast<double>().squaredNorm();
- if (d2 < dist_min) {
- dist_min = d2;
- value_min = &value;
- }
- }
- }
- }
- }
- return (value_min != nullptr && dist_min < coordf_t(m_search_radius) * coordf_t(m_search_radius)) ?
- std::make_pair(value_min, dist_min) :
- std::make_pair(nullptr, std::numeric_limits<double>::max());
- }
-
- // Returns all pairs of values and squared distances.
- std::vector<std::pair<const ValueType*, double>> find_all(const Vec2crd &pt) {
- // Iterate over 4 closest grid cells around pt,
- // Round pt to a closest grid_cell corner.
- Vec2crd grid_corner((pt.x()+(m_grid_resolution>>1))>>m_grid_log2, (pt.y()+(m_grid_resolution>>1))>>m_grid_log2);
- // For four neighbors of grid_corner:
- std::vector<std::pair<const ValueType*, double>> out;
- const double r2 = double(m_search_radius) * m_search_radius;
- for (coord_t neighbor_y = -1; neighbor_y < 1; ++ neighbor_y) {
- for (coord_t neighbor_x = -1; neighbor_x < 1; ++ neighbor_x) {
- // Range of fragment starts around grid_corner, close to pt.
- auto range = m_map.equal_range(Vec2crd(grid_corner.x() + neighbor_x, grid_corner.y() + neighbor_y));
- // Find the map entry closest to pt.
- for (auto it = range.first; it != range.second; ++it) {
- const ValueType &value = it->second;
- const Vec2crd *pt2 = m_point_accessor(value);
- if (pt2 != nullptr) {
- const double d2 = (pt - *pt2).cast<double>().squaredNorm();
- if (d2 <= r2)
- out.emplace_back(&value, d2);
- }
- }
- }
- }
- return out;
- }
-
-private:
- using map_type = typename std::unordered_multimap<Vec2crd, ValueType, PointHash>;
- PointAccessor m_point_accessor;
- map_type m_map;
- coord_t m_search_radius;
- coord_t m_grid_resolution;
- coord_t m_grid_log2;
-};
-
-std::ostream& operator<<(std::ostream &stm, const Vec2d &pointf);
-
-
-// /////////////////////////////////////////////////////////////////////////////
-// Type safe conversions to and from scaled and unscaled coordinates
-// /////////////////////////////////////////////////////////////////////////////
-
-// Semantics are the following:
-// Upscaling (scaled()): only from floating point types (or Vec) to either
-// floating point or integer 'scaled coord' coordinates.
-// Downscaling (unscaled()): from arithmetic (or Vec) to floating point only
-
-// Conversion definition from unscaled to floating point scaled
-template<class Tout,
- class Tin,
- class = FloatingOnly<Tin>>
-inline constexpr FloatingOnly<Tout> scaled(const Tin &v) noexcept
-{
- return Tout(v / Tin(SCALING_FACTOR));
-}
-
-// Conversion definition from unscaled to integer 'scaled coord'.
-// TODO: is the rounding necessary? Here it is commented out to show that
-// it can be different for integers but it does not have to be. Using
-// std::round means loosing noexcept and constexpr modifiers
-template<class Tout = coord_t, class Tin, class = FloatingOnly<Tin>>
-inline constexpr ScaledCoordOnly<Tout> scaled(const Tin &v) noexcept
-{
- //return static_cast<Tout>(std::round(v / SCALING_FACTOR));
- return Tout(v / Tin(SCALING_FACTOR));
-}
-
-// Conversion for Eigen vectors (N dimensional points)
-template<class Tout = coord_t,
- class Tin,
- int N,
- class = FloatingOnly<Tin>,
- int...EigenArgs>
-inline Eigen::Matrix<ArithmeticOnly<Tout>, N, EigenArgs...>
-scaled(const Eigen::Matrix<Tin, N, EigenArgs...> &v)
-{
- return (v / SCALING_FACTOR).template cast<Tout>();
-}
-
-// Conversion from arithmetic scaled type to floating point unscaled
-template<class Tout = double,
- class Tin,
- class = ArithmeticOnly<Tin>,
- class = FloatingOnly<Tout>>
-inline constexpr Tout unscaled(const Tin &v) noexcept
-{
- return Tout(v) * Tout(SCALING_FACTOR);
-}
-
-// Unscaling for Eigen vectors. Input base type can be arithmetic, output base
-// type can only be floating point.
-template<class Tout = double,
- class Tin,
- int N,
- class = ArithmeticOnly<Tin>,
- class = FloatingOnly<Tout>,
- int...EigenArgs>
-inline constexpr Eigen::Matrix<Tout, N, EigenArgs...>
-unscaled(const Eigen::Matrix<Tin, N, EigenArgs...> &v) noexcept
-{
- return v.template cast<Tout>() * Tout(SCALING_FACTOR);
-}
-
-// Align a coordinate to a grid. The coordinate may be negative,
-// the aligned value will never be bigger than the original one.
-inline coord_t align_to_grid(const coord_t coord, const coord_t spacing) {
- // Current C++ standard defines the result of integer division to be rounded to zero,
- // for both positive and negative numbers. Here we want to round down for negative
- // numbers as well.
- coord_t aligned = (coord < 0) ?
- ((coord - spacing + 1) / spacing) * spacing :
- (coord / spacing) * spacing;
- assert(aligned <= coord);
- return aligned;
-}
-inline Point align_to_grid(Point coord, Point spacing)
- { return Point(align_to_grid(coord.x(), spacing.x()), align_to_grid(coord.y(), spacing.y())); }
-inline coord_t align_to_grid(coord_t coord, coord_t spacing, coord_t base)
- { return base + align_to_grid(coord - base, spacing); }
-inline Point align_to_grid(Point coord, Point spacing, Point base)
- { return Point(align_to_grid(coord.x(), spacing.x(), base.x()), align_to_grid(coord.y(), spacing.y(), base.y())); }
-
-} // namespace Slic3r
-
-// start Boost
-#include <boost/version.hpp>
-#include <boost/polygon/polygon.hpp>
-namespace boost { namespace polygon {
- template <>
- struct geometry_concept<Slic3r::Point> { using type = point_concept; };
-
- template <>
- struct point_traits<Slic3r::Point> {
- using coordinate_type = coord_t;
-
- static inline coordinate_type get(const Slic3r::Point& point, orientation_2d orient) {
- return static_cast<coordinate_type>(point((orient == HORIZONTAL) ? 0 : 1));
- }
- };
-
- template <>
- struct point_mutable_traits<Slic3r::Point> {
- using coordinate_type = coord_t;
- static inline void set(Slic3r::Point& point, orientation_2d orient, coord_t value) {
- point((orient == HORIZONTAL) ? 0 : 1) = value;
- }
- static inline Slic3r::Point construct(coord_t x_value, coord_t y_value) {
- return Slic3r::Point(x_value, y_value);
- }
- };
-} }
-// end Boost
-
-// Serialization through the Cereal library
-namespace cereal {
-// template<class Archive> void serialize(Archive& archive, Slic3r::Vec2crd &v) { archive(v.x(), v.y()); }
-// template<class Archive> void serialize(Archive& archive, Slic3r::Vec3crd &v) { archive(v.x(), v.y(), v.z()); }
- template<class Archive> void serialize(Archive& archive, Slic3r::Vec2i &v) { archive(v.x(), v.y()); }
- template<class Archive> void serialize(Archive& archive, Slic3r::Vec3i &v) { archive(v.x(), v.y(), v.z()); }
-// template<class Archive> void serialize(Archive& archive, Slic3r::Vec2i64 &v) { archive(v.x(), v.y()); }
-// template<class Archive> void serialize(Archive& archive, Slic3r::Vec3i64 &v) { archive(v.x(), v.y(), v.z()); }
- template<class Archive> void serialize(Archive& archive, Slic3r::Vec2f &v) { archive(v.x(), v.y()); }
- template<class Archive> void serialize(Archive& archive, Slic3r::Vec3f &v) { archive(v.x(), v.y(), v.z()); }
- template<class Archive> void serialize(Archive& archive, Slic3r::Vec2d &v) { archive(v.x(), v.y()); }
- template<class Archive> void serialize(Archive& archive, Slic3r::Vec3d &v) { archive(v.x(), v.y(), v.z()); }
-
- template<class Archive> void load(Archive& archive, Slic3r::Matrix2f &m) { archive.loadBinary((char*)m.data(), sizeof(float) * 4); }
- template<class Archive> void save(Archive& archive, Slic3r::Matrix2f &m) { archive.saveBinary((char*)m.data(), sizeof(float) * 4); }
-}
-
-// To be able to use Vec<> and Mat<> in range based for loops:
-namespace Eigen {
-template<class T, int N, int M>
-T* begin(Slic3r::Mat<N, M, T> &mat) { return mat.data(); }
-
-template<class T, int N, int M>
-T* end(Slic3r::Mat<N, M, T> &mat) { return mat.data() + N * M; }
-
-template<class T, int N, int M>
-const T* begin(const Slic3r::Mat<N, M, T> &mat) { return mat.data(); }
-
-template<class T, int N, int M>
-const T* end(const Slic3r::Mat<N, M, T> &mat) { return mat.data() + N * M; }
-} // namespace Eigen
-
-#endif
+#ifndef slic3r_Point_hpp_
+#define slic3r_Point_hpp_
+
+#include "libslic3r.h"
+#include <cstddef>
+#include <vector>
+#include <cmath>
+#include <string>
+#include <sstream>
+#include <unordered_map>
+
+#include <Eigen/Geometry>
+
+#include "LocalesUtils.hpp"
+
+namespace Slic3r {
+
+class BoundingBox;
+class BoundingBoxf;
+class Line;
+class MultiPoint;
+class Point;
+using Vector = Point;
+
+// Base template for eigen derived vectors
+template<int N, int M, class T>
+using Mat = Eigen::Matrix<T, N, M, Eigen::DontAlign, N, M>;
+
+template<int N, class T> using Vec = Mat<N, 1, T>;
+
+template<typename NumberType>
+using DynVec = Eigen::Matrix<NumberType, Eigen::Dynamic, 1>;
+
+// Eigen types, to replace the Slic3r's own types in the future.
+// Vector types with a fixed point coordinate base type.
+using Vec2crd = Eigen::Matrix<coord_t, 2, 1, Eigen::DontAlign>;
+using Vec3crd = Eigen::Matrix<coord_t, 3, 1, Eigen::DontAlign>;
+using Vec2i = Eigen::Matrix<int, 2, 1, Eigen::DontAlign>;
+using Vec3i = Eigen::Matrix<int, 3, 1, Eigen::DontAlign>;
+using Vec4i = Eigen::Matrix<int, 4, 1, Eigen::DontAlign>;
+using Vec2i32 = Eigen::Matrix<int32_t, 2, 1, Eigen::DontAlign>;
+using Vec2i64 = Eigen::Matrix<int64_t, 2, 1, Eigen::DontAlign>;
+using Vec3i32 = Eigen::Matrix<int32_t, 3, 1, Eigen::DontAlign>;
+using Vec3i64 = Eigen::Matrix<int64_t, 3, 1, Eigen::DontAlign>;
+
+// Vector types with a double coordinate base type.
+using Vec2f = Eigen::Matrix<float, 2, 1, Eigen::DontAlign>;
+using Vec3f = Eigen::Matrix<float, 3, 1, Eigen::DontAlign>;
+using Vec2d = Eigen::Matrix<double, 2, 1, Eigen::DontAlign>;
+using Vec3d = Eigen::Matrix<double, 3, 1, Eigen::DontAlign>;
+
+using Points = std::vector<Point>;
+using PointPtrs = std::vector<Point*>;
+using PointConstPtrs = std::vector<const Point*>;
+using Points3 = std::vector<Vec3crd>;
+using Pointfs = std::vector<Vec2d>;
+using Vec2ds = std::vector<Vec2d>;
+using Pointf3s = std::vector<Vec3d>;
+
+using Matrix2f = Eigen::Matrix<float, 2, 2, Eigen::DontAlign>;
+using Matrix2d = Eigen::Matrix<double, 2, 2, Eigen::DontAlign>;
+using Matrix3f = Eigen::Matrix<float, 3, 3, Eigen::DontAlign>;
+using Matrix3d = Eigen::Matrix<double, 3, 3, Eigen::DontAlign>;
+using Matrix4f = Eigen::Matrix<float, 4, 4, Eigen::DontAlign>;
+using Matrix4d = Eigen::Matrix<double, 4, 4, Eigen::DontAlign>;
+
+template<int N, class T>
+using Transform = Eigen::Transform<float, N, Eigen::Affine, Eigen::DontAlign>;
+
+using Transform2f = Eigen::Transform<float, 2, Eigen::Affine, Eigen::DontAlign>;
+using Transform2d = Eigen::Transform<double, 2, Eigen::Affine, Eigen::DontAlign>;
+using Transform3f = Eigen::Transform<float, 3, Eigen::Affine, Eigen::DontAlign>;
+using Transform3d = Eigen::Transform<double, 3, Eigen::Affine, Eigen::DontAlign>;
+
+// I don't know why Eigen::Transform::Identity() return a const object...
+template<int N, class T> Transform<N, T> identity() { return Transform<N, T>::Identity(); }
+inline const auto &identity3f = identity<3, float>;
+inline const auto &identity3d = identity<3, double>;
+
+inline bool operator<(const Vec2d &lhs, const Vec2d &rhs) { return lhs.x() < rhs.x() || (lhs.x() == rhs.x() && lhs.y() < rhs.y()); }
+
+// Cross product of two 2D vectors.
+// None of the vectors may be of int32_t type as the result would overflow.
+template<typename Derived, typename Derived2>
+inline typename Derived::Scalar cross2(const Eigen::MatrixBase<Derived> &v1, const Eigen::MatrixBase<Derived2> &v2)
+{
+ static_assert(Derived::IsVectorAtCompileTime && int(Derived::SizeAtCompileTime) == 2, "cross2(): first parameter is not a 2D vector");
+ static_assert(Derived2::IsVectorAtCompileTime && int(Derived2::SizeAtCompileTime) == 2, "cross2(): first parameter is not a 2D vector");
+ static_assert(! std::is_same<typename Derived::Scalar, int32_t>::value, "cross2(): Scalar type must not be int32_t, otherwise the cross product would overflow.");
+ static_assert(std::is_same<typename Derived::Scalar, typename Derived2::Scalar>::value, "cross2(): Scalar types of 1st and 2nd operand must be equal.");
+ return v1.x() * v2.y() - v1.y() * v2.x();
+}
+
+// 2D vector perpendicular to the argument.
+template<typename Derived>
+inline Eigen::Matrix<typename Derived::Scalar, 2, 1, Eigen::DontAlign> perp(const Eigen::MatrixBase<Derived> &v)
+{
+ static_assert(Derived::IsVectorAtCompileTime && int(Derived::SizeAtCompileTime) == 2, "perp(): parameter is not a 2D vector");
+ return { - v.y(), v.x() };
+}
+
+// Angle from v1 to v2, returning double atan2(y, x) normalized to <-PI, PI>.
+template<typename Derived, typename Derived2>
+inline double angle(const Eigen::MatrixBase<Derived> &v1, const Eigen::MatrixBase<Derived2> &v2) {
+ static_assert(Derived::IsVectorAtCompileTime && int(Derived::SizeAtCompileTime) == 2, "angle(): first parameter is not a 2D vector");
+ static_assert(Derived2::IsVectorAtCompileTime && int(Derived2::SizeAtCompileTime) == 2, "angle(): second parameter is not a 2D vector");
+ auto v1d = v1.template cast<double>();
+ auto v2d = v2.template cast<double>();
+ return atan2(cross2(v1d, v2d), v1d.dot(v2d));
+}
+
+template<class T, int N, int Options>
+Eigen::Matrix<T, 2, 1, Eigen::DontAlign> to_2d(const Eigen::MatrixBase<Eigen::Matrix<T, N, 1, Options>> &ptN) { return { ptN.x(), ptN.y() }; }
+
+template<class T, int Options>
+Eigen::Matrix<T, 3, 1, Eigen::DontAlign> to_3d(const Eigen::MatrixBase<Eigen::Matrix<T, 2, 1, Options>> & pt, const T z) { return { pt.x(), pt.y(), z }; }
+
+inline Vec2d unscale(coord_t x, coord_t y) { return Vec2d(unscale<double>(x), unscale<double>(y)); }
+inline Vec2d unscale(const Vec2crd &pt) { return Vec2d(unscale<double>(pt.x()), unscale<double>(pt.y())); }
+inline Vec2d unscale(const Vec2d &pt) { return Vec2d(unscale<double>(pt.x()), unscale<double>(pt.y())); }
+inline Vec3d unscale(coord_t x, coord_t y, coord_t z) { return Vec3d(unscale<double>(x), unscale<double>(y), unscale<double>(z)); }
+inline Vec3d unscale(const Vec3crd &pt) { return Vec3d(unscale<double>(pt.x()), unscale<double>(pt.y()), unscale<double>(pt.z())); }
+inline Vec3d unscale(const Vec3d &pt) { return Vec3d(unscale<double>(pt.x()), unscale<double>(pt.y()), unscale<double>(pt.z())); }
+
+inline std::string to_string(const Vec2crd &pt) { return std::string("[") + float_to_string_decimal_point(pt.x()) + ", " + float_to_string_decimal_point(pt.y()) + "]"; }
+inline std::string to_string(const Vec2d &pt) { return std::string("[") + float_to_string_decimal_point(pt.x()) + ", " + float_to_string_decimal_point(pt.y()) + "]"; }
+inline std::string to_string(const Vec3crd &pt) { return std::string("[") + float_to_string_decimal_point(pt.x()) + ", " + float_to_string_decimal_point(pt.y()) + ", " + float_to_string_decimal_point(pt.z()) + "]"; }
+inline std::string to_string(const Vec3d &pt) { return std::string("[") + float_to_string_decimal_point(pt.x()) + ", " + float_to_string_decimal_point(pt.y()) + ", " + float_to_string_decimal_point(pt.z()) + "]"; }
+
+std::vector<Vec3f> transform(const std::vector<Vec3f>& points, const Transform3f& t);
+Pointf3s transform(const Pointf3s& points, const Transform3d& t);
+
+template<int N, class T> using Vec = Eigen::Matrix<T, N, 1, Eigen::DontAlign, N, 1>;
+
+class Point : public Vec2crd
+{
+public:
+ using coord_type = coord_t;
+
+ Point() : Vec2crd(0, 0) {}
+ Point(int32_t x, int32_t y) : Vec2crd(coord_t(x), coord_t(y)) {}
+ Point(int64_t x, int64_t y) : Vec2crd(coord_t(x), coord_t(y)) {}
+ Point(double x, double y) : Vec2crd(coord_t(lrint(x)), coord_t(lrint(y))) {}
+ Point(const Point &rhs) { *this = rhs; }
+ explicit Point(const Vec2d& rhs) : Vec2crd(coord_t(lrint(rhs.x())), coord_t(lrint(rhs.y()))) {}
+ // This constructor allows you to construct Point from Eigen expressions
+ template<typename OtherDerived>
+ Point(const Eigen::MatrixBase<OtherDerived> &other) : Vec2crd(other) {}
+ static Point new_scale(coordf_t x, coordf_t y) { return Point(coord_t(scale_(x)), coord_t(scale_(y))); }
+ static Point new_scale(const Vec2d &v) { return Point(coord_t(scale_(v.x())), coord_t(scale_(v.y()))); }
+ static Point new_scale(const Vec2f &v) { return Point(coord_t(scale_(v.x())), coord_t(scale_(v.y()))); }
+
+ // This method allows you to assign Eigen expressions to MyVectorType
+ template<typename OtherDerived>
+ Point& operator=(const Eigen::MatrixBase<OtherDerived> &other)
+ {
+ this->Vec2crd::operator=(other);
+ return *this;
+ }
+
+ Point& operator+=(const Point& rhs) { this->x() += rhs.x(); this->y() += rhs.y(); return *this; }
+ Point& operator-=(const Point& rhs) { this->x() -= rhs.x(); this->y() -= rhs.y(); return *this; }
+ Point& operator*=(const double &rhs) { this->x() = coord_t(this->x() * rhs); this->y() = coord_t(this->y() * rhs); return *this; }
+ Point operator*(const double &rhs) { return Point(this->x() * rhs, this->y() * rhs); }
+
+ void rotate(double angle) { this->rotate(std::cos(angle), std::sin(angle)); }
+ void rotate(double cos_a, double sin_a) {
+ double cur_x = (double)this->x();
+ double cur_y = (double)this->y();
+ this->x() = (coord_t)round(cos_a * cur_x - sin_a * cur_y);
+ this->y() = (coord_t)round(cos_a * cur_y + sin_a * cur_x);
+ }
+
+ void rotate(double angle, const Point &center);
+ Point rotated(double angle) const { Point res(*this); res.rotate(angle); return res; }
+ Point rotated(double cos_a, double sin_a) const { Point res(*this); res.rotate(cos_a, sin_a); return res; }
+ Point rotated(double angle, const Point &center) const { Point res(*this); res.rotate(angle, center); return res; }
+ int nearest_point_index(const Points &points) const;
+ int nearest_point_index(const PointConstPtrs &points) const;
+ int nearest_point_index(const PointPtrs &points) const;
+ bool nearest_point(const Points &points, Point* point) const;
+ Point projection_onto(const MultiPoint &poly) const;
+ Point projection_onto(const Line &line) const;
+};
+
+inline bool operator<(const Point &l, const Point &r)
+{
+ return l.x() < r.x() || (l.x() == r.x() && l.y() < r.y());
+}
+
+inline Point operator* (const Point& l, const double &r)
+{
+ return {coord_t(l.x() * r), coord_t(l.y() * r)};
+}
+
+inline bool is_approx(const Point &p1, const Point &p2, coord_t epsilon = coord_t(SCALED_EPSILON))
+{
+ Point d = (p2 - p1).cwiseAbs();
+ return d.x() < epsilon && d.y() < epsilon;
+}
+
+inline bool is_approx(const Vec2f &p1, const Vec2f &p2, float epsilon = float(EPSILON))
+{
+ Vec2f d = (p2 - p1).cwiseAbs();
+ return d.x() < epsilon && d.y() < epsilon;
+}
+
+inline bool is_approx(const Vec2d &p1, const Vec2d &p2, double epsilon = EPSILON)
+{
+ Vec2d d = (p2 - p1).cwiseAbs();
+ return d.x() < epsilon && d.y() < epsilon;
+}
+
+inline bool is_approx(const Vec3f &p1, const Vec3f &p2, float epsilon = float(EPSILON))
+{
+ Vec3f d = (p2 - p1).cwiseAbs();
+ return d.x() < epsilon && d.y() < epsilon && d.z() < epsilon;
+}
+
+inline bool is_approx(const Vec3d &p1, const Vec3d &p2, double epsilon = EPSILON)
+{
+ Vec3d d = (p2 - p1).cwiseAbs();
+ return d.x() < epsilon && d.y() < epsilon && d.z() < epsilon;
+}
+
+inline Point lerp(const Point &a, const Point &b, double t)
+{
+ assert((t >= -EPSILON) && (t <= 1. + EPSILON));
+ return ((1. - t) * a.cast<double>() + t * b.cast<double>()).cast<coord_t>();
+}
+
+BoundingBox get_extents(const Points &pts);
+BoundingBox get_extents(const std::vector<Points> &pts);
+BoundingBoxf get_extents(const std::vector<Vec2d> &pts);
+
+// Test for duplicate points in a vector of points.
+// The points are copied, sorted and checked for duplicates globally.
+bool has_duplicate_points(std::vector<Point> &&pts);
+inline bool has_duplicate_points(const std::vector<Point> &pts)
+{
+ std::vector<Point> cpy = pts;
+ return has_duplicate_points(std::move(cpy));
+}
+
+// Test for duplicate points in a vector of points.
+// Only successive points are checked for equality.
+inline bool has_duplicate_successive_points(const std::vector<Point> &pts)
+{
+ for (size_t i = 1; i < pts.size(); ++ i)
+ if (pts[i - 1] == pts[i])
+ return true;
+ return false;
+}
+
+// Test for duplicate points in a vector of points.
+// Only successive points are checked for equality. Additionally, first and last points are compared for equality.
+inline bool has_duplicate_successive_points_closed(const std::vector<Point> &pts)
+{
+ return has_duplicate_successive_points(pts) || (pts.size() >= 2 && pts.front() == pts.back());
+}
+
+namespace int128 {
+ // Exact orientation predicate,
+ // returns +1: CCW, 0: collinear, -1: CW.
+ int orient(const Vec2crd &p1, const Vec2crd &p2, const Vec2crd &p3);
+ // Exact orientation predicate,
+ // returns +1: CCW, 0: collinear, -1: CW.
+ int cross(const Vec2crd &v1, const Vec2crd &v2);
+}
+
+// To be used by std::unordered_map, std::unordered_multimap and friends.
+struct PointHash {
+ size_t operator()(const Vec2crd &pt) const {
+ return coord_t((89 * 31 + int64_t(pt.x())) * 31 + pt.y());
+ }
+};
+
+// A generic class to search for a closest Point in a given radius.
+// It uses std::unordered_multimap to implement an efficient 2D spatial hashing.
+// The PointAccessor has to return const Point*.
+// If a nullptr is returned, it is ignored by the query.
+template<typename ValueType, typename PointAccessor> class ClosestPointInRadiusLookup
+{
+public:
+ ClosestPointInRadiusLookup(coord_t search_radius, PointAccessor point_accessor = PointAccessor()) :
+ m_search_radius(search_radius), m_point_accessor(point_accessor), m_grid_log2(0)
+ {
+ // Resolution of a grid, twice the search radius + some epsilon.
+ coord_t gridres = 2 * m_search_radius + 4;
+ m_grid_resolution = gridres;
+ assert(m_grid_resolution > 0);
+ assert(m_grid_resolution < (coord_t(1) << 30));
+ // Compute m_grid_log2 = log2(m_grid_resolution)
+ if (m_grid_resolution > 32767) {
+ m_grid_resolution >>= 16;
+ m_grid_log2 += 16;
+ }
+ if (m_grid_resolution > 127) {
+ m_grid_resolution >>= 8;
+ m_grid_log2 += 8;
+ }
+ if (m_grid_resolution > 7) {
+ m_grid_resolution >>= 4;
+ m_grid_log2 += 4;
+ }
+ if (m_grid_resolution > 1) {
+ m_grid_resolution >>= 2;
+ m_grid_log2 += 2;
+ }
+ if (m_grid_resolution > 0)
+ ++ m_grid_log2;
+ m_grid_resolution = 1 << m_grid_log2;
+ assert(m_grid_resolution >= gridres);
+ assert(gridres > m_grid_resolution / 2);
+ }
+
+ void insert(const ValueType &value) {
+ const Vec2crd *pt = m_point_accessor(value);
+ if (pt != nullptr)
+ m_map.emplace(std::make_pair(Vec2crd(pt->x()>>m_grid_log2, pt->y()>>m_grid_log2), value));
+ }
+
+ void insert(ValueType &&value) {
+ const Vec2crd *pt = m_point_accessor(value);
+ if (pt != nullptr)
+ m_map.emplace(std::make_pair(Vec2crd(pt->x()>>m_grid_log2, pt->y()>>m_grid_log2), std::move(value)));
+ }
+
+ // Erase a data point equal to value. (ValueType has to declare the operator==).
+ // Returns true if the data point equal to value was found and removed.
+ bool erase(const ValueType &value) {
+ const Point *pt = m_point_accessor(value);
+ if (pt != nullptr) {
+ // Range of fragment starts around grid_corner, close to pt.
+ auto range = m_map.equal_range(Point((*pt).x()>>m_grid_log2, (*pt).y()>>m_grid_log2));
+ // Remove the first item.
+ for (auto it = range.first; it != range.second; ++ it) {
+ if (it->second == value) {
+ m_map.erase(it);
+ return true;
+ }
+ }
+ }
+ return false;
+ }
+
+ // Return a pair of <ValueType*, distance_squared>
+ std::pair<const ValueType*, double> find(const Vec2crd &pt) {
+ // Iterate over 4 closest grid cells around pt,
+ // find the closest start point inside these cells to pt.
+ const ValueType *value_min = nullptr;
+ double dist_min = std::numeric_limits<double>::max();
+ // Round pt to a closest grid_cell corner.
+ Vec2crd grid_corner((pt.x()+(m_grid_resolution>>1))>>m_grid_log2, (pt.y()+(m_grid_resolution>>1))>>m_grid_log2);
+ // For four neighbors of grid_corner:
+ for (coord_t neighbor_y = -1; neighbor_y < 1; ++ neighbor_y) {
+ for (coord_t neighbor_x = -1; neighbor_x < 1; ++ neighbor_x) {
+ // Range of fragment starts around grid_corner, close to pt.
+ auto range = m_map.equal_range(Vec2crd(grid_corner.x() + neighbor_x, grid_corner.y() + neighbor_y));
+ // Find the map entry closest to pt.
+ for (auto it = range.first; it != range.second; ++it) {
+ const ValueType &value = it->second;
+ const Vec2crd *pt2 = m_point_accessor(value);
+ if (pt2 != nullptr) {
+ const double d2 = (pt - *pt2).cast<double>().squaredNorm();
+ if (d2 < dist_min) {
+ dist_min = d2;
+ value_min = &value;
+ }
+ }
+ }
+ }
+ }
+ return (value_min != nullptr && dist_min < coordf_t(m_search_radius) * coordf_t(m_search_radius)) ?
+ std::make_pair(value_min, dist_min) :
+ std::make_pair(nullptr, std::numeric_limits<double>::max());
+ }
+
+ // Returns all pairs of values and squared distances.
+ std::vector<std::pair<const ValueType*, double>> find_all(const Vec2crd &pt) {
+ // Iterate over 4 closest grid cells around pt,
+ // Round pt to a closest grid_cell corner.
+ Vec2crd grid_corner((pt.x()+(m_grid_resolution>>1))>>m_grid_log2, (pt.y()+(m_grid_resolution>>1))>>m_grid_log2);
+ // For four neighbors of grid_corner:
+ std::vector<std::pair<const ValueType*, double>> out;
+ const double r2 = double(m_search_radius) * m_search_radius;
+ for (coord_t neighbor_y = -1; neighbor_y < 1; ++ neighbor_y) {
+ for (coord_t neighbor_x = -1; neighbor_x < 1; ++ neighbor_x) {
+ // Range of fragment starts around grid_corner, close to pt.
+ auto range = m_map.equal_range(Vec2crd(grid_corner.x() + neighbor_x, grid_corner.y() + neighbor_y));
+ // Find the map entry closest to pt.
+ for (auto it = range.first; it != range.second; ++it) {
+ const ValueType &value = it->second;
+ const Vec2crd *pt2 = m_point_accessor(value);
+ if (pt2 != nullptr) {
+ const double d2 = (pt - *pt2).cast<double>().squaredNorm();
+ if (d2 <= r2)
+ out.emplace_back(&value, d2);
+ }
+ }
+ }
+ }
+ return out;
+ }
+
+private:
+ using map_type = typename std::unordered_multimap<Vec2crd, ValueType, PointHash>;
+ PointAccessor m_point_accessor;
+ map_type m_map;
+ coord_t m_search_radius;
+ coord_t m_grid_resolution;
+ coord_t m_grid_log2;
+};
+
+std::ostream& operator<<(std::ostream &stm, const Vec2d &pointf);
+
+
+// /////////////////////////////////////////////////////////////////////////////
+// Type safe conversions to and from scaled and unscaled coordinates
+// /////////////////////////////////////////////////////////////////////////////
+
+// Semantics are the following:
+// Upscaling (scaled()): only from floating point types (or Vec) to either
+// floating point or integer 'scaled coord' coordinates.
+// Downscaling (unscaled()): from arithmetic (or Vec) to floating point only
+
+// Conversion definition from unscaled to floating point scaled
+template<class Tout,
+ class Tin,
+ class = FloatingOnly<Tin>>
+inline constexpr FloatingOnly<Tout> scaled(const Tin &v) noexcept
+{
+ return Tout(v / Tin(SCALING_FACTOR));
+}
+
+// Conversion definition from unscaled to integer 'scaled coord'.
+// TODO: is the rounding necessary? Here it is commented out to show that
+// it can be different for integers but it does not have to be. Using
+// std::round means loosing noexcept and constexpr modifiers
+template<class Tout = coord_t, class Tin, class = FloatingOnly<Tin>>
+inline constexpr ScaledCoordOnly<Tout> scaled(const Tin &v) noexcept
+{
+ //return static_cast<Tout>(std::round(v / SCALING_FACTOR));
+ return Tout(v / Tin(SCALING_FACTOR));
+}
+
+// Conversion for Eigen vectors (N dimensional points)
+template<class Tout = coord_t,
+ class Tin,
+ int N,
+ class = FloatingOnly<Tin>,
+ int...EigenArgs>
+inline Eigen::Matrix<ArithmeticOnly<Tout>, N, EigenArgs...>
+scaled(const Eigen::Matrix<Tin, N, EigenArgs...> &v)
+{
+ return (v / SCALING_FACTOR).template cast<Tout>();
+}
+
+// Conversion from arithmetic scaled type to floating point unscaled
+template<class Tout = double,
+ class Tin,
+ class = ArithmeticOnly<Tin>,
+ class = FloatingOnly<Tout>>
+inline constexpr Tout unscaled(const Tin &v) noexcept
+{
+ return Tout(v) * Tout(SCALING_FACTOR);
+}
+
+// Unscaling for Eigen vectors. Input base type can be arithmetic, output base
+// type can only be floating point.
+template<class Tout = double,
+ class Tin,
+ int N,
+ class = ArithmeticOnly<Tin>,
+ class = FloatingOnly<Tout>,
+ int...EigenArgs>
+inline constexpr Eigen::Matrix<Tout, N, EigenArgs...>
+unscaled(const Eigen::Matrix<Tin, N, EigenArgs...> &v) noexcept
+{
+ return v.template cast<Tout>() * Tout(SCALING_FACTOR);
+}
+
+// Align a coordinate to a grid. The coordinate may be negative,
+// the aligned value will never be bigger than the original one.
+inline coord_t align_to_grid(const coord_t coord, const coord_t spacing) {
+ // Current C++ standard defines the result of integer division to be rounded to zero,
+ // for both positive and negative numbers. Here we want to round down for negative
+ // numbers as well.
+ coord_t aligned = (coord < 0) ?
+ ((coord - spacing + 1) / spacing) * spacing :
+ (coord / spacing) * spacing;
+ assert(aligned <= coord);
+ return aligned;
+}
+inline Point align_to_grid(Point coord, Point spacing)
+ { return Point(align_to_grid(coord.x(), spacing.x()), align_to_grid(coord.y(), spacing.y())); }
+inline coord_t align_to_grid(coord_t coord, coord_t spacing, coord_t base)
+ { return base + align_to_grid(coord - base, spacing); }
+inline Point align_to_grid(Point coord, Point spacing, Point base)
+ { return Point(align_to_grid(coord.x(), spacing.x(), base.x()), align_to_grid(coord.y(), spacing.y(), base.y())); }
+
+} // namespace Slic3r
+
+// start Boost
+#include <boost/version.hpp>
+#include <boost/polygon/polygon.hpp>
+namespace boost { namespace polygon {
+ template <>
+ struct geometry_concept<Slic3r::Point> { using type = point_concept; };
+
+ template <>
+ struct point_traits<Slic3r::Point> {
+ using coordinate_type = coord_t;
+
+ static inline coordinate_type get(const Slic3r::Point& point, orientation_2d orient) {
+ return static_cast<coordinate_type>(point((orient == HORIZONTAL) ? 0 : 1));
+ }
+ };
+
+ template <>
+ struct point_mutable_traits<Slic3r::Point> {
+ using coordinate_type = coord_t;
+ static inline void set(Slic3r::Point& point, orientation_2d orient, coord_t value) {
+ point((orient == HORIZONTAL) ? 0 : 1) = value;
+ }
+ static inline Slic3r::Point construct(coord_t x_value, coord_t y_value) {
+ return Slic3r::Point(x_value, y_value);
+ }
+ };
+} }
+// end Boost
+
+// Serialization through the Cereal library
+namespace cereal {
+// template<class Archive> void serialize(Archive& archive, Slic3r::Vec2crd &v) { archive(v.x(), v.y()); }
+// template<class Archive> void serialize(Archive& archive, Slic3r::Vec3crd &v) { archive(v.x(), v.y(), v.z()); }
+ template<class Archive> void serialize(Archive& archive, Slic3r::Vec2i &v) { archive(v.x(), v.y()); }
+ template<class Archive> void serialize(Archive& archive, Slic3r::Vec3i &v) { archive(v.x(), v.y(), v.z()); }
+// template<class Archive> void serialize(Archive& archive, Slic3r::Vec2i64 &v) { archive(v.x(), v.y()); }
+// template<class Archive> void serialize(Archive& archive, Slic3r::Vec3i64 &v) { archive(v.x(), v.y(), v.z()); }
+ template<class Archive> void serialize(Archive& archive, Slic3r::Vec2f &v) { archive(v.x(), v.y()); }
+ template<class Archive> void serialize(Archive& archive, Slic3r::Vec3f &v) { archive(v.x(), v.y(), v.z()); }
+ template<class Archive> void serialize(Archive& archive, Slic3r::Vec2d &v) { archive(v.x(), v.y()); }
+ template<class Archive> void serialize(Archive& archive, Slic3r::Vec3d &v) { archive(v.x(), v.y(), v.z()); }
+
+ template<class Archive> void load(Archive& archive, Slic3r::Matrix2f &m) { archive.loadBinary((char*)m.data(), sizeof(float) * 4); }
+ template<class Archive> void save(Archive& archive, Slic3r::Matrix2f &m) { archive.saveBinary((char*)m.data(), sizeof(float) * 4); }
+#if ENABLE_WORLD_COORDINATE
+ template<class Archive> void load(Archive& archive, Slic3r::Transform3d& m) { archive.loadBinary((char*)m.data(), sizeof(double) * 16); }
+ template<class Archive> void save(Archive& archive, const Slic3r::Transform3d& m) { archive.saveBinary((char*)m.data(), sizeof(double) * 16); }
+#endif // ENABLE_WORLD_COORDINATE
+}
+
+// To be able to use Vec<> and Mat<> in range based for loops:
+namespace Eigen {
+template<class T, int N, int M>
+T* begin(Slic3r::Mat<N, M, T> &mat) { return mat.data(); }
+
+template<class T, int N, int M>
+T* end(Slic3r::Mat<N, M, T> &mat) { return mat.data() + N * M; }
+
+template<class T, int N, int M>
+const T* begin(const Slic3r::Mat<N, M, T> &mat) { return mat.data(); }
+
+template<class T, int N, int M>
+const T* end(const Slic3r::Mat<N, M, T> &mat) { return mat.data() + N * M; }
+} // namespace Eigen
+
+#endif