Welcome to mirror list, hosted at ThFree Co, Russian Federation.

Point.hpp « libslic3r « src - github.com/prusa3d/PrusaSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: ec071673bfa02729985244c347ef237962efe902 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
#ifndef slic3r_Point_hpp_
#define slic3r_Point_hpp_

#include "libslic3r.h"
#include <cstddef>
#include <vector>
#include <cmath>
#include <string>
#include <sstream>
#include <unordered_map>

#include <Eigen/Geometry> 

#include "LocalesUtils.hpp"

namespace Slic3r {

class BoundingBox;
class BoundingBoxf;
class Line;
class MultiPoint;
class Point;
using Vector = Point;

// Base template for eigen derived vectors
template<int N, int M, class T>
using Mat = Eigen::Matrix<T, N, M, Eigen::DontAlign, N, M>;

template<int N, class T> using Vec = Mat<N, 1, T>;

template<typename NumberType>
using DynVec = Eigen::Matrix<NumberType, Eigen::Dynamic, 1>;

// Eigen types, to replace the Slic3r's own types in the future.
// Vector types with a fixed point coordinate base type.
using Vec2crd = Eigen::Matrix<coord_t,  2, 1, Eigen::DontAlign>;
using Vec3crd = Eigen::Matrix<coord_t,  3, 1, Eigen::DontAlign>;
using Vec2i   = Eigen::Matrix<int,      2, 1, Eigen::DontAlign>;
using Vec3i   = Eigen::Matrix<int,      3, 1, Eigen::DontAlign>;
using Vec4i   = Eigen::Matrix<int,      4, 1, Eigen::DontAlign>;
using Vec2i32 = Eigen::Matrix<int32_t,  2, 1, Eigen::DontAlign>;
using Vec2i64 = Eigen::Matrix<int64_t,  2, 1, Eigen::DontAlign>;
using Vec3i32 = Eigen::Matrix<int32_t,  3, 1, Eigen::DontAlign>;
using Vec3i64 = Eigen::Matrix<int64_t,  3, 1, Eigen::DontAlign>;

// Vector types with a double coordinate base type.
using Vec2f   = Eigen::Matrix<float,    2, 1, Eigen::DontAlign>;
using Vec3f   = Eigen::Matrix<float,    3, 1, Eigen::DontAlign>;
using Vec2d   = Eigen::Matrix<double,   2, 1, Eigen::DontAlign>;
using Vec3d   = Eigen::Matrix<double,   3, 1, Eigen::DontAlign>;

using Points         = std::vector<Point>;
using PointPtrs      = std::vector<Point*>;
using PointConstPtrs = std::vector<const Point*>;
using Points3        = std::vector<Vec3crd>;
using Pointfs        = std::vector<Vec2d>;
using Vec2ds         = std::vector<Vec2d>;
using Pointf3s       = std::vector<Vec3d>;

using Matrix2f       = Eigen::Matrix<float,  2, 2, Eigen::DontAlign>;
using Matrix2d       = Eigen::Matrix<double, 2, 2, Eigen::DontAlign>;
using Matrix3f       = Eigen::Matrix<float,  3, 3, Eigen::DontAlign>;
using Matrix3d       = Eigen::Matrix<double, 3, 3, Eigen::DontAlign>;
using Matrix4f       = Eigen::Matrix<float,  4, 4, Eigen::DontAlign>;
using Matrix4d       = Eigen::Matrix<double, 4, 4, Eigen::DontAlign>;

template<int N, class T>
using Transform = Eigen::Transform<float, N, Eigen::Affine, Eigen::DontAlign>;

using Transform2f    = Eigen::Transform<float,  2, Eigen::Affine, Eigen::DontAlign>;
using Transform2d    = Eigen::Transform<double, 2, Eigen::Affine, Eigen::DontAlign>;
using Transform3f    = Eigen::Transform<float,  3, Eigen::Affine, Eigen::DontAlign>;
using Transform3d    = Eigen::Transform<double, 3, Eigen::Affine, Eigen::DontAlign>;

// I don't know why Eigen::Transform::Identity() return a const object...
template<int N, class T> Transform<N, T> identity() { return Transform<N, T>::Identity(); }
inline const auto &identity3f = identity<3, float>;
inline const auto &identity3d = identity<3, double>;

inline bool operator<(const Vec2d &lhs, const Vec2d &rhs) { return lhs.x() < rhs.x() || (lhs.x() == rhs.x() && lhs.y() < rhs.y()); }

// Cross product of two 2D vectors.
// None of the vectors may be of int32_t type as the result would overflow.
template<typename Derived, typename Derived2>
inline typename Derived::Scalar cross2(const Eigen::MatrixBase<Derived> &v1, const Eigen::MatrixBase<Derived2> &v2)
{
    static_assert(Derived::IsVectorAtCompileTime && int(Derived::SizeAtCompileTime) == 2, "cross2(): first parameter is not a 2D vector");
    static_assert(Derived2::IsVectorAtCompileTime && int(Derived2::SizeAtCompileTime) == 2, "cross2(): first parameter is not a 2D vector");
    static_assert(! std::is_same<typename Derived::Scalar, int32_t>::value, "cross2(): Scalar type must not be int32_t, otherwise the cross product would overflow.");
    static_assert(std::is_same<typename Derived::Scalar, typename Derived2::Scalar>::value, "cross2(): Scalar types of 1st and 2nd operand must be equal.");
    return v1.x() * v2.y() - v1.y() * v2.x();
}

// 2D vector perpendicular to the argument.
template<typename Derived>
inline Eigen::Matrix<typename Derived::Scalar, 2, 1, Eigen::DontAlign> perp(const Eigen::MatrixBase<Derived> &v)
{ 
    static_assert(Derived::IsVectorAtCompileTime && int(Derived::SizeAtCompileTime) == 2, "perp(): parameter is not a 2D vector");
    return { - v.y(), v.x() };
}

// Angle from v1 to v2, returning double atan2(y, x) normalized to <-PI, PI>.
template<typename Derived, typename Derived2>
inline double angle(const Eigen::MatrixBase<Derived> &v1, const Eigen::MatrixBase<Derived2> &v2) {
    static_assert(Derived::IsVectorAtCompileTime && int(Derived::SizeAtCompileTime) == 2, "angle(): first parameter is not a 2D vector");
    static_assert(Derived2::IsVectorAtCompileTime && int(Derived2::SizeAtCompileTime) == 2, "angle(): second parameter is not a 2D vector");
    auto v1d = v1.template cast<double>();
    auto v2d = v2.template cast<double>();
    return atan2(cross2(v1d, v2d), v1d.dot(v2d));
}

template<class T, int N, int Options>
Eigen::Matrix<T, 2, 1, Eigen::DontAlign> to_2d(const Eigen::MatrixBase<Eigen::Matrix<T, N, 1, Options>> &ptN) { return { ptN.x(), ptN.y() }; }

template<class T, int Options>
Eigen::Matrix<T, 3, 1, Eigen::DontAlign> to_3d(const Eigen::MatrixBase<Eigen::Matrix<T, 2, 1, Options>> & pt, const T z) { return { pt.x(), pt.y(), z }; }

inline Vec2d   unscale(coord_t x, coord_t y) { return Vec2d(unscale<double>(x), unscale<double>(y)); }
inline Vec2d   unscale(const Vec2crd &pt) { return Vec2d(unscale<double>(pt.x()), unscale<double>(pt.y())); }
inline Vec2d   unscale(const Vec2d   &pt) { return Vec2d(unscale<double>(pt.x()), unscale<double>(pt.y())); }
inline Vec3d   unscale(coord_t x, coord_t y, coord_t z) { return Vec3d(unscale<double>(x), unscale<double>(y), unscale<double>(z)); }
inline Vec3d   unscale(const Vec3crd &pt) { return Vec3d(unscale<double>(pt.x()), unscale<double>(pt.y()), unscale<double>(pt.z())); }
inline Vec3d   unscale(const Vec3d   &pt) { return Vec3d(unscale<double>(pt.x()), unscale<double>(pt.y()), unscale<double>(pt.z())); }

inline std::string to_string(const Vec2crd &pt) { return std::string("[") + float_to_string_decimal_point(pt.x()) + ", " + float_to_string_decimal_point(pt.y()) + "]"; }
inline std::string to_string(const Vec2d   &pt) { return std::string("[") + float_to_string_decimal_point(pt.x()) + ", " + float_to_string_decimal_point(pt.y()) + "]"; }
inline std::string to_string(const Vec3crd &pt) { return std::string("[") + float_to_string_decimal_point(pt.x()) + ", " + float_to_string_decimal_point(pt.y()) + ", " + float_to_string_decimal_point(pt.z()) + "]"; }
inline std::string to_string(const Vec3d   &pt) { return std::string("[") + float_to_string_decimal_point(pt.x()) + ", " + float_to_string_decimal_point(pt.y()) + ", " + float_to_string_decimal_point(pt.z()) + "]"; }

std::vector<Vec3f> transform(const std::vector<Vec3f>& points, const Transform3f& t);
Pointf3s transform(const Pointf3s& points, const Transform3d& t);

template<int N, class T> using Vec = Eigen::Matrix<T,  N, 1, Eigen::DontAlign, N, 1>;

class Point : public Vec2crd
{
public:
    using coord_type = coord_t;

    Point() : Vec2crd(0, 0) {}
    Point(int32_t x, int32_t y) : Vec2crd(coord_t(x), coord_t(y)) {}
    Point(int64_t x, int64_t y) : Vec2crd(coord_t(x), coord_t(y)) {}
    Point(double x, double y) : Vec2crd(coord_t(lrint(x)), coord_t(lrint(y))) {}
    Point(const Point &rhs) { *this = rhs; }
	explicit Point(const Vec2d& rhs) : Vec2crd(coord_t(lrint(rhs.x())), coord_t(lrint(rhs.y()))) {}
	// This constructor allows you to construct Point from Eigen expressions
    template<typename OtherDerived>
    Point(const Eigen::MatrixBase<OtherDerived> &other) : Vec2crd(other) {}
    static Point new_scale(coordf_t x, coordf_t y) { return Point(coord_t(scale_(x)), coord_t(scale_(y))); }
    static Point new_scale(const Vec2d &v) { return Point(coord_t(scale_(v.x())), coord_t(scale_(v.y()))); }
    static Point new_scale(const Vec2f &v) { return Point(coord_t(scale_(v.x())), coord_t(scale_(v.y()))); }

    // This method allows you to assign Eigen expressions to MyVectorType
    template<typename OtherDerived>
    Point& operator=(const Eigen::MatrixBase<OtherDerived> &other)
    {
        this->Vec2crd::operator=(other);
        return *this;
    }

    Point& operator+=(const Point& rhs) { this->x() += rhs.x(); this->y() += rhs.y(); return *this; }
    Point& operator-=(const Point& rhs) { this->x() -= rhs.x(); this->y() -= rhs.y(); return *this; }
	Point& operator*=(const double &rhs) { this->x() = coord_t(this->x() * rhs); this->y() = coord_t(this->y() * rhs); return *this; }
    Point operator*(const double &rhs) { return Point(this->x() * rhs, this->y() * rhs); }

    void   rotate(double angle) { this->rotate(std::cos(angle), std::sin(angle)); }
    void   rotate(double cos_a, double sin_a) {
        double cur_x = (double)this->x();
        double cur_y = (double)this->y();
        this->x() = (coord_t)round(cos_a * cur_x - sin_a * cur_y);
        this->y() = (coord_t)round(cos_a * cur_y + sin_a * cur_x);
    }

    void   rotate(double angle, const Point &center);
    Point  rotated(double angle) const { Point res(*this); res.rotate(angle); return res; }
    Point  rotated(double cos_a, double sin_a) const { Point res(*this); res.rotate(cos_a, sin_a); return res; }
    Point  rotated(double angle, const Point &center) const { Point res(*this); res.rotate(angle, center); return res; }
    int    nearest_point_index(const Points &points) const;
    int    nearest_point_index(const PointConstPtrs &points) const;
    int    nearest_point_index(const PointPtrs &points) const;
    bool   nearest_point(const Points &points, Point* point) const;
    Point  projection_onto(const MultiPoint &poly) const;
    Point  projection_onto(const Line &line) const;
};

inline bool operator<(const Point &l, const Point &r) 
{ 
    return l.x() < r.x() || (l.x() == r.x() && l.y() < r.y());
}

inline Point operator* (const Point& l, const double &r)
{
    return {coord_t(l.x() * r), coord_t(l.y() * r)};
}

inline bool is_approx(const Point &p1, const Point &p2, coord_t epsilon = coord_t(SCALED_EPSILON))
{
	Point d = (p2 - p1).cwiseAbs();
	return d.x() < epsilon && d.y() < epsilon;
}

inline bool is_approx(const Vec2f &p1, const Vec2f &p2, float epsilon = float(EPSILON))
{
	Vec2f d = (p2 - p1).cwiseAbs();
	return d.x() < epsilon && d.y() < epsilon;
}

inline bool is_approx(const Vec2d &p1, const Vec2d &p2, double epsilon = EPSILON)
{
	Vec2d d = (p2 - p1).cwiseAbs();
	return d.x() < epsilon && d.y() < epsilon;
}

inline bool is_approx(const Vec3f &p1, const Vec3f &p2, float epsilon = float(EPSILON))
{
	Vec3f d = (p2 - p1).cwiseAbs();
	return d.x() < epsilon && d.y() < epsilon && d.z() < epsilon;
}

inline bool is_approx(const Vec3d &p1, const Vec3d &p2, double epsilon = EPSILON)
{
	Vec3d d = (p2 - p1).cwiseAbs();
	return d.x() < epsilon && d.y() < epsilon && d.z() < epsilon;
}

inline Point lerp(const Point &a, const Point &b, double t)
{
    assert((t >= -EPSILON) && (t <= 1. + EPSILON));
    return ((1. - t) * a.cast<double>() + t * b.cast<double>()).cast<coord_t>();
}

BoundingBox get_extents(const Points &pts);
BoundingBox get_extents(const std::vector<Points> &pts);
BoundingBoxf get_extents(const std::vector<Vec2d> &pts);

// Test for duplicate points in a vector of points.
// The points are copied, sorted and checked for duplicates globally.
bool        has_duplicate_points(std::vector<Point> &&pts);
inline bool has_duplicate_points(const std::vector<Point> &pts)
{
    std::vector<Point> cpy = pts;
    return has_duplicate_points(std::move(cpy));
}

// Test for duplicate points in a vector of points.
// Only successive points are checked for equality.
inline bool has_duplicate_successive_points(const std::vector<Point> &pts)
{
    for (size_t i = 1; i < pts.size(); ++ i)
        if (pts[i - 1] == pts[i])
            return true;
    return false;
}

// Test for duplicate points in a vector of points.
// Only successive points are checked for equality. Additionally, first and last points are compared for equality.
inline bool has_duplicate_successive_points_closed(const std::vector<Point> &pts)
{
    return has_duplicate_successive_points(pts) || (pts.size() >= 2 && pts.front() == pts.back());
}

namespace int128 {
    // Exact orientation predicate,
    // returns +1: CCW, 0: collinear, -1: CW.
    int orient(const Vec2crd &p1, const Vec2crd &p2, const Vec2crd &p3);
    // Exact orientation predicate,
    // returns +1: CCW, 0: collinear, -1: CW.
    int cross(const Vec2crd &v1, const Vec2crd &v2);
}

// To be used by std::unordered_map, std::unordered_multimap and friends.
struct PointHash {
    size_t operator()(const Vec2crd &pt) const {
        return coord_t((89 * 31 + int64_t(pt.x())) * 31 + pt.y());
    }
};

// A generic class to search for a closest Point in a given radius.
// It uses std::unordered_multimap to implement an efficient 2D spatial hashing.
// The PointAccessor has to return const Point*.
// If a nullptr is returned, it is ignored by the query.
template<typename ValueType, typename PointAccessor> class ClosestPointInRadiusLookup
{
public:
    ClosestPointInRadiusLookup(coord_t search_radius, PointAccessor point_accessor = PointAccessor()) : 
		m_search_radius(search_radius), m_point_accessor(point_accessor), m_grid_log2(0)
    {
        // Resolution of a grid, twice the search radius + some epsilon.
		coord_t gridres = 2 * m_search_radius + 4;
        m_grid_resolution = gridres;
        assert(m_grid_resolution > 0);
        assert(m_grid_resolution < (coord_t(1) << 30));
		// Compute m_grid_log2 = log2(m_grid_resolution)
		if (m_grid_resolution > 32767) {
			m_grid_resolution >>= 16;
			m_grid_log2 += 16;
		}
		if (m_grid_resolution > 127) {
			m_grid_resolution >>= 8;
			m_grid_log2 += 8;
		}
		if (m_grid_resolution > 7) {
			m_grid_resolution >>= 4;
			m_grid_log2 += 4;
		}
		if (m_grid_resolution > 1) {
			m_grid_resolution >>= 2;
			m_grid_log2 += 2;
		}
		if (m_grid_resolution > 0)
			++ m_grid_log2;
		m_grid_resolution = 1 << m_grid_log2;
		assert(m_grid_resolution >= gridres);
		assert(gridres > m_grid_resolution / 2);
    }

    void insert(const ValueType &value) {
        const Vec2crd *pt = m_point_accessor(value);
        if (pt != nullptr)
            m_map.emplace(std::make_pair(Vec2crd(pt->x()>>m_grid_log2, pt->y()>>m_grid_log2), value));
    }

    void insert(ValueType &&value) {
        const Vec2crd *pt = m_point_accessor(value);
        if (pt != nullptr)
            m_map.emplace(std::make_pair(Vec2crd(pt->x()>>m_grid_log2, pt->y()>>m_grid_log2), std::move(value)));
    }

    // Erase a data point equal to value. (ValueType has to declare the operator==).
    // Returns true if the data point equal to value was found and removed.
    bool erase(const ValueType &value) {
        const Point *pt = m_point_accessor(value);
        if (pt != nullptr) {
            // Range of fragment starts around grid_corner, close to pt.
            auto range = m_map.equal_range(Point((*pt).x()>>m_grid_log2, (*pt).y()>>m_grid_log2));
            // Remove the first item.
            for (auto it = range.first; it != range.second; ++ it) {
                if (it->second == value) {
                    m_map.erase(it);
                    return true;
                }
            }
        }
        return false;
    }

    // Return a pair of <ValueType*, distance_squared>
    std::pair<const ValueType*, double> find(const Vec2crd &pt) {
        // Iterate over 4 closest grid cells around pt,
        // find the closest start point inside these cells to pt.
        const ValueType *value_min = nullptr;
        double           dist_min = std::numeric_limits<double>::max();
        // Round pt to a closest grid_cell corner.
        Vec2crd            grid_corner((pt.x()+(m_grid_resolution>>1))>>m_grid_log2, (pt.y()+(m_grid_resolution>>1))>>m_grid_log2);
        // For four neighbors of grid_corner:
        for (coord_t neighbor_y = -1; neighbor_y < 1; ++ neighbor_y) {
            for (coord_t neighbor_x = -1; neighbor_x < 1; ++ neighbor_x) {
                // Range of fragment starts around grid_corner, close to pt.
                auto range = m_map.equal_range(Vec2crd(grid_corner.x() + neighbor_x, grid_corner.y() + neighbor_y));
                // Find the map entry closest to pt.
                for (auto it = range.first; it != range.second; ++it) {
                    const ValueType &value = it->second;
                    const Vec2crd *pt2 = m_point_accessor(value);
                    if (pt2 != nullptr) {
                        const double d2 = (pt - *pt2).cast<double>().squaredNorm();
                        if (d2 < dist_min) {
                            dist_min = d2;
                            value_min = &value;
                        }
                    }
                }
            }
        }
        return (value_min != nullptr && dist_min < coordf_t(m_search_radius) * coordf_t(m_search_radius)) ? 
            std::make_pair(value_min, dist_min) : 
            std::make_pair(nullptr, std::numeric_limits<double>::max());
    }

    // Returns all pairs of values and squared distances.
    std::vector<std::pair<const ValueType*, double>> find_all(const Vec2crd &pt) {
        // Iterate over 4 closest grid cells around pt,
        // Round pt to a closest grid_cell corner.
        Vec2crd      grid_corner((pt.x()+(m_grid_resolution>>1))>>m_grid_log2, (pt.y()+(m_grid_resolution>>1))>>m_grid_log2);
        // For four neighbors of grid_corner:
        std::vector<std::pair<const ValueType*, double>> out;
        const double r2 = double(m_search_radius) * m_search_radius;
        for (coord_t neighbor_y = -1; neighbor_y < 1; ++ neighbor_y) {
            for (coord_t neighbor_x = -1; neighbor_x < 1; ++ neighbor_x) {
                // Range of fragment starts around grid_corner, close to pt.
                auto range = m_map.equal_range(Vec2crd(grid_corner.x() + neighbor_x, grid_corner.y() + neighbor_y));
                // Find the map entry closest to pt.
                for (auto it = range.first; it != range.second; ++it) {
                    const ValueType &value = it->second;
                    const Vec2crd *pt2 = m_point_accessor(value);
                    if (pt2 != nullptr) {
                        const double d2 = (pt - *pt2).cast<double>().squaredNorm();
                        if (d2 <= r2)
                            out.emplace_back(&value, d2);
                    }
                }
            }
        }
        return out;
    }

private:
    using map_type = typename std::unordered_multimap<Vec2crd, ValueType, PointHash>;
    PointAccessor m_point_accessor;
    map_type m_map;
    coord_t  m_search_radius;
    coord_t  m_grid_resolution;
    coord_t  m_grid_log2;
};

std::ostream& operator<<(std::ostream &stm, const Vec2d &pointf);


// /////////////////////////////////////////////////////////////////////////////
// Type safe conversions to and from scaled and unscaled coordinates
// /////////////////////////////////////////////////////////////////////////////

// Semantics are the following:
// Upscaling (scaled()): only from floating point types (or Vec) to either
//                       floating point or integer 'scaled coord' coordinates.
// Downscaling (unscaled()): from arithmetic (or Vec) to floating point only

// Conversion definition from unscaled to floating point scaled
template<class Tout,
         class Tin,
         class = FloatingOnly<Tin>>
inline constexpr FloatingOnly<Tout> scaled(const Tin &v) noexcept
{
    return Tout(v / Tin(SCALING_FACTOR));
}

// Conversion definition from unscaled to integer 'scaled coord'.
// TODO: is the rounding necessary? Here it is commented  out to show that
// it can be different for integers but it does not have to be. Using
// std::round means loosing noexcept and constexpr modifiers
template<class Tout = coord_t, class Tin, class = FloatingOnly<Tin>>
inline constexpr ScaledCoordOnly<Tout> scaled(const Tin &v) noexcept
{
    //return static_cast<Tout>(std::round(v / SCALING_FACTOR));
    return Tout(v / Tin(SCALING_FACTOR));
}

// Conversion for Eigen vectors (N dimensional points)
template<class Tout = coord_t,
         class Tin,
         int N,
         class = FloatingOnly<Tin>,
         int...EigenArgs>
inline Eigen::Matrix<ArithmeticOnly<Tout>, N, EigenArgs...>
scaled(const Eigen::Matrix<Tin, N, EigenArgs...> &v)
{
    return (v / SCALING_FACTOR).template cast<Tout>();
}

// Conversion from arithmetic scaled type to floating point unscaled
template<class Tout = double,
         class Tin,
         class = ArithmeticOnly<Tin>,
         class = FloatingOnly<Tout>>
inline constexpr Tout unscaled(const Tin &v) noexcept
{
    return Tout(v) * Tout(SCALING_FACTOR);
}

// Unscaling for Eigen vectors. Input base type can be arithmetic, output base
// type can only be floating point.
template<class Tout = double,
         class Tin,
         int N,
         class = ArithmeticOnly<Tin>,
         class = FloatingOnly<Tout>,
         int...EigenArgs>
inline constexpr Eigen::Matrix<Tout, N, EigenArgs...>
unscaled(const Eigen::Matrix<Tin, N, EigenArgs...> &v) noexcept
{
    return v.template cast<Tout>() * Tout(SCALING_FACTOR);
}

// Align a coordinate to a grid. The coordinate may be negative,
// the aligned value will never be bigger than the original one.
inline coord_t align_to_grid(const coord_t coord, const coord_t spacing) {
    // Current C++ standard defines the result of integer division to be rounded to zero,
    // for both positive and negative numbers. Here we want to round down for negative
    // numbers as well.
    coord_t aligned = (coord < 0) ?
            ((coord - spacing + 1) / spacing) * spacing :
            (coord / spacing) * spacing;
    assert(aligned <= coord);
    return aligned;
}
inline Point   align_to_grid(Point   coord, Point   spacing) 
    { return Point(align_to_grid(coord.x(), spacing.x()), align_to_grid(coord.y(), spacing.y())); }
inline coord_t align_to_grid(coord_t coord, coord_t spacing, coord_t base) 
    { return base + align_to_grid(coord - base, spacing); }
inline Point   align_to_grid(Point   coord, Point   spacing, Point   base)
    { return Point(align_to_grid(coord.x(), spacing.x(), base.x()), align_to_grid(coord.y(), spacing.y(), base.y())); }

} // namespace Slic3r

// start Boost
#include <boost/version.hpp>
#include <boost/polygon/polygon.hpp>
namespace boost { namespace polygon {
    template <>
    struct geometry_concept<Slic3r::Point> { using type = point_concept; };
   
    template <>
    struct point_traits<Slic3r::Point> {
        using coordinate_type = coord_t;
    
        static inline coordinate_type get(const Slic3r::Point& point, orientation_2d orient) {
            return static_cast<coordinate_type>(point((orient == HORIZONTAL) ? 0 : 1));
        }
    };
    
    template <>
    struct point_mutable_traits<Slic3r::Point> {
        using coordinate_type = coord_t;
        static inline void set(Slic3r::Point& point, orientation_2d orient, coord_t value) {
            point((orient == HORIZONTAL) ? 0 : 1) = value;
        }
        static inline Slic3r::Point construct(coord_t x_value, coord_t y_value) {
            return Slic3r::Point(x_value, y_value);
        }
    };
} }
// end Boost

// Serialization through the Cereal library
namespace cereal {
//	template<class Archive> void serialize(Archive& archive, Slic3r::Vec2crd &v) { archive(v.x(), v.y()); }
//	template<class Archive> void serialize(Archive& archive, Slic3r::Vec3crd &v) { archive(v.x(), v.y(), v.z()); }
	template<class Archive> void serialize(Archive& archive, Slic3r::Vec2i   &v) { archive(v.x(), v.y()); }
	template<class Archive> void serialize(Archive& archive, Slic3r::Vec3i   &v) { archive(v.x(), v.y(), v.z()); }
//	template<class Archive> void serialize(Archive& archive, Slic3r::Vec2i64 &v) { archive(v.x(), v.y()); }
//	template<class Archive> void serialize(Archive& archive, Slic3r::Vec3i64 &v) { archive(v.x(), v.y(), v.z()); }
	template<class Archive> void serialize(Archive& archive, Slic3r::Vec2f   &v) { archive(v.x(), v.y()); }
	template<class Archive> void serialize(Archive& archive, Slic3r::Vec3f   &v) { archive(v.x(), v.y(), v.z()); }
	template<class Archive> void serialize(Archive& archive, Slic3r::Vec2d   &v) { archive(v.x(), v.y()); }
	template<class Archive> void serialize(Archive& archive, Slic3r::Vec3d   &v) { archive(v.x(), v.y(), v.z()); }

	template<class Archive> void load(Archive& archive, Slic3r::Matrix2f &m) { archive.loadBinary((char*)m.data(), sizeof(float) * 4); }
	template<class Archive> void save(Archive& archive, Slic3r::Matrix2f &m) { archive.saveBinary((char*)m.data(), sizeof(float) * 4); }
#if ENABLE_WORLD_COORDINATE
    template<class Archive> void load(Archive& archive, Slic3r::Transform3d& m)       { archive.loadBinary((char*)m.data(), sizeof(double) * 16); }
    template<class Archive> void save(Archive& archive, const Slic3r::Transform3d& m) { archive.saveBinary((char*)m.data(), sizeof(double) * 16); }
#endif // ENABLE_WORLD_COORDINATE
}

// To be able to use Vec<> and Mat<> in range based for loops:
namespace Eigen {
template<class T, int N, int M>
T* begin(Slic3r::Mat<N, M, T> &mat) { return mat.data(); }

template<class T, int N, int M>
T* end(Slic3r::Mat<N, M, T> &mat) { return mat.data() + N * M; }

template<class T, int N, int M>
const T* begin(const Slic3r::Mat<N, M, T> &mat) { return mat.data(); }

template<class T, int N, int M>
const T* end(const Slic3r::Mat<N, M, T> &mat) { return mat.data() + N * M; }
} // namespace Eigen

#endif